1
|
Grella R, Lanzano G, Faenza M, Ferraro G, Pieretti G. Parecoxib decreases cellular growth and Bcl-2 protein levels in primary cultures of keloid fibroblasts. Int Wound J 2024; 21:e13946. [PMID: 38477426 PMCID: PMC10935549 DOI: 10.1111/iwj.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 03/14/2024] Open
Abstract
Keloids seem to overexpress cyclo-oxygenase-2 (COX-2), suggesting a role in its deregulated pathway in inducing an altered epithelial-mesenchymal interaction, which may be responsible for the overgrowth of dermal components resulting in scars or keloid lesions. This study aimed to evaluate the effect of Parecoxib, a COX-2 inhibitor, on cell growth in fibroblast primary cultures obtained from human keloid tissues. Tissue explants were obtained from patients who underwent intralesional excision of untreated keloids; central fractions were isolated from keloid tissues and used for establishing distinct primary cultures. Appropriate aliquots of Parecoxib, a COX-2 inhibitor were diluted to obtain the concentration used in the experimental protocols in vitro (1, 10 or 100 μM). Treatment with Parecoxib (at all concentrations) caused a significant decrease in cellular growth from 24 hours onwards, and with a maximum at 72 hours (P < .02). Moreover, at 72 hours Parecoxib significantly reduced cellular vitality. Parecoxib treatment also induced an increase in fragmented nuclei with a maximum effect at 100 μM and a significant decrease in Bcl-2 and an increase in activated caspase-3 protein levels at 72 hours compared with control untreated cultures. Our findings suggest a potential use of the COX-2 inhibitor, Parecoxib, as the therapy for keloids.
Collapse
Affiliation(s)
- Roberto Grella
- Department of Plastic, Reconstructive and Aesthetic SurgeryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Giuseppe Lanzano
- Department of Plastic, Reconstructive and Aesthetic SurgeryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Mario Faenza
- Department of Plastic, Reconstructive and Aesthetic SurgeryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Giuseppe Ferraro
- Department of Plastic, Reconstructive and Aesthetic SurgeryUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Gorizio Pieretti
- Department of Plastic, Reconstructive and Aesthetic SurgeryUniversity of Campania Luigi VanvitelliNaplesItaly
| |
Collapse
|
2
|
Newman P, Muscat J. Potential Role of Non-Steroidal Anti-Inflammatory Drugs in Colorectal Cancer Chemoprevention for Inflammatory Bowel Disease: An Umbrella Review. Cancers (Basel) 2023; 15:cancers15041102. [PMID: 36831446 PMCID: PMC9954537 DOI: 10.3390/cancers15041102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is a category of autoimmune diseases that targets the destruction of the gastrointestinal system and includes both Crohn's Disease and Ulcerative Colitis (UC). Patients with IBD are at a higher risk of developing colorectal cancer (CRC) throughout their lives due to chronically increased inflammation. Nonsteroidal anti-inflammatory drugs (NSAIDs) are potential chemopreventative agents that can inhibit the development of CRC in persons without IBD. However, the use of NSAIDs for CRC chemoprevention in IBD patients is further complicated by NSAIDs' induction of damage to the bowel mucosal layer and ulcer formation. There has been a push in new research on chemopreventative properties of certain NSAIDs for IBD. The purpose of this umbrella review is to investigate the potential of low-dose NSAID compounds as chemopreventative agents for patients with IBD. This paper will also suggest future areas of research in the prevention of CRC for patients with IBD.
Collapse
|
3
|
Zhang YC, Zhao H, Chen C, Ali MA. COX-2 gene rs689466 polymorphism is associated with increased risk of colorectal cancer among Caucasians: a meta-analysis. World J Surg Oncol 2020; 18:192. [PMID: 32731879 PMCID: PMC7391579 DOI: 10.1186/s12957-020-01957-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported the Cyclooxygenase 2 (COX-2) rs689466 polymorphism as a susceptibility locus of colorectal cancer (CRC), but their findings are inconsistent. Thus, this meta-analysis was performed to more accurately identify the effects of this polymorphism on CRC risk. METHODS Potential case-control studies on EMBASE, Google Scholar, Web of Science, Cochrane Library, and PubMed were searched. The strength of association was quantified by pooled odds ratio and 95% confidence interval. Totally 16 articles involving 8998 cases and 11,917 controls were included. RESULTS None of the five tested genetic models revealed an association between rs689466 polymorphism and CRC risk. Stratified analysis by ethnicity uncovered a positive association between this polymorphism and higher CRC risk in Caucasians, but not in Asians. In addition, we found that high expression of COX-2 was associated with better overall survival for all CRC patients. CONCLUSION To sum up, the COX-2 rs689466 polymorphism may be related with susceptibility to CRC in Caucasians. This finding should be verified by larger-size studies with different ethnic groups.
Collapse
Affiliation(s)
- Yong-Chen Zhang
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Hui Zhao
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chen Chen
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
| | - Mohammad Amzad Ali
- Department of Casualty (emergency), Pandit Madan Mohan Malviya government hospital Malviya Nagar, New Delhi, India.
| |
Collapse
|
4
|
Song JM, Upadhyaya P, Kassie F. Nitric oxide-donating aspirin (NO-Aspirin) suppresses lung tumorigenesis in vitro and in vivo and these effects are associated with modulation of the EGFR signaling pathway. Carcinogenesis 2019; 39:911-920. [PMID: 29982425 DOI: 10.1093/carcin/bgy049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/20/2018] [Indexed: 02/01/2023] Open
Abstract
Although regular aspirin use has been shown to lower the risk of colorectal cancer, its efficacy against lung cancer is weak or inconsistent. Moreover, aspirin use increases the risk of ulcers and stomach bleeding. In this study, we determined the efficacy of nitric oxide-donating aspirin (NO-Aspirin), a safer form of aspirin in which the parent drug is linked to a nitric oxide-releasing moiety through a spacer, to suppress lung tumorigenesis. Under in vitro conditions, NO-Aspirin significantly reduced the proliferation and survival of tumorigenic bronchial cell line (1170) and non-small cell lung cancer (NSCLC) cell lines (A549, H1650, H1975 and HCC827) and colony formation by NSCLC cells at sub- or low micromolar concentrations (≤1 µM for 1170 cells and ≤6 µM for NSCLC cells) in a COX-2 independent manner. These effects were paralleled by suppression of phospho-epidermal growth factor receptor (EGFR), -STAT3, -Akt and -ERK and enhanced caspase 3 and PARP cleavage. Among NSCLC cells, EGFR mutant cells (H1650, H1975 and HCC827) were more sensitive than cells expressing wild-type EGFR (A549) and H1650 cells were the most sensitive. Moreover, NO-Aspirin sensitized H1650 and H1975 cells to the antiproliferative effects of erlotinib, a tyrosine kinase inhibitor. In in vivo studies using 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) + lipopolysaccharide (LPS)-induced model of lung tumorigenesis, NO-Aspirin significantly reduced the number and size of lung tumors, expression of phospho-EGFR and -Akt as well as the pro-inflammatory molecules TNF-α and interferon-gamma. Overall, these results indicate the potential of NO-Aspirin for the chemoprevention of lung cancer in high risk populations.
Collapse
Affiliation(s)
- Jung Min Song
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
5
|
Down-regulation of HPGD by miR-146b-3p promotes cervical cancer cell proliferation, migration and anchorage-independent growth through activation of STAT3 and AKT pathways. Cell Death Dis 2018; 9:1055. [PMID: 30333561 PMCID: PMC6192999 DOI: 10.1038/s41419-018-1059-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While the application of early screening and HPV vaccines has reduced the incidence and mortality rates of cervical cancer, it remains the third most common carcinoma and fourth leading cause of cancer-associated death among women worldwide. The precise mechanisms underlying progression of cervical cancer are not fully understood at present. Here, we detected significant down-regulation of 15-hydroxyprostaglandin dehydrogenase (HPGD) in cervical cancer tissues. Overexpression of HPGD inhibited cervical cancer cell proliferation, migration and anchorage-independent growth to a significant extent. To clarify the mechanisms underlying HPGD down-regulation in cervical cancer, miRNA microarray, bioinformatics and luciferase reporter analyses were performed. HPGD was identified as a direct target of miR-146b-3p displaying up-regulation in cervical cancer tissues. Similar to the effects of HPGD overexpression, down-regulation of miR-146b-3p strongly suppressed proliferation, migration and anchorage-independent growth of cervical cancer cells. Furthermore, HPGD negatively regulated activities of STAT3 and AKT that promote cervical cancer cell proliferation. Notably, HPV oncogenes E6 and E7 were determined as potential contributory factors to these alterations. Our results collectively suggest that the HPGD/miR-146b-3p axis plays a significant role in cervical cancer and may serve as a potentially effective therapeutic target.
Collapse
|
6
|
Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals (Basel) 2018; 11:ph11040101. [PMID: 30314310 PMCID: PMC6316056 DOI: 10.3390/ph11040101] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins and thromboxane are lipid signaling molecules deriving from arachidonic acid by the action of the cyclooxygenase isoenzymes COX-1 and COX-2. The role of cyclooxygenases (particularly COX-2) and prostaglandins (particularly PGE₂) in cancer-related inflammation has been extensively investigated. In contrast, COX-1 has received less attention, although its expression increases in several human cancers and a pathogenetic role emerges from experimental models. COX-1 and COX-2 isoforms seem to operate in a coordinate manner in cancer pathophysiology, especially in the tumorigenesis process. However, in some cases, exemplified by the serous ovarian carcinoma, COX-1 plays a pivotal role, suggesting that other histopathological and molecular subtypes of cancer disease could share this feature. Importantly, the analysis of functional implications of COX-1-signaling, as well as of pharmacological action of COX-1-selective inhibitors, should not be restricted to the COX pathway and to the effects of prostaglandins already known for their ability of affecting the tumor phenotype. A knowledge-based choice of the most appropriate tumor cell models, and a major effort in investigating the COX-1 issue in the more general context of arachidonic acid metabolic network by using the systems biology approaches, should be strongly encouraged.
Collapse
|
7
|
Molinaro R, Corbo C, Livingston M, Evangelopoulos M, Parodi A, Boada C, Agostini M, Tasciotti E. Inflammation and Cancer: In Medio Stat Nano. Curr Med Chem 2018; 25:4208-4223. [PMID: 28933296 PMCID: PMC5860929 DOI: 10.2174/0929867324666170920160030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment still remains a challenge due to the several limitations of currently used chemotherapeutics, such as their poor pharmacokinetics, unfavorable chemical properties, as well as inability to discriminate between healthy and diseased tissue. Nanotechnology offered potent tools to overcome these limitations. Drug encapsulation within a delivery system permitted i) to protect the payload from enzymatic degradation/ inactivation in the blood stream, ii) to improve the physicochemical properties of poorly water-soluble drugs, like paclitaxel, and iii) to selectively deliver chemotherapeutics to the cancer lesions, thus reducing the off-target toxicity, and promoting the intracellular internalization. To accomplish this purpose, several strategies have been developed, based on biological and physical changes happening locally and systemically as a consequence of tumorigenesis. Here, we will discuss the role of inflammation in the different steps of tumor development and the strategies based on the use of nanoparticles that exploit the inflammatory pathways in order to selectively target the tumor-associated microenvironment for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Megan Livingston
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Alessandro Parodi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Christian Boada
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, 64710, Mexico
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, 35124, Italy
- Nanoinspired Biomedicine Laboratory, Institute of Pediatric Research, Fondazione Citta della Speranza, 35129, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, United States
| |
Collapse
|
8
|
Wang D, Li Y, Zhang C, Li X, Yu J. MiR‐216a‐3p inhibits colorectal cancer cell proliferation through direct targeting COX‐2 and ALOX5. J Cell Biochem 2017; 119:1755-1766. [DOI: 10.1002/jcb.26336] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Dongxia Wang
- Department of Radiation OncologyShandong Cancer Hospital Affiliated to Shandong UniversityJinanChina
- Department of Radiation OncologyDongguan People's HospitalDongguanChina
| | - Yuechun Li
- Department of Gastrointestinal SurgeryDongguan People's HospitalDongguanChina
| | - Chun Zhang
- Department of Radiation OncologyDongguan People's HospitalDongguanChina
| | - Xianming Li
- Department of Radiation OncologyShenzhen People's HospitalShenzhenChina
| | - Jinming Yu
- Department of Radiation OncologyShandong Cancer Hospital Affiliated to Shandong UniversityJinanChina
| |
Collapse
|
9
|
Wu QB, Sun GP. Expression of COX-2 and HER-2 in colorectal cancer and their correlation. World J Gastroenterol 2015; 21:6206-6214. [PMID: 26034355 PMCID: PMC4445097 DOI: 10.3748/wjg.v21.i20.6206] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of COX-2 and HER-2 in colorectal cancer and to analyze their correlation and clinical significance.
METHODS: A total of 1026 colorectal cancer surgical specimens were collected from patients treated from December 2002 to December 2007 at the First Affiliated Hospital of Anhui Medical University. All specimens were made into 4-μm slices. The expression of COX-2 and HER-2 were detected by immunohistochemistry using the streptavidin-biotin-peroxidase method. The correlations between COX-2 and HER-2 expression and colorectal cancer clinical features were analyzed.
RESULTS: The positive rates of COX-2 and HER-2 expression in colorectal cancer were 77.97% (800/1026) and 46.20% (474/1026), respectively. There was a significant correlation between COX-2 and HER-2 expression in colorectal cancer (P < 0.05). In patients with tumor size ≥ 5 cm, the positive rates of COX-2 and HER-2 expression were 81.48% (308/378) and 57.94% (219/378), respectively. In patients with serosal invasion, the positive COX-2 and HER-2 expression rates were 80.53% (612/760) and 49.21% (374/760), respectively. In patients with lymph node metastasis, the positive expression rates were 85.04% (506/595) and 54.62% (325/595), respectively, and the positive expression rates differed significantly between patients with lymph node metastasis and those without (P < 0.05). In patients with Duke’s C and D colorectal cancer, the positive COX-2 and HER-2 expression rates were 82.80% (443/535) and 57.94% (310/535), respectively. In patients with poorly differentiated colorectal cancer, the positive expression rates were 74.49% (210/282) and 52.84% (149/282), respectively (P < 0.05). In patients with distant metastasis, the positive expression rates were 82.27% (116/141) and 53.90% (76/141), respectively (P < 0.05). These findings suggest that COX-2 and HER-2 have synergistic effects in colorectal cancer. COX-2 and HER-2 expression had no significant correlation with sex, age, or tumor location.
CONCLUSION: COX-2 and HER-2 are important markers for invasion and metastasis of colorectal cancer, and they act together to regulate the invasion and metastasis of colorectal cancer.
Collapse
|
10
|
Fink SP, Yamauchi M, Nishihara R, Jung S, Kuchiba A, Wu K, Cho E, Giovannucci E, Fuchs CS, Ogino S, Markowitz SD, Chan AT. Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci Transl Med 2015; 6:233re2. [PMID: 24760190 DOI: 10.1126/scitranslmed.3008481] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aspirin use reduces the risk of colorectal neoplasia, at least in part, through inhibition of prostaglandin-endoperoxide synthase 2 (PTGS2, cyclooxygenase 2)-related pathways. Hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (15-PGDH, HPGD) is down-regulated in colorectal cancers and functions as a metabolic antagonist of PTGS2. We hypothesized that the effect of aspirin may be antagonized by low 15-PGDH expression in the normal colon. In the Nurses' Health Study and the Health Professionals Follow-Up Study, we collected data on aspirin use every 2 years and followed up participants for diagnoses of colorectal cancer. Duplication-method Cox proportional, multivariable-adjusted, cause-specific hazards regression for competing risks data was used to compute hazard ratios (HRs) for incident colorectal cancer according to 15-PGDH mRNA expression level measured in normal mucosa from colorectal cancer resections. Among 127,865 participants, we documented 270 colorectal cancer cases from which we could assess 15-PGDH expression. Compared with nonuse, regular aspirin use was associated with lower risk of colorectal cancer that developed within a background of colonic mucosa with high 15-PGDH expression [multivariable HR, 0.49; 95% confidence interval (CI), 0.34 to 0.71], but not with low 15-PGDH expression (multivariable HR, 0.90; 95% CI, 0.63 to 1.27) (P for heterogeneity = 0.018). Regular aspirin use was associated with lower incidence of colorectal cancers arising in association with high 15-PGDH expression, but not with low 15-PGDH expression in normal colon mucosa. This suggests that 15-PGDH expression level in normal colon mucosa may serve as a biomarker that may predict stronger benefit from aspirin chemoprevention.
Collapse
Affiliation(s)
- Stephen P Fink
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University and University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Silva T, Borges F, Edraki N, Alizadeh M, Miri R, Saso L, Firuzi O. Hydroxycinnamic acid as a novel scaffold for the development of cyclooxygenase-2 inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra08692b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The most active hydroxycinnamic acid derivative, caffeic acid diethyl ester (CA-DE), demonstrated 88.5/30.5% inhibition at 100/20 μM against COX-2 and negligible COX-1 inhibitory effect. CA-DE showed preferred interactions with COX-2 active site.
Collapse
Affiliation(s)
- T. Silva
- CIQ/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - F. Borges
- CIQ/Department of Chemistry and Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - N. Edraki
- Medicinal and Natural Products Chemistry Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - M. Alizadeh
- Medicinal and Natural Products Chemistry Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - R. Miri
- Medicinal and Natural Products Chemistry Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - L. Saso
- Department of Physiology and Pharmacology Vittorio Erspamer
- Sapienza University of Rome
- Rome
- Italy
| | - O. Firuzi
- Medicinal and Natural Products Chemistry Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| |
Collapse
|
12
|
CAO JING, GUO TAO, DONG QINGSHAN, ZHANG JIANQIANG, LI YANFENG. miR-26b is downregulated in human tongue squamous cell carcinoma and regulates cell proliferation and metastasis through a COX-2-dependent mechanism. Oncol Rep 2014; 33:974-80. [DOI: 10.3892/or.2014.3648] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/11/2014] [Indexed: 11/05/2022] Open
|
13
|
DiNicolantonio JJ, McCarty MF, Chatterjee S, Lavie CJ, O'Keefe JH. A higher dietary ratio of long-chain omega-3 to total omega-6 fatty acids for prevention of COX-2-dependent adenocarcinomas. Nutr Cancer 2014; 66:1279-84. [PMID: 25356937 DOI: 10.1080/01635581.2014.956262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compelling evidence that daily low-dose aspirin decreases risk for a number of adenocarcinomas likely reflects the fact that a modest but consistent inhibition of cyclooxygenase-2 (COX-2) activity can have a meaningful protective impact on risk for such cancers. The cancer-promoting effects of COX-2 are thought to be mediated primarily by prostaglandin E2 (PGE2), synthesized from arachidonic acid. The long-chain omega-3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in many fatty fish, can interfere with the availability of arachidonate to COX-2 by multiple complementary mechanisms; moreover, the PGE3 produced by COX-2 from EPA is a competitive inhibitor of the receptors activated by PGE2. These considerations have given rise to the hypothesis that a high dietary intake of EPA/DHA, relative to omega-6 (from which arachidonate is generated), should lessen risk for a number of adenocarcinomas by impeding PGE2 production and activity-while not posing the risk to vascular health associated with COX-2-specific nonsteroidal antiinflammatory agents. Analyses that focus on studies in which the upper category of fish consumption (not fried or salt-preserved) is 2 or more servings weekly, and on studies that evaluate the association of long-term fish oil supplementation with cancer risk yields a number of findings that are consistent with the hypothesis. Further studies of this nature may help to clarify the impact of adequate regular intakes of long-chain omega-3 on cancer risk, and perhaps provide insight into the dose-dependency of this effect.
Collapse
|
14
|
Yu Y, Zheng S, Zhang S, Jin W, Liu H, Jin M, Chen Z, Ding Z, Wang L, Chen K. Polymorphisms of inflammation-related genes and colorectal cancer risk: a population-based case-control study in China. Int J Immunogenet 2014; 41:289-97. [PMID: 24762198 DOI: 10.1111/iji.12119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/04/2014] [Accepted: 03/13/2014] [Indexed: 01/01/2023]
Abstract
The previous studies found that chronic inflammation related to an increased risk of colorectal cancer (CRC). This study aims to explore the associations of polymorphisms in inflammation-related genes (IL10, IL10RA, IL6R, TNFRSF1A, TNFRSF1B, LTA and IL4) and their interactions with the risk of colorectal cancer among Chinese population. A population-based case-control study including 299 cases and 296 controls was conducted from January 2001 to December 2009. Multivariate unconditional logistic regression was used to analyse the association of nine SNPs in inflammation-related genes with the risk of CRC, colon cancer and rectal cancer, respectively. Generalized multifactor dimensionality reduction (GMDR) was implemented to explore the gene-gene interactions among all SNPs on CRC. A decreased risk of colorectal cancer in subjects with rs1800872 AC genotype of IL10 (OR = 0.643, 95%CI = 0.453, 0.912) or AC/CC genotype (OR = 0.636, 95%CI = 0.457, 0.885) was observed, compared with those with AA genotype. Meanwhile, similar associations were observed between rs1800872 and rectal cancer. Additionally, in rs1061624 of TNFRSF1B gene, AG genotype (OR=0.566; 95% CI= 0.362, 0.885) and AG/GG genotype (OR=0.638; 95% CI=0.420, 0.971) were significantly associated with a decreased risk of rectal cancer, respectively. Our findings indicated that mutants in IL10 and TNFRSF1B genes may change the CRC risk. However, there is no interaction between inflammation-related genes on CRC risk.
Collapse
Affiliation(s)
- Y Yu
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Chronic Disease Research Institute, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pan Y, Cheng T, Wang Y, Bryant SH. Pathway analysis for drug repositioning based on public database mining. J Chem Inf Model 2014; 54:407-18. [PMID: 24460210 PMCID: PMC3956470 DOI: 10.1021/ci4005354] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Sixteen FDA-approved
drugs were investigated to elucidate their
mechanisms of action (MOAs) and clinical functions by pathway analysis
based on retrieved drug targets interacting with or affected by the
investigated drugs. Protein and gene targets and associated pathways
were obtained by data-mining of public databases including the MMDB,
PubChem BioAssay, GEO DataSets, and the BioSystems databases. Entrez
E-Utilities were applied, and in-house Ruby scripts were developed
for data retrieval and pathway analysis to identify and evaluate relevant
pathways common to the retrieved drug targets. Pathways pertinent
to clinical uses or MOAs were obtained for most drugs. Interestingly,
some drugs identified pathways responsible for other diseases than
their current therapeutic uses, and these pathways were verified retrospectively
by in vitro tests, in vivo tests, or clinical trials. The pathway
enrichment analysis based on drug target information from public databases
could provide a novel approach for elucidating drug MOAs and repositioning,
therefore benefiting the discovery of new therapeutic treatments for
diseases.
Collapse
Affiliation(s)
- Yongmei Pan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | | | | | | |
Collapse
|
16
|
Kono T, Kaneko A, Matsumoto C, Miyagi C, Ohbuchi K, Mizuhara Y, Miyano K, Uezono Y. Multitargeted Effects of Hangeshashinto for Treatment of Chemotherapy-Induced Oral Mucositis on Inducible Prostaglandin E2 Production in Human Oral Keratinocytes. Integr Cancer Ther 2014; 13:435-45. [DOI: 10.1177/1534735413520035] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective. Chemotherapy-induced oral mucositis (COM) is characterized by painful inflammation with prolonged damage that involves the pathological pain-evoking prostaglandin E2 (PGE2). We previously found that gargling with hangeshashinto (HST), a traditional Japanese medicine, was effective for the treatment of COM. However, little is known regarding the mechanisms. Our aim was to identify the active ingredients and clarify the characteristic effects of HST on the PGE2 system. Methods. Prostanoids produced by human oral keratinocytes (HOK) stimulated with IL-1β were measured by enzyme immunoassay. Active ingredients that regulate PGE2 production were identified and quantified by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and a culture system of HOK cells. Results. Inducible PGE2, PGD2, and PGF2α, metabolites of cyclooxygenase (COX) pathways, were reduced by HST (10-300 µg/mL) without inducing cytotoxicity. The active ingredients of HST were quantified by LC-MS/MS, and [6]-shogaol, [6]-gingerol, wogonin, baicalein, baicalin, and berberine were shown to reduce PGE2 production. A mixture of these 6 ingredients at concentrations equal to 300 µg/mL of HST strongly suppressed PGE2 production to the same level as HST. [6]-Shogaol and [6]-gingerol did not decrease COX-2 mRNA expression and mostly inhibited PGE2 metabolic activity in an assay using intact HOK cells, suggesting that they regulate PGE2 synthesis at the posttranscriptional level. Wogonin, baicalin, and berberine inhibited expression of COX-2 mRNA without affecting PGE2 metabolic activity. Moreover, wogonin, but not [6]-shogaol, suppressed phosphorylation of mitogen-activated protein kinases (p38s and JNKs). Conclusions. These lines show that HST includes several PGE2-regulating ingredients that have different mechanisms and can function as a multicomponent and multitarget agent for treatment of COM, indicating that HST may be beneficial in a new medical strategy for COM treatment.
Collapse
Affiliation(s)
- Toru Kono
- Hokkaido University, Sapporo, Japan
- Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura and Co, Inashiki-gun, Ibaraki, Japan
| | - Chinami Matsumoto
- Tsumura Research Laboratories, Tsumura and Co, Inashiki-gun, Ibaraki, Japan
| | - Chika Miyagi
- Tsumura Research Laboratories, Tsumura and Co, Inashiki-gun, Ibaraki, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura and Co, Inashiki-gun, Ibaraki, Japan
| | - Yasuharu Mizuhara
- Tsumura Research Laboratories, Tsumura and Co, Inashiki-gun, Ibaraki, Japan
| | - Kanako Miyano
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Yasuhito Uezono
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Ash SA, Buggy DJ. Does regional anaesthesia and analgesia or opioid analgesia influence recurrence after primary cancer surgery? An update of available evidence. Best Pract Res Clin Anaesthesiol 2013; 27:441-56. [PMID: 24267550 DOI: 10.1016/j.bpa.2013.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Cancer continues to be a key cause of morbidity and mortality worldwide and its overall incidence continues to increase. Anaesthetists are increasingly faced with the challenge of managing cancer patients, for surgical resection to debulk or excise the primary tumour, or for surgical emergencies in patients on chemotherapy or for the analgesic management of disease- or treatment-related chronic pain. Metastatic recurrence is a concern. Surgery and a number of perioperative factors are suspected to accelerate tumour growth and potentially increase the risk of metastatic recurrence. Retrospective analyses have suggested an association between anaesthetic technique and cancer outcomes, and anaesthetists have sought to ameliorate the consequences of surgical trauma and minimise the impact of anaesthetic interventions. Just how anaesthesia and analgesia impact cancer recurrence and consequent survival is very topical, as understanding the potential mechanisms and interactions has an impact on the anaesthetist's ability to contribute to the successful outcome of oncological interventions. The outcome of ongoing, prospective, randomized trials are awaited with interest.
Collapse
Affiliation(s)
- Simon A Ash
- Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland.
| | | |
Collapse
|
18
|
Abstract
Effective chemoprevention of oestrogen receptor (ER)-positive breast cancer has been shown convincingly using several selective ER modulators and the aromatase inhibitor exemestane. Although these agents are well tolerated and the numbers needed-to-treat in the prevention setting are similar to other established preventive interventions, uptake has been poor in clinical practice because of difficulties in visualizing risk, predicting individual outcomes and measuring treatment benefit. In addition, new agents targeting ER-negative breast cancer are urgently needed. The development of new agents is hampered by the lack of suitable biomarkers and targets, as well as regulatory and financial considerations. Establishing breast cancer chemoprevention in standard clinical practice will require advances in many different fields, including biomarker research, the development of more powerful tools to predict and communicate the risks and benefits of treatments and establishing innovative trial designs. Furthermore, changes in regulatory procedures could reduce the size and cost of trials needed in the prevention setting. Identification of biomarkers for risk and efficacy that are easily accessible, such as blood-based biomarkers, will be key to future chemoprevention strategies.
Collapse
|
19
|
RETRACTED: Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through modulation of multiple signaling pathways. Biochim Biophys Acta Gen Subj 2013; 1830:4907-16. [DOI: 10.1016/j.bbagen.2013.06.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/15/2013] [Accepted: 06/29/2013] [Indexed: 02/07/2023]
|
20
|
da Silveira EF, Chassot JM, Teixeira FC, Azambuja JH, Debom G, Beira FT, Del Pino FAB, Lourenço A, Horn AP, Cruz L, Spanevello RM, Braganhol E. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Invest New Drugs 2013; 31:1424-35. [DOI: 10.1007/s10637-013-0016-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
|
21
|
Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 2013; 13:497-510. [PMID: 23760024 PMCID: PMC4636434 DOI: 10.1038/nrc3486] [Citation(s) in RCA: 425] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although at the genetic level cancer is caused by diverse mutations, epigenetic modifications are characteristic of all cancers, from apparently normal precursor tissue to advanced metastatic disease, and these epigenetic modifications drive tumour cell heterogeneity. We propose a unifying model of cancer in which epigenetic dysregulation allows rapid selection for tumour cell survival at the expense of the host. Mechanisms involve both genetic mutations and epigenetic modifications that disrupt the function of genes that regulate the epigenome itself. Several exciting recent discoveries also point to a genome-scale disruption of the epigenome that involves large blocks of DNA hypomethylation, mutations of epigenetic modifier genes and alterations of heterochromatin in cancer (including large organized chromatin lysine modifications (LOCKs) and lamin-associated domains (LADs)), all of which increase epigenetic and gene expression plasticity. Our model suggests a new approach to cancer diagnosis and therapy that focuses on epigenetic dysregulation and has great potential for risk detection and chemoprevention.
Collapse
Affiliation(s)
- Winston Timp
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|