1
|
Bunz M, Eisele M, Hu D, Ritter M, Kammerloher J, Lampl S, Schindler M. CD81 suppresses NF-κB signaling and is downregulated in hepatitis C virus expressing cells. Front Cell Infect Microbiol 2024; 14:1338606. [PMID: 38357447 PMCID: PMC10864554 DOI: 10.3389/fcimb.2024.1338606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
The tetraspanin CD81 is one of the main entry receptors for Hepatitis C virus, which is a major causative agent to develop liver cirrhosis and hepatocellular carcinoma (HCC). Here, we identify CD81 as one of few surface proteins that are downregulated in HCV expressing hepatoma cells, discovering a functional role of CD81 beyond mediating HCV entry. CD81 was downregulated at the mRNA level in hepatoma cells that replicate HCV. Kinetics of HCV expression were increased in CD81-knockout cells and accompanied by enhanced cellular growth. Furthermore, loss of CD81 compensated for inhibition of pro-survival TBK1-signaling in HCV expressing cells. Analysis of functional phenotypes that could be associated with pro-survival signaling revealed that CD81 is a negative regulator of NF-κB. Interaction of the NF-κB subunits p50 and p65 was increased in cells lacking CD81. Similarly, we witnessed an overall increase in the total levels of phosphorylated and cellular p65 upon CD81-knockout in hepatoma cells. Finally, translocation of p65 in CD81-negative hepatoma cells was markedly induced upon stimulation with TNFα or PMA. Altogether, CD81 emerges as a regulator of pro-survival NF-κB signaling. Considering the important and established role of NF-κB for HCV replication and tumorigenesis, the downregulation of CD81 by HCV and the associated increase in NF-κB signaling might be relevant for viral persistence and chronic infection.
Collapse
Affiliation(s)
- Maximilian Bunz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Mona Eisele
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Dan Hu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Julia Kammerloher
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Sandra Lampl
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Zaki MYW, Fathi AM, Samir S, Eldafashi N, William KY, Nazmy MH, Fathy M, Gill US, Shetty S. Innate and Adaptive Immunopathogeneses in Viral Hepatitis; Crucial Determinants of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:1255. [PMID: 35267563 PMCID: PMC8909759 DOI: 10.3390/cancers14051255] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Viral hepatitis B (HBV) and hepatitis C (HCV) infections remain the most common risk factors for the development of hepatocellular carcinoma (HCC), and their heterogeneous distribution influences the global prevalence of this common type of liver cancer. Typical hepatitis infection elicits various immune responses within the liver microenvironment, and viral persistence induces chronic liver inflammation and carcinogenesis. HBV is directly mutagenic but can also cause low-grade liver inflammation characterized by episodes of intermittent high-grade liver inflammation, liver fibrosis, and cirrhosis, which can progress to decompensated liver disease and HCC. Equally, the absence of key innate and adaptive immune responses in chronic HCV infection dampens viral eradication and induces an exhausted and immunosuppressive liver niche that favors HCC development and progression. The objectives of this review are to (i) discuss the epidemiological pattern of HBV and HCV infections, (ii) understand the host immune response to acute and chronic viral hepatitis, and (iii) explore the link between this diseased immune environment and the development and progression of HCC in preclinical models and HCC patients.
Collapse
Affiliation(s)
- Marco Y. W. Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahmed M. Fathi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Samara Samir
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Nardeen Eldafashi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Kerolis Y. William
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
| | - Maiiada Hassan Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Upkar S. Gill
- Barts Liver Centre, Centre for Immunobiology, Barts & The London School of Medicine & Dentistry, QMUL, London E1 2AT, UK;
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Rios DA, Casciato PC, Caldirola MS, Gaillard MI, Giadans C, Ameigeiras B, De Matteo EN, Preciado MV, Valva P. Chronic Hepatitis C Pathogenesis: Immune Response in the Liver Microenvironment and Peripheral Compartment. Front Cell Infect Microbiol 2021; 11:712105. [PMID: 34414132 PMCID: PMC8369367 DOI: 10.3389/fcimb.2021.712105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C (CHC) pathogenic mechanisms as well as the participation of the immune response in the generation of liver damage are still a topic of interest. Here, we evaluated immune cell populations and cytokines in the liver and peripheral blood (PB) to elucidate their role in CHC pathogenesis. B, CTL, Th, Treg, Th1, Th17, and NK cell localization and frequency were evaluated on liver biopsies by immunohistochemistry, while frequency, differentiation, and functional status on PB were evaluated by flow cytometry. TNF-α, IL-23, IFN-γ, IL-1β, IL-6, IL-8, IL-17A, IL-21, IL-10, and TGF-β expression levels were quantified in fresh liver biopsy by RT-qPCR and in plasma by CBA/ELISA. Liver CTL and Th1 at the lobular area inversely correlated with viral load (r = −0.469, p =0.003 and r = −0.384, p = 0.040). Treg correlated with CTL and Th1 at the lobular area (r = 0.784, p < 0.0001; r = 0.436, p = 0.013). Th17 correlated with hepatic IL-8 (r = 0.52, p < 0.05), and both were higher in advanced fibrosis cases (Th17 p = 0.0312, IL-8 p = 0.009). Hepatic cytokines were higher in severe hepatitis cases (IL-1β p = 0.026, IL-23 p = 0.031, IL-8 p = 0.002, TGF-β, p= 0.037). Peripheral NK (p = 0.008) and NK dim (p = 0.018) were diminished, while NK bright (p = 0.025) was elevated in patients vs. donors. Naïve Th (p = 0.011) and CTL (p = 0.0007) were decreased, while activated Th (p = 0.0007) and CTL (p = 0.0003) were increased. IFN-γ production and degranulation activity in NK and CTL were normal. Peripheral cytokines showed an altered profile vs. donors, particularly elevated IL-6 (p = 0.008) and TGF-β (p = 0.041). Total hepatic CTLs favored damage. Treg could not prevent fibrogenesis triggered by Th17 and IL-8. Peripheral T-lymphocyte differentiation stage shift, elevated cytokine levels and NK-cell count decrease would contribute to global disease.
Collapse
Affiliation(s)
- Daniela Alejandra Rios
- Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | | | - María Soledad Caldirola
- Immunology Unit, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - María Isabel Gaillard
- Immunology Unit, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Cecilia Giadans
- Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | | | - Elena Noemí De Matteo
- Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - María Victoria Preciado
- Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Pamela Valva
- Laboratory of Molecular Biology, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| |
Collapse
|
4
|
Llorens-Revull M, Costafreda MI, Rico A, Guerrero-Murillo M, Soria ME, Píriz-Ruzo S, Vargas-Accarino E, Gabriel-Medina P, Rodríguez-Frías F, Riveiro-Barciela M, Perales C, Quer J, Sauleda S, Esteban JI, Bes M. Partial restoration of immune response in Hepatitis C patients after viral clearance by direct-acting antiviral therapy. PLoS One 2021; 16:e0254243. [PMID: 34242330 PMCID: PMC8270431 DOI: 10.1371/journal.pone.0254243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS HCV CD4+ and CD8+ specific T cells responses are functionally impaired during chronic hepatitis C infection. DAAs therapies eradicate HCV infection in more than 95% of treated patients. However, the impact of HCV elimination on immune responses remain controversial. Here, we aimed to investigate whether HCV cure by DAAs could reverse the impaired immune response to HCV. METHODS We analyzed 27 chronic HCV infected patients undergoing DAA treatment in tertiary care hospital, and we determined the phenotypical and functional changes in both HCV CD8+ and CD4+ specific T-cells before and after viral clearance. PD-1, TIM-3 and LAG-3 cell-surface expression was assessed by flow cytometry to determine CD4+ T cell exhaustion. Functional responses to HCV were analyzed by IFN-Ɣ ELISPOT, intracellular cytokine staining (IL-2 and IFN-Ɣ) and CFSE-based proliferation assays. RESULTS We observed a significant decrease in the expression of PD-1 in CD4+ T-cells after 12 weeks of viral clearance in non-cirrhotic patients (p = 0.033) and in treatment-naive patients (p = 0.010), indicating a partial CD4 phenotype restoration. IFN-Ɣ and IL-2 cytokines production by HCV-specific CD4+ and CD8+ T cells remained impaired upon HCV eradication. Finally, a significant increase of the proliferation capacity of both HCV CD4+ and CD8+ specific T-cells was observed after HCV elimination by DAAs therapies. CONCLUSIONS Our results show that in chronically infected patients HCV elimination by DAA treatment lead to partial reversion of CD4+ T cell exhaustion. Moreover, proliferative capacity of HCV-specific CD4+ and CD8+ T cells is recovered after DAA's therapies.
Collapse
Affiliation(s)
- Meritxell Llorens-Revull
- Liver Diseases-Viral Hepatitis Laboratory, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Isabel Costafreda
- Liver Diseases-Viral Hepatitis Laboratory, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Transfusion Safety Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Angie Rico
- Liver Diseases-Viral Hepatitis Laboratory, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Transfusion Safety Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Mercedes Guerrero-Murillo
- Liver Diseases-Viral Hepatitis Laboratory, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Sofía Píriz-Ruzo
- Liver Diseases-Viral Hepatitis Laboratory, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Vargas-Accarino
- Liver Diseases-Viral Hepatitis Laboratory, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pablo Gabriel-Medina
- Liver Pathology Laboratory, Biochemistry and Microbiology Unit, Vall d’Hebron Hospital Universitari (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Liver Pathology Laboratory, Biochemistry and Microbiology Unit, Vall d’Hebron Hospital Universitari (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Clinical Biochemistry Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Celia Perales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis Laboratory, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Silvia Sauleda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Transfusion Safety Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Juan Ignacio Esteban
- Liver Diseases-Viral Hepatitis Laboratory, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marta Bes
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Transfusion Safety Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
| |
Collapse
|
5
|
Coto-Llerena M, Lepore M, Spagnuolo J, Di Blasi D, Calabrese D, Suslov A, Bantug G, Duong FH, Terracciano LM, De Libero G, Heim MH. Interferon lambda 4 can directly activate human CD19 + B cells and CD8 + T cells. Life Sci Alliance 2021; 4:e201900612. [PMID: 33158978 PMCID: PMC7668538 DOI: 10.26508/lsa.201900612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Compared with the ubiquitous expression of type I (IFNα and IFNβ) interferon receptors, type III (IFNλ) interferon receptors are mainly expressed in epithelial cells of mucosal barriers of the of the intestine and respiratory tract. Consequently, IFNλs are important for innate pathogen defense in the lung and intestine. IFNλs also determine the outcome of hepatitis C virus (HCV) infections, with IFNλ4 inhibiting spontaneous clearance of HCV. Because viral clearance is dependent on T cells, we explored if IFNλs can directly bind to and regulate human T cells. We found that human B cells and CD8+ T cells express the IFNλ receptor and respond to IFNλs, including IFNλ4. IFNλs were not inhibitors but weak stimulators of B- and T-cell responses. Furthermore, IFNλ4 showed neither synergistic nor antagonistic effects in co-stimulatory experiments with IFNλ1 or IFNα. Multidimensional flow cytometry of cells from liver biopsies of hepatitis patients from IFNλ4-producers showed accumulation of activated CD8+ T cells with a central memory-like phenotype. In contrast, CD8+ T cells with a senescent/exhausted phenotype were more abundant in IFNλ4-non-producers. It remains to be elucidated how IFNλ4 promotes CD8 T-cell responses and inhibits the host immunity to HCV infections.
Collapse
Affiliation(s)
- Mairene Coto-Llerena
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Marco Lepore
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Julian Spagnuolo
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Daniela Di Blasi
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Aleksei Suslov
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel, Switzerland
| | - Francois Ht Duong
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Luigi M Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gennaro De Libero
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
6
|
Mohammadzadeh S, Roohvand F, Ehsani P, Salmanian AH, Ajdary S. Canola oilseed- and Escherichia coli- derived hepatitis C virus (HCV) core proteins adjuvanted with oil bodies, induced robust Th1-oriented immune responses in immunized mice. APMIS 2020; 128:593-602. [PMID: 32870528 DOI: 10.1111/apm.13074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022]
Abstract
Induction of broad Th1 cellular immune responses and cytokines is crucial characteristics for vaccines against intracellular infections such as hepatitis C virus (HCV). Plants (especially oilseed tissues) and plant-immunomodulators (like oil bodies) offer cost-effective and scalable possibilities for the production of immunologically relevant and safe vaccine antigens and adjuvants, respectively. Herein, we provide data of the murine immunization by transgenic canola oilseed-derived HCV core protein (HCVcp) soluble extract (TSE) and Escherichia coli- derived rHCVcp in combination with Canola oil bodies (oil) compared to that of the Freund's (FA) adjuvant. Mice immunized by TSE+ oil developed both strong humeral (IgG) and Th1-biased cellular responses, manifested by high levels of IFN-γ and lower IgG1/IgG2a ratio and IL-4 secretion. Results of the intracellular cytokine staining indicated that TSE+ oil immunization in mice triggered both CD4+ and CD8+ T cells to release IFN-γ, while CD4+ cells were mostly triggered when FA was used. Analyses by qRT-PCR indicated that a combination of rHCVcp/TSE with oil body induced high levels of IL-10 cytokines compared to that of the FA adjuvant. These characteristics are important properties for the design of an HCV vaccine candidate and indicate the potential of Canola-derived antigen and oil bodies in addressing these concerns.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Hatef Salmanian
- Department Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Osuch S, Metzner KJ, Caraballo Cortés K. Reversal of T Cell Exhaustion in Chronic HCV Infection. Viruses 2020; 12:v12080799. [PMID: 32722372 PMCID: PMC7472290 DOI: 10.3390/v12080799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The long-term consequences of T cell responses’ impairment in chronic HCV infection are not entirely characterized, although they may be essential in the context of the clinical course of infection, re-infection, treatment-mediated viral clearance and vaccine design. Furthermore, it is unclear whether a complete reinvigoration of HCV-specific T cell response may be feasible. In most studies, attempting to reverse the effects of compromised immune response quality by specific blockades of negative immune regulators, a restoration of functional competence of HCV-specific T cells was shown. This implies that HCV-induced immune dysfunction may be reversible. The advent of highly successful, direct-acting antiviral treatment (DAA) for chronic HCV infection instigated investigation whether the treatment-driven elimination of viral antigens restores T cell function. Most of studies demonstrated that DAA treatment may result in at least partial restoration of T cell immune function. They also suggest that a complete restoration comparable to that seen after spontaneous viral clearance may not be attained, pointing out that long-term antigenic stimulation imprints an irreversible change on the T cell compartment. Understanding the mechanisms of HCV-induced immune dysfunction and barriers to immune restoration following viral clearance is of utmost importance to diminish the possible long-term consequences of chronic HCV infection.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland;
- Institute of Medical Virology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-572-07-09; Fax: +48-22-883-10-60
| |
Collapse
|
8
|
Seif M, Einsele H, Löffler J. CAR T Cells Beyond Cancer: Hope for Immunomodulatory Therapy of Infectious Diseases. Front Immunol 2019; 10:2711. [PMID: 31824500 PMCID: PMC6881243 DOI: 10.3389/fimmu.2019.02711] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022] Open
Abstract
Infectious diseases are still a significant cause of morbidity and mortality worldwide. Despite the progress in drug development, the occurrence of microbial resistance is still a significant concern. Alternative therapeutic strategies are required for non-responding or relapsing patients. Chimeric antigen receptor (CAR) T cells has revolutionized cancer immunotherapy, providing a potential therapeutic option for patients who are unresponsive to standard treatments. Recently two CAR T cell therapies, Yescarta® (Kite Pharma/Gilead) and Kymriah® (Novartis) were approved by the FDA for the treatments of certain types of non-Hodgkin lymphoma and B-cell precursor acute lymphoblastic leukemia, respectively. The success of adoptive CAR T cell therapy for cancer has inspired researchers to develop CARs for the treatment of infectious diseases. Here, we review the main achievements in CAR T cell therapy targeting viral infections, including Human Immunodeficiency Virus, Hepatitis C Virus, Hepatitis B Virus, Human Cytomegalovirus, and opportunistic fungal infections such as invasive aspergillosis.
Collapse
Affiliation(s)
| | | | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
9
|
Casey JL, Feld JJ, MacParland SA. Restoration of HCV-Specific Immune Responses with Antiviral Therapy: A Case for DAA Treatment in Acute HCV Infection. Cells 2019; 8:cells8040317. [PMID: 30959825 PMCID: PMC6523849 DOI: 10.3390/cells8040317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022] Open
Abstract
Worldwide, 71 million individuals are chronically infected with Hepatitis C Virus (HCV). Chronic HCV infection can lead to potentially fatal outcomes including liver cirrhosis and hepatocellular carcinoma. HCV-specific immune responses play a major role in viral control and may explain why approximately 20% of infections are spontaneously cleared before the establishment of chronicity. Chronic infection, associated with prolonged antigen exposure, leads to immune exhaustion of HCV-specific T cells. These exhausted T cells are unable to control the viral infection. Before the introduction of direct acting antivirals (DAAs), interferon (IFN)-based therapies demonstrated successful clearance of viral infection in approximately 50% of treated patients. New effective and well-tolerated DAAs lead to a sustained virological response (SVR) in more than 95% of patients regardless of viral genotype. Researchers have investigated whether treatment, and the subsequent elimination of HCV antigen, can reverse this HCV-induced exhausted phenotype. Here we review literature exploring the restoration of HCV-specific immune responses following antiviral therapy, both IFN and DAA-based regimens. IFN treatment during acute HCV infection results in greater immune restoration than IFN treatment of chronically infected patients. Immune restoration data following DAA treatment in chronically HCV infected patients shows varied results but suggests that DAA treatment may lead to partial restoration that could be improved with earlier administration. Future research should investigate immune restoration following DAA therapies administered during acute HCV infection.
Collapse
Affiliation(s)
- Julia L Casey
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jordan J Feld
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| | - Sonya A MacParland
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
- Departments of Laboratory Medicine & Pathobiology and Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
10
|
Potent Anti-hepatitis C Virus (HCV) T Cell Immune Responses Induced in Mice Vaccinated with DNA-Launched RNA Replicons and Modified Vaccinia Virus Ankara-HCV. J Virol 2019; 93:JVI.00055-19. [PMID: 30674625 DOI: 10.1128/jvi.00055-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C is a liver disease caused by the hepatitis C virus (HCV) affecting 71 million people worldwide with no licensed vaccines that prevent infection. Here, we have generated four novel alphavirus-based DNA-launched self-amplifying RNA replicon (DREP) vaccines expressing either structural core-E1-E2 or nonstructural p7-NS2-NS3 HCV proteins of genotype 1a placed under the control of an alphavirus promoter, with or without an alphaviral translational enhancer (grouped as DREP-HCV or DREP-e-HCV, respectively). DREP vectors are known to induce cross-priming and further stimulation of immune responses through apoptosis, and here we demonstrate that they efficiently trigger apoptosis-related proteins in transfected cells. Immunization of mice with the DREP vaccines as the priming immunization followed by a heterologous boost with a recombinant modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV (MVA-HCV) induced potent and long-lasting HCV-specific CD4+ and CD8+ T cell immune responses that were significantly stronger than those of a homologous MVA-HCV prime/boost immunization, with the DREP-e-HCV/MVA-HCV combination the most immunogenic regimen. HCV-specific CD4+ and CD8+ T cell responses were highly polyfunctional, had an effector memory phenotype, and were mainly directed against E1-E2 and NS2-NS3, respectively. Additionally, DREP/MVA-HCV immunization regimens induced higher antibody levels against HCV E2 protein than homologous MVA-HCV immunization. Collectively, these results provided an immunization protocol against HCV by inducing high levels of HCV-specific T cell responses as well as humoral responses. These findings reinforce the combined use of DREP-based vectors and MVA-HCV as promising prophylactic and therapeutic vaccines against HCV.IMPORTANCE HCV represents a global health problem as more than 71 million people are chronically infected worldwide. Direct-acting antiviral agents can cure HCV infection in most patients, but due to the high cost of these agents and the emergence of resistant mutants, they do not represent a feasible and affordable strategy to eradicate the virus. Therefore, a vaccine is an urgent goal that requires efforts to understand the correlates of protection for HCV clearance. Here, we describe for the first time the generation of novel vaccines against HCV based on alphavirus DNA replicons expressing HCV antigens. We demonstrate that potent T cell immune responses, as well as humoral immune responses, against HCV can be achieved in mice by using a combined heterologous prime/boost immunization protocol consisting of the administration of alphavirus replicon DNA vectors as the priming immunization followed by a boost with a recombinant modified vaccinia virus Ankara vector expressing HCV antigens.
Collapse
|
11
|
Luxenburger H, Neumann-Haefelin C, Thimme R, Boettler T. HCV-Specific T Cell Responses During and After Chronic HCV Infection. Viruses 2018; 10:v10110645. [PMID: 30453612 PMCID: PMC6265781 DOI: 10.3390/v10110645] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Tobias Boettler
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
12
|
Urbanowicz A, Zagożdżon R, Ciszek M. Modulation of the Immune System in Chronic Hepatitis C and During Antiviral Interferon-Free Therapy. Arch Immunol Ther Exp (Warsz) 2018; 67:79-88. [PMID: 30443787 PMCID: PMC6420452 DOI: 10.1007/s00005-018-0532-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
The treatment of patients with chronic hepatitis C virus (HCV) infection has changed tremendously over the past 2 years, with an increasing variety of all-oral direct-acting antiviral (DAA) treatment regimens available for different HCV genotypes and distinct clinical settings. These treatments have significantly improved safety in patients with advanced liver disease compared with interferon (IFN)-based regimens. HCV modifies the human immune system to escape immunosurveillance via several mechanisms. One of the basic mechanisms of HCV is the ability to “switch” the immune response by reducing the activity of cells responsible for the elimination of virus-infected cells. IFN-free DAA treatment regimens provide a unique opportunity to assess the effect of HCV elimination on the immune system. Abrupt changes in the immune system can in some cases be responsible for two alarming processes: viral reactivation in patients with chronic hepatitis B and recurrence of hepatocellular carcinoma in patients with previous successful cancer treatment.
Collapse
Affiliation(s)
- Arkadiusz Urbanowicz
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Radosław Zagożdżon
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Ciszek
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
13
|
Removal of the C6 Vaccinia Virus Interferon-β Inhibitor in the Hepatitis C Vaccine Candidate MVA-HCV Elicited in Mice High Immunogenicity in Spite of Reduced Host Gene Expression. Viruses 2018; 10:v10080414. [PMID: 30096846 PMCID: PMC6116028 DOI: 10.3390/v10080414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. Modified vaccinia virus Ankara (MVA)-HCV is a unique HCV vaccine candidate based in the modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV genotype 1a that elicits CD8⁺ T-cell responses in mice. With the aim to improve the immune response of MVA-HCV and because of the importance of interferon (IFN) in HCV infection, we deleted in MVA-HCV the vaccinia virus (VACV) C6L gene, encoding an inhibitor of IFN-β that prevents activation of the interferon regulatory factors 3 and 7 (IRF3 and IRF7). The resulting vaccine candidate (MVA-HCV ΔC6L) expresses all HCV antigens and deletion of C6L had no effect on viral growth in permissive chicken cells. In human monocyte-derived dendritic cells, infection with MVA-HCV ΔC6L triggered severe down-regulation of IFN-β, IFN-β-induced genes, and cytokines in a manner similar to MVA-HCV, as defined by real-time polymerase chain reaction (PCR) and microarray analysis. In infected mice, both vectors had a similar profile of recruited immune cells and induced comparable levels of adaptive and memory HCV-specific CD8⁺ T-cells, mainly against p7 + NS2 and NS3 HCV proteins, with a T cell effector memory (TEM) phenotype. Furthermore, antibodies against E2 were also induced. Overall, our findings showed that while these vectors had a profound inhibitory effect on gene expression of the host, they strongly elicited CD8⁺ T cell and humoral responses against HCV antigens and to the virus vector. These observations add support to the consideration of these vectors as potential vaccine candidates against HCV.
Collapse
|
14
|
Obaid A, Naz A, Ikram A, Awan FM, Raza A, Ahmad J, Ali A. Model of the adaptive immune response system against HCV infection reveals potential immunomodulatory agents for combination therapy. Sci Rep 2018; 8:8874. [PMID: 29891859 PMCID: PMC5995896 DOI: 10.1038/s41598-018-27163-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
A regulated immune system employs multiple cell types, diverse variety of cytokines and interacting signalling networks against infections. Systems biology offers a promising solution to model and simulate such large populations of interacting components of immune systems holistically. This study focuses on the distinct components of the adaptive immune system and analysis, both individually and in association with HCV infection. The effective and failed adaptive immune response models have been developed followed by interventions/perturbations of various treatment strategies to get better assessment of the treatment responses under varying stimuli. Based on the model predictions, the NK cells, T regulatory cells, IL-10, IL-21, IL-12, IL-2 entities are found to be the most critical determinants of treatment response. The proposed potential immunomodulatory therapeutic interventions include IL-21 treatment, blocking of inhibitory receptors on T-cells and exogenous anti-IL-10 antibody treatment. The relative results showed that these interventions have differential effect on the expression levels of cellular and cytokines entities of the immune response. Notably, IL-21 enhances the expression of NK cells, Cytotoxic T lymphocytes and CD4+ T cells and hence restore the host immune potential. The models presented here provide a starting point for cost-effective analysis and more comprehensive modeling of biological phenomenon.
Collapse
Affiliation(s)
- Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Anam Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics (NILOP), Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
15
|
Zhang YH, Zhao Y, Rajapaksa US, Lawrence TM, Peng YC, Liu J, Xu K, Hu K, Qin L, Liu N, Sun H, Yan HP, Repapi E, Rowland-Jones S, Thimme R, McKeating JA, Dong T. A Comprehensive Analysis of the Impact of HIV on HCV Immune Responses and Its Association with Liver Disease Progression in a Unique Plasma Donor Cohort. PLoS One 2016; 11:e0158037. [PMID: 27455208 PMCID: PMC4959707 DOI: 10.1371/journal.pone.0158037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/09/2016] [Indexed: 01/28/2023] Open
Abstract
Objective Human Immunodeficiency Virus (HIV) and Hepatitis C virus (HCV) co-infection is recognized as a major cause of morbidity and mortality among HIV-1 infected patients. Our understanding of the impact of HIV infection on HCV specific immune responses and liver disease outcome is limited by the heterogeneous study populations with genetically diverse infecting viruses, varying duration of infection and anti-viral treatment. Methods Viral-specific immune responses in a cohort of 151 HCV mono- and HIV co-infected former plasma donors infected with a narrow source of virus were studied. HCV and HIV specific T cell responses were correlated with clinical data. Results HIV-1 accelerated liver disease progression and decreased HCV specific T cell immunity. The magnitude of HCV specific T cell responses inversely correlated with lower HCV RNA load and reduced liver injury as assessed by non-invasive markers of liver fibrosis. HIV co-infection reduced the frequency of HCV specific CD4+ T cells with no detectable effect on CD8+ T cells or neutralizing antibody levels. Conclusion Our study highlights the impact of HIV co-infection on HCV specific CD4+ T cell responses in a unique cohort of patients for both HCV and HIV and suggests a crucial role for these cells in controlling chronic HCV replication and liver disease progression.
Collapse
Affiliation(s)
- Yong-Hong Zhang
- You’an-Oxford Centre for Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
- CAMS- Oxford University joint International Centre for Translational Immunology, Nuffield and Radcliffe departments of Medicine, University of Oxford, Oxford, United Kingdom
- Beijing Key Laboratory for Biomarkers in Infection Related Diseases (BZ0373), Beijing, China
- * E-mail: (YHZ); (TD)
| | - Yan Zhao
- You’an-Oxford Centre for Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
- CAMS- Oxford University joint International Centre for Translational Immunology, Nuffield and Radcliffe departments of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ushani S. Rajapaksa
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Tessa M. Lawrence
- Viral Hepatitis Laboratory, Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Yan-Chun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jinghua Liu
- You’an-Oxford Centre for Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Keyi Xu
- Beijing Di’Tan Hospital, Capital Medical University, Beijing, China
| | - Ke Hu
- Viral Hepatitis Laboratory, Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Ling Qin
- You’an-Oxford Centre for Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Ning Liu
- You’an-Oxford Centre for Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Huanqin Sun
- You’an-Oxford Centre for Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hui-Ping Yan
- You’an-Oxford Centre for Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert Thimme
- University Hospital Freiburg, Department of Medicine II, Hugstetter Str 55, 79106, Freiburg, Germany
| | - Jane A. McKeating
- Viral Hepatitis Laboratory, Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, United Kingdom
| | - Tao Dong
- You’an-Oxford Centre for Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
- CAMS- Oxford University joint International Centre for Translational Immunology, Nuffield and Radcliffe departments of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail: (YHZ); (TD)
| |
Collapse
|
16
|
Abdelwahab KS, Ahmed Said ZN. Status of hepatitis C virus vaccination: Recent update. World J Gastroenterol 2016; 22:862-873. [PMID: 26811632 PMCID: PMC4716084 DOI: 10.3748/wjg.v22.i2.862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is still a major public health problem worldwide since its first identification in 1989. At the start, HCV infection was post-transfusion viral infection, particularly in developing countries. Recently, due to iv drug abuse, HCV infection became number one health problem in well-developed countries as well. Following acute HCV infection, the innate immune response is triggered in the form of activated coordinated interaction of NK cells, dendritic cells and interferon α. The acquired immune response is then developed in the form of the antibody-mediated immune response (ABIR) and the cell-mediated immune response (CMIR). Both are responsible for clearance of HCV infection in about 15% of infected patients. However, HCV has several mechanisms to evade these antivirus immune reactions. The current review gives an overview of HCV structure, immune response and viral evasion mechanisms. It also evaluates the available preventive and therapeutic vaccines that induce innate, ABIR, CMIR. Moreover, this review highlights the progress in recent HCV vaccination studies either in preclinical or clinical phases. The unsatisfactory identification of HCV infection by the current screening system and the limitations of currently available treatments, including the ineligibility of some chronic HCV patients to such antiviral agents, mandate the development of an effective HCV vaccine.
Collapse
|
17
|
Latimer B, Toporovski R, Yan J, Pankhong P, Morrow MP, Khan AS, Sardesai NY, Welles SL, Jacobson JM, Weiner DB, Kutzler MA. Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in Rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Hum Vaccin Immunother 2015; 10:2357-65. [PMID: 25424943 DOI: 10.4161/hv.29590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic HCV is a surreptitious disease currently affecting approximately 3% of the world's population that can lead to liver failure and cancer decades following initial infection. However, there are currently no vaccines available for the prevention of chronic HCV. From patients who acutely resolve HCV infection, it is apparent that a strong and broad cytotoxic T lymphocyte (CTL) response is important in HCV clearance. DNA vaccines are naked plasmid DNA molecules that encode pathogen antigens to induce a pathogen-specific immune response. They are inexpensive to produce and have an excellent safety profile in animals and humans. Additionally, DNA vaccines are able to induce strong CTL responses, making them well-suited for an HCV vaccine. We aimed to maximize vaccine recipients' opportunity to induce a broad T cell response with a novel antigenic sequence, multi-antigen vaccine strategy. We have generated DNA plasmids encoding consensus sequences of HCV genotypes 1a and 1b non-structural proteins NS3/4a, NS4b, NS5a, and NS5b. Rhesus macaques were used to study the immunogenicity of these constructs. Four animals were immunized 3 times, 6 weeks apart, at a dose of 1.0mg per antigen construct, as an intramuscular injection followed by in vivo electroporation, which greatly increases DNA uptake by local cells. Immune responses were measured 2 weeks post-immunization regimen (PIR) in immunized rhesus macaques and showed a broad response to multiple HCV nonstructural antigens, with up to 4680 spot-forming units per million peripheral blood mononuclear cells (PBMCs) as measured by Interferon-γ ELISpot. In addition, multiparametric flow cytometry detected HCV-specific CD4+ and CD8+ T cell responses by intracellular cytokine staining and detected HCV-specific CD107a+/GrzB+ CD8+ T cells indicating an antigen specific cytolytic response 2 weeks PIR compared with baseline measurements. At the final study time point, 6 weeks PIR, HCV-specific CD45RA- memory-like T cells remained detectable in peripheral blood. Data presented in this manuscript support the notion that vaccine immunogenicity studies using a macaque model can be used to depict key anti-HCV nonstructural antigenic cellular immune responses and support the development of DNA-based prophylactic HCV vaccines.
Collapse
Affiliation(s)
- Brian Latimer
- a Department of Medicine, Division of Infectious Diseases & HIV Medicine; Drexel University College of Medicine; Philadelphia, PA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hao C, Zhou Y, He Y, Fan C, Sun L, Wei X, Wang L, Peng M, Wang P, Lian J, Jia Z. Imbalance of regulatory T cells and T helper type 17 cells in patients with chronic hepatitis C. Immunology 2015; 143:531-8. [PMID: 24903732 DOI: 10.1111/imm.12330] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 12/14/2022] Open
Abstract
Pegylated interferon and ribavirin combination therapy is known to be effective in suppressing viral replication in 50-60% of hepatitis C virus (HCV)-infected patients. However, HCV-infected patients often exhibit varied responses to therapy. Therefore, the identification of immunological markers associated with the clinical outcomes of antiviral treatment is critical for improvement of therapeutic options. In this study, we aimed to investigate the ratio of CD4(+) CD25(+) FoxP3(+) regulatory T (Treg) cells to interleukin-17A (IL-17A) -producing T helper type 17 (Th17) cells, and its association with clinical outcomes in response to anti-HCV treatment. In all, 114 patients with HCV infection received pegylated interferon-α2a and ribavirin therapy for 48 weeks, and the frequency of Treg cells and Th17 cells as well as the levels of secreted cytokines were longitudinally analysed by flow cytometry and ELISA. Treg cell proportions and IL-10 production were significantly elevated in HCV-infected patients, especially for HCV genotype 1b. However, the frequency of Th17 cells as well as the secretion of IL-17, IL-22 and IL-23 did not reveal notable difference between HCV infections and healthy individuals. Inhibition of HCV replication was accompanied by a reduction in Treg cells, but little influence on Th17 cells, which led to a significant decrease in Treg : Th17 ratios. Skewed Treg : Th17 ratios existed in chronic hepatitis C. HCV RNA load is closely associated with Treg : Th17 ratios during pegylated interferon-α2a and ribavirin treatment in HCV-infected patients. The imbalance of Treg cells to Th17 cells might play an important role in persistent HCV infection.
Collapse
Affiliation(s)
- Chunqiu Hao
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jhaveri R, Swamy GK. Hepatitis C Virus in Pregnancy and Early Childhood: Current Understanding and Knowledge Deficits. J Pediatric Infect Dis Soc 2014; 3 Suppl 1:S13-8. [PMID: 25232471 PMCID: PMC4164177 DOI: 10.1093/jpids/piu045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) is a well known cause of chronic liver disease in adults, but the burden of HCV in pregnant women and children is underappreciated. The leading route of HCV acquisition in children is vertical transmission. This review will discuss previous studies on the impact of HCV on pregnancy, risk factors for perinatal transmission, HCV transmission rates from mother to infant, what influence the virus has on the exposed or infected infant, and those areas where additional studies are required to advance our understanding of HCV pathogenesis during pregnancy. The rapid expansion of HCV treatment regimens free of interferon and ribavirin will expand future therapeutic opportunities for pregnant women and infected infants.
Collapse
Affiliation(s)
- Ravi Jhaveri
- Division of Pediatric Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine
| | - Geeta K. Swamy
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
20
|
Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res 2014; 105:100-11. [PMID: 24583033 PMCID: PMC4034163 DOI: 10.1016/j.antiviral.2014.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin-interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jonathan K Ball
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alexander W Tarr
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jane A McKeating
- Viral Hepatitis Research Group and Centre for Human Virology, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
21
|
Jin L, Zhang XX, Zeng QL, Feng GH, Zhang JY, Chen LM, Xu XS, Zhang Z, Wang FS. Increased myeloid-derived suppressor cells correlate with viral persistence in patients with chronic hepatitis C. Shijie Huaren Xiaohua Zazhi 2014; 22:1574-1580. [DOI: 10.11569/wcjd.v22.i11.1574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the characteristics and clinical significance of myeloid-derived suppressor cells (MDSCs) in patients with chronic hepatitis C (CHC).
METHODS: The frequencies and phenotypes of peripheral blood MDSCs were analyzed in 61 patients with CHC, including 14 rapid virological response (RVR) cases and 22 early virological response (EVR) cases, and 25 healthy controls (HC). The correlations between the characteristics of MDSCs and clinical markers were analyzed.
RESULTS: The frequencies of peripheral MDSCs in CHC patients at baseline were significantly higher than those in the HC group (1.33% vs 0.7%, P < 0.001), which were positively correlated with HCV RNA load (r = 0.636, P < 0.001). T cell receptor (TCR) ζ expression on CD8 T cells was negatively correlated with the frequencies of MDSCs in CHC patients at baseline (r = 0.690, P < 0.001), and could be restored by L-arginine in vitro. The frequencies of MDSCs decreased after antiviral therapy, which were higher in the RVR group than in the EVR group (P = 0.024). TCR ζ expression on CD8 T cells increased in both RVR and EVR cases.
CONCLUSION: In CHC patients, MDSCs may suppress immune response by down-regulating TCR ζ expression on CD8 T cells, resulting in viral persistence.
Collapse
|
22
|
Combined adenovirus vector and hepatitis C virus envelope protein prime-boost regimen elicits T cell and neutralizing antibody immune responses. J Virol 2014; 88:5502-10. [PMID: 24599994 DOI: 10.1128/jvi.03574-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Despite the recent progress in the development of new antiviral agents, hepatitis C virus (HCV) infection remains a major global health problem, and there is a need for a preventive vaccine. We previously reported that adenoviral vectors expressing HCV nonstructural proteins elicit protective T cell responses in chimpanzees and were immunogenic in healthy volunteers. Furthermore, recombinant HCV E1E2 protein formulated with adjuvant MF59 induced protective antibody responses in chimpanzees and was immunogenic in humans. To develop an HCV vaccine capable of inducing both T cell and antibody responses, we constructed adenoviral vectors expressing full-length and truncated E1E2 envelope glycoproteins from HCV genotype 1b. Heterologous prime-boost immunization regimens with adenovirus and recombinant E1E2 glycoprotein (genotype 1a) plus MF59 were evaluated in mice and guinea pigs. Adenovirus prime and protein boost induced broad HCV-specific CD8+ and CD4+ T cell responses and functional Th1-type IgG responses. Immune sera neutralized luciferase reporter pseudoparticles expressing HCV envelope glycoproteins (HCVpp) and a diverse panel of recombinant cell culture-derived HCV (HCVcc) strains and limited cell-to-cell HCV transmission. This study demonstrated that combining adenovirus vector with protein antigen can induce strong antibody and T cell responses that surpass immune responses achieved by either vaccine alone. IMPORTANCE HCV infection is a major health problem. Despite the availability of new directly acting antiviral agents for treating chronic infection, an affordable preventive vaccine provides the best long-term goal for controlling the global epidemic. This report describes a new anti-HCV vaccine targeting the envelope viral proteins based on adenovirus vector and protein in adjuvant. Rodents primed with the adenovirus vaccine and boosted with the adjuvanted protein developed cross-neutralizing antibodies and potent T cell responses that surpassed immune responses achieved with either vaccine component alone. If combined with the adenovirus vaccine targeting the HCV NS antigens now under clinical testing, this new vaccine might lead to a stronger and broader immune response and to a more effective vaccine to prevent HCV infection. Importantly, the described approach represents a valuable strategy for other infectious diseases in which both T and B cell responses are essential for protection.
Collapse
|
23
|
Capone S, Naddeo M, D'Alise AM, Abbate A, Grazioli F, Del Gaudio A, Del Sorbo M, Esposito ML, Ammendola V, Perretta G, Taglioni A, Colloca S, Nicosia A, Cortese R, Folgori A. Fusion of HCV nonstructural antigen to MHC class II-associated invariant chain enhances T-cell responses induced by vectored vaccines in nonhuman primates. Mol Ther 2014; 22:1039-47. [PMID: 24476798 DOI: 10.1038/mt.2014.15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
Despite viral vectors being potent inducers of antigen-specific T cells, strategies to further improve their immunogenicity are actively pursued. Of the numerous approaches investigated, fusion of the encoded antigen to major histocompatibility complex class II-associated invariant chain (Ii) has been reported to enhance CD8(+) T-cell responses. We have previously shown that adenovirus vaccine encoding nonstructural (NS) hepatitis C virus (HCV) proteins induces potent T-cell responses in humans. However, even higher T-cell responses might be required to achieve efficacy against different HCV genotypes or therapeutic effect in chronically infected HCV patients. In this study, we assessed fusion of the HCV NS antigen to murine and human Ii expressed by the chimpanzee adenovirus vector ChAd3 or recombinant modified vaccinia Ankara in mice and nonhuman primates (NHPs). A dramatic increase was observed in outbred mice in which vaccination with ChAd3 expressing the fusion antigen resulted in a 10-fold increase in interferon-γ(+) CD8(+) T cells. In NHPs, CD8(+) T-cell responses were enhanced and accelerated with vectors encoding the Ii-fused antigen. These data show for the first time that the enhancement induced by vector vaccines encoding li-fused antigen was not species specific and can be translated from mice to NHPs, opening the way for testing in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gemma Perretta
- Cellular Biology and Neurobiology Institute (IBCN) National Research Council of Italy, Rome, Italy
| | - Alessandra Taglioni
- Cellular Biology and Neurobiology Institute (IBCN) National Research Council of Italy, Rome, Italy
| | | | - Alfredo Nicosia
- 1] Okairos, Rome, Italy [2] CEINGE, Naples, Italy [3] Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Riccardo Cortese
- 1] Okairos, Rome, Italy [2] Okairos AG, c/o OBC Suisse AG, Basel, Switzerland
| | | |
Collapse
|
24
|
Zeng QL, Yang B, Sun HQ, Feng GH, Jin L, Zou ZS, Zhang Z, Zhang JY, Wang FS. Myeloid-derived suppressor cells are associated with viral persistence and downregulation of TCR ζ chain expression on CD8(+) T cells in chronic hepatitis C patients. Mol Cells 2014; 37:66-73. [PMID: 24552712 PMCID: PMC3907002 DOI: 10.14348/molcells.2014.2282] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play an important role in impairing the function of T cells. We characterized MDSCs in two chronic hepatitis C (CHC) cohorts: a cross-sectional group that included 61 treatment-naive patients with CHC, 14 rapid virologic response (RVR) cases and 22 early virologic response (EVR) cases; and a longitudinal group of 13 cases of RVR and 10 cases of EVR after pegylated-interferon-α/ribavirin treatment for genotype 1b HCV infection. Liver samples from 32 CHC patients and six healthy controls were subjected to immunohistochemical analysis. MDSCs frequency in treatment-naive CHC was significantly higher than in RVR, EVR, or healthy subjects and was positively correlated with HCV RNA. Patients infected with HCV genotype 2a had a significantly higher frequency of MDSCs than those infected with genotype 1b. Decreased T cell receptor (TCR) ζ expression on CD8(+) T cells was significantly associated with an increased frequency of MDSCs in treatment-naive CHC patients and was restored by L-arginine treatment in vitro. Increased numbers of liver arginase-1(+) cells were closely associated with the histological activity index in CHC. The TCR ζ chain was significantly downregulated on hepatic CD8(+) T cells in CHC. During antiviral follow up, MDSCs frequency in peripheral blood mononuclear cells was directly correlated with the HCV RNA load in the plasma and inversely correlated with TCR ζ chain expression in CD8(+) T cells in both RVR and EVR cases. Notably, the RVR group had a higher frequency of MDSCs at baseline than the EVR group. Collectively, this study provides evidence that MDSCs might be associated with HCV persistence and downregulation of CD8 ζ chain expression.
Collapse
Affiliation(s)
- Qing-Lei Zeng
- Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center, Beijing,
China
| | - Bin Yang
- Department of Interventional Radiology, Beijing 302 Hospital, Beijing,
China
| | - Hong-Qi Sun
- Department of Infectious Diseases, Zhengzhou Sixth People’s Hospital, Zhengzhou,
China
| | - Guo-Hua Feng
- Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center, Beijing,
China
| | - Lei Jin
- The Institute of Translational Hepatology, Beijing,
China
| | - Zheng-Sheng Zou
- Non-infectious Liver Disease Diagnosis and Treatment Center, Beijing 302 Hospital, Beijing,
China
| | - Zheng Zhang
- The Institute of Translational Hepatology, Beijing,
China
| | - Ji-Yuan Zhang
- The Institute of Translational Hepatology, Beijing,
China
| | - Fu-Sheng Wang
- Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center, Beijing,
China
- The Institute of Translational Hepatology, Beijing,
China
| |
Collapse
|
25
|
Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 2013; 19:7896-7909. [PMID: 24307784 PMCID: PMC3848138 DOI: 10.3748/wjg.v19.i44.7896] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.
Collapse
|
26
|
Feng G, Zhang JY, Zeng QL, Jin L, Fu J, Yang B, Sun Y, Jiang T, Xu X, Zhang Z, Yuan J, Wu L, Wang FS. HCV-specific interleukin-21+CD4+ T cells responses associated with viral control through the modulation of HCV-specific CD8+ T cells function in chronic hepatitis C patients. Mol Cells 2013; 36:362-7. [PMID: 24170093 PMCID: PMC3887990 DOI: 10.1007/s10059-013-0181-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/28/2013] [Accepted: 08/26/2013] [Indexed: 01/21/2023] Open
Abstract
Interleukin-21 (IL-21)+CD4+ T cells are involved in the immune response against hepatitis B virus (HBV) by secreting IL-21. However, the role of IL-21+CD4+ T cells in the immune response against chronic hepatitis C (CHC) virus infection is poorly understood. This study aimed to investigate the role of IL-21+CD4+ T cells in CHC patients and the potential mechanisms. The study subjects included nineteen CHC patients who were grouped by viral load (low, < 10(6) RNA copies/ml, n = 8; high, > 10(6) RNA copies/ml, n = 11). The peripheral frequency of HCV-specific IL-21+CD4+ T cells was higher in the low viral load group and was negatively correlated with the serum HCV RNA viral load in all CHC patients. Meanwhile, IL-21+ cells accumulated in the liver in the low viral load group. In vitro, IL-21 treatment increased the expression of proliferation markers and cytolytic molecules on HCV-specific CD8+ T cells. In summary, these findings suggest that HCV-specific IL-21+CD4+ T cells might contribute to HCV control by rescuing HCV-specific CD8+ T cells in CHC patients.
Collapse
Affiliation(s)
- Guohua Feng
- Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center
| | | | - Qing-Lei Zeng
- Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center
| | - Lei Jin
- Research Center for Biological Therapy
| | | | - Bin Yang
- Department of Interventional Radiology
| | - Ying Sun
- Non-infectious Liver Disease Diagnosis and Treatment Center
| | | | | | | | | | - Liyuan Wu
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100 the Western 4th Ring Middle Road, Beijing 100039, China
| | - Fu-Sheng Wang
- Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center
- Research Center for Biological Therapy
| |
Collapse
|
27
|
Mailly L, Robinet E, Meuleman P, Baumert TF, Zeisel MB. Hepatitis C virus infection and related liver disease: the quest for the best animal model. Front Microbiol 2013; 4:213. [PMID: 23898329 PMCID: PMC3724122 DOI: 10.3389/fmicb.2013.00212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma (HCC) making the virus the most common cause of liver failure and transplantation. HCV is estimated to chronically affect 130 million individuals and to lead to more than 350,000 deaths per year worldwide. A vaccine is currently not available. The recently developed direct acting antivirals (DAAs) have markedly increased the efficacy of the standard of care but are not efficient enough to completely cure all chronically infected patients and their toxicity limits their use in patients with advanced liver disease, co-morbidity or transplant recipients. Because of the host restriction, which is limited to humans and non-human primates, in vivo study of HCV infection has been hampered since its discovery more than 20 years ago. The chimpanzee remains the most physiological model to study the innate and adaptive immune responses, but its use is ethically difficult and is now very restricted and regulated. The development of a small animal model that allows robust HCV infection has been achieved using chimeric liver immunodeficient mice, which are therefore not suitable for studying the adaptive immune responses. Nevertheless, these models allowed to go deeply in the comprehension of virus-host interactions and to assess different therapeutic approaches. The immunocompetent mouse models that were recently established by genetic humanization have shown an interesting improvement concerning the study of the immune responses but are still limited by the absence of the complete robust life cycle of the virus. In this review, we will focus on the relevant available animal models of HCV infection and their usefulness for deciphering the HCV life cycle and virus-induced liver disease, as well as for the development and evaluation of new therapeutics. We will also discuss the perspectives on future immunocompetent mouse models and the hurdles to their development.
Collapse
Affiliation(s)
- Laurent Mailly
- Inserm U1110, Université de Strasbourg Strasbourg, France
| | | | | | | | | |
Collapse
|