1
|
Yang M, Wei X, Yi X, Jiang DS. Mitophagy-related regulated cell death: molecular mechanisms and disease implications. Cell Death Dis 2024; 15:505. [PMID: 39013891 PMCID: PMC11252137 DOI: 10.1038/s41419-024-06804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024]
Abstract
During oxidative phosphorylation, mitochondria continuously produce reactive oxygen species (ROS), and untimely ROS clearance can subject mitochondria to oxidative stress, ultimately resulting in mitochondrial damage. Mitophagy is essential for maintaining cellular mitochondrial quality control and homeostasis, with activation involving both ubiquitin-dependent and ubiquitin-independent pathways. Over the past decade, numerous studies have indicated that different forms of regulated cell death (RCD) are connected with mitophagy. These diverse forms of RCD have been shown to be regulated by mitophagy and are implicated in the pathogenesis of a variety of diseases, such as tumors, degenerative diseases, and ischemia‒reperfusion injury (IRI). Importantly, targeting mitophagy to regulate RCD has shown excellent therapeutic potential in preclinical trials, and is expected to be an effective strategy for the treatment of related diseases. Here, we present a summary of the role of mitophagy in different forms of RCD, with a focus on potential molecular mechanisms by which mitophagy regulates RCD. We also discuss the implications of mitophagy-related RCD in the context of various diseases.
Collapse
Affiliation(s)
- Molin Yang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Khairat J, Hatta M, Abdullah N, Azman A, Calvin S, Syed Hassan S. Unearthing the role of septins in viral infections. Biosci Rep 2024; 44:BSR20231827. [PMID: 38372298 PMCID: PMC10920062 DOI: 10.1042/bsr20231827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.
Collapse
Affiliation(s)
- Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Nur Adam Hatta
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Adzzie Shazleen Azman
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shee Yin Ming Calvin
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Qin L, Rao T, Li X, Chen H, Qian P. DnaJA2 interacts with Japanese encephalitis virus NS3 via its C-terminal to promote viral infection. Virus Res 2023; 336:199210. [PMID: 37633595 PMCID: PMC10485146 DOI: 10.1016/j.virusres.2023.199210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Numerous studies have documented that the interaction of viral and cellular proteins is essential in the viral life cycle. In our previous study, to screen cellular proteins that take part in the life cycle of JEV, cellular proteins that interacted with JEV NS3 were identified by Co-immunoprecipitation coupled with mass spectrometry analysis (Co-IP-MS), the results showed that ILF2, DnaJA1, DnaJA2, CKB, TUFM, and PABPC1 that putatively interact with NS3. Another candidate protein, DnaJA2, which interacted with JEV NS3 protein, was selected for further study. Overexpression of DnaJA2 increased JEV infection. Conversely, the knockdown of DnaJA2 suppressed JEV infection. Furthermore, DnaJA2 interacted with NS5 besides NS3 and colocalized with viral dsRNA. Additionally, the level of viral NS3 protein expression was higher in cells overexpressing DnaJA2 than in cells with empty vector expression, whereas DnaJA2 knockdown resulted in NS3 protein degradation, which was subsequently restored by MG132 treatment. Further analysis revealed that the C-terminal of DnaJA2 was a critical domain for interaction with NS3 and promoted JEV infection. Collectively, our study identified DnaJA2 as an essential host factor required for JEV infection, potentially representing a novel therapeutic target for the development of antiviral therapies against JEV.
Collapse
Affiliation(s)
- Liuxing Qin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tingting Rao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, Kanoujiya S, Gupta AK, Sinha S, Ruokolainen J, Kesari KK, Gupta PK. Recent Updates on Viral Oncogenesis: Available Preventive and Therapeutic Entities. Mol Pharm 2023; 20:3698-3740. [PMID: 37486263 PMCID: PMC10410670 DOI: 10.1021/acs.molpharmaceut.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Collapse
Affiliation(s)
- Shivam Chowdhary
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh India
| | - Rahul Deka
- Department
of Bioengineering and Biotechnology, Birla
Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kingshuk Panda
- Department
of Applied Microbiology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Abhishikt David Solomon
- Department
of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Jimli Das
- Centre
for
Biotechnology and Bioinformatics, Dibrugarh
University, Assam 786004, India
| | - Supriya Kanoujiya
- School
of
Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Kumar Gupta
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi 110029, India
| | - Somya Sinha
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, Punjab, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
5
|
Gomez K, Schiavoni G, Nam Y, Reynier JB, Khamnei C, Aitken M, Palmieri G, Cossu A, Levine A, van Noesel C, Falini B, Pasqualucci L, Tiacci E, Rabadan R. Genomic landscape of virus-associated cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.14.23285775. [PMID: 36824731 PMCID: PMC9949223 DOI: 10.1101/2023.02.14.23285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It has been estimated that 15%-20% of human cancers are attributable to infections, mostly by carcinogenic viruses. The incidence varies worldwide, with a majority affecting developing countries. Here, we present a comparative analysis of virus-positive and virus-negative tumors in nine cancers linked to five viruses. We find that virus-positive tumors occur more frequently in males and show geographical disparities in incidence. Genomic analysis of 1,658 tumors reveals virus-positive tumors exhibit distinct mutation signatures and driver gene mutations and possess a lower somatic mutation burden compared to virus-negative tumors of the same cancer type. For example, compared to the respective virus-negative counterparts, virus-positive cases across different cancer histologies had less often mutations of TP53 and deletions of 9p21.3/ CDKN2 A- CDKN1A ; Epstein-Barr virus-positive (EBV+) gastric cancer had more frequent mutations of EIF4A1 and ARID1A and less marked mismatch repair deficiency signatures; and EBV-positive cHL had fewer somatic genetic lesions of JAK-STAT, NF-κB, PI3K-AKT and HLA-I genes and a less pronounced activity of the aberrant somatic hypermutation signature. In cHL, we also identify germline homozygosity in HLA class I as a potential risk factor for the development of EBV-positive Hodgkin lymphoma. Finally, an analysis of clinical trials of PD-(L)1 inhibitors in four virus-associated cancers suggested an association of viral infection with higher response rate in patients receiving such treatments, which was particularly evident in gastric cancer and head and neck squamous cell carcinoma. These results illustrate the epidemiological, genetic, prognostic, and therapeutic trends across virus-associated malignancies.
Collapse
|
6
|
Bortolotti D, Corazza M, Rotola A, Bencivelli D, Schiuma G, Danese E, Rizzo S, Beltrami S, Rizzo R, Borghi A. Inhibitory KIR2DL2 receptor and HHV-8 in classic or endemic Kaposi sarcoma. Clin Exp Med 2023; 23:79-85. [PMID: 35169985 PMCID: PMC9939483 DOI: 10.1007/s10238-022-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
KIR2DL2, an inhibitory Killer cell Immunoglobulin-like Receptor (KIR), has been shown to predispose to the development of several herpesvirus-associated diseases by inhibiting the efficiency of Natural Killer (NK) cells against virus-infected cells. The aim of this observational study was to assess the prevalence of KIR2DL2 and Human Herpes Virus 8 (HHV8) in patients affected with classical and endemic Kaposi sarcoma (KS), as well as in controls. Blood samples collected from 17 Caucasian, HIV-negative, immunocompetent patients affected with classical KS (c-KS), 12 African, HIV-negative patients with endemic KS (e-KS), 83 healthy subjects and 26 psoriatic patients were processed for genotypization by PCR for two KIR alleles, such as KIR2DL2 and KIR2DL3 and analyzed for HHV-8 presence. The totality of both c-KS and e-KS patients presented HHV-8 infection, whereas HHV8 was found in 26.9% of psoriatic subjects and 19.3% of healthy subjects. KIR2DL2 was found in the 76.5% of c-KS subjects, while the receptor was found in 41.7% of the e-KS group, 34.6% of psoriatic patients and 43.4% of healthy controls (p < 0.0001). A significantly higher prevalence of KIR2DL2 in c-KS patients than in all the other subjects was also confirmed comparing age-matched groups. Based on these results, the inhibitory KIR2DL2 genotype appears to be a possible cofactor which increases the risk of developing c-KS in HHV8-positive, immunocompetent subjects, while it seems less relevant in e-KS pathogenesis.
Collapse
Affiliation(s)
- Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Corazza
- Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonella Rotola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Dario Bencivelli
- Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Danese
- Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Borghi
- Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
MicroRNAs Encoded by Virus and Small RNAs Encoded by Bacteria Associated with Oncogenic Processes. Processes (Basel) 2021. [DOI: 10.3390/pr9122234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is a deadly disease and, globally, represents the second leading cause of death in the world. Although it is a disease where several factors can help its development, virus induced infections have been associated with different types of neoplasms. However, in bacterial infections, their participation is not known for certain. Among the proposed approaches to oncogenesis risks in different infections are microRNAs (miRNAs). These are small molecules composed of RNA with a length of 22 nucleotides capable of regulating gene expression by directing protein complexes that suppress the untranslated region of mRNA. These miRNAs and other recently described, such as small RNAs (sRNAs), are deregulated in the development of cancer, becoming promising biomarkers. Thus, resulting in a study possibility, searching for new tools with diagnostic and therapeutic approaches to multiple oncological diseases, as miRNAs and sRNAs are main players of gene expression and host–infectious agent interaction. Moreover, sRNAs with limited complementarity are similar to eukaryotic miRNAs in their ability to modulate the activity and stability of multiple mRNAs. Here, we will describe the regulatory RNAs from viruses that have been associated with cancer and how sRNAs in bacteria can be related to this disease.
Collapse
|
8
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
9
|
AIDS Related Kaposi's Sarcoma: A 20-Year Experience in a Clinic from the South-East of Romania. J Clin Med 2021; 10:jcm10225346. [PMID: 34830628 PMCID: PMC8620409 DOI: 10.3390/jcm10225346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Kaposi’s sarcoma (KS) was peculiarly described in the first notified cases of the acquired immunodeficiency syndrome as an opportunistic condition. However, the medical progress and the development of active antiretroviral therapy allowed the control of the HIV/AIDS epidemic, although the features of KS have changed throughout the past decades. The purpose of our study is to assess the epidemiological and clinical features of AIDS related KS in Romanian patients. A retrospective follow-up study was achieved in a single infectious diseases’ clinic from Galati—Romania, between 2001 and 2021. Referring to 290 new HIV diagnosed cases from our clinic retained in care, the prevalence of KS was 3.4%. The main characteristics of patients with KS are a median age of 33, a predominance of males, prevalent severe systemic forms of diseases, frequent association of past or concomitant tuberculosis, and context of immune reconstruction syndrome. The mortality rate was 70%. KS has occurred in patients with delayed HIV diagnoses and inadequate adherence to therapy. Early recognition of both infections, the close monitoring of latent or symptomatic tuberculosis, improving the antiretroviral adherence and raising the access to oncologic procedures in Romanian HIV patients could improve their prognosis related to KS.
Collapse
|
10
|
Hoffman D, Rodriguez W, Macveigh-Fierro D, Miles J, Muller M. The KSHV ORF20 Protein Interacts with the Viral Processivity Factor ORF59 and Promotes Viral Reactivation. Microbiol Spectr 2021; 9:e0014521. [PMID: 34106579 PMCID: PMC8552657 DOI: 10.1128/spectrum.00145-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Upon Kaposi's Sarcoma-associated herpesvirus (KSHV) lytic reactivation, rapid and widespread amplification of viral DNA (vDNA) triggers significant nuclear reorganization. As part of this striking shift in nuclear architecture, viral replication compartments are formed as sites of lytic vDNA production along with remarkable spatial remodeling and the relocalization of cellular and viral proteins. These viral replication compartments house several lytic gene products that coordinate viral gene expression, vDNA replication, and nucleocapsid assembly. The viral proteins and mechanisms that regulate this overhaul of the nuclear landscape during KSHV replication remain largely unknown. KSHV's ORF20 is a widely conserved lytic gene among all herpesviruses, suggesting it may have a fundamental contribution to the progression of herpesviral infection. Here, we utilized a promiscuous biotin ligase proximity labeling method to identify the proximal interactome of ORF20, which includes several replication-associated viral proteins, one of which is ORF59, the KSHV DNA processivity factor. Using coimmunoprecipitation and immunofluorescence assays, we confirmed the interaction between ORF20 and ORF59 and tracked the localization of both proteins to KSHV replication compartments. To further characterize the function of ORF20, we generated an ORF20-deficient KSHV and compared its replicative fitness to that of wild-type virus. Virion production was significantly diminished in the ORF20-deficient virus as observed by supernatant transfer assays. Additionally, we tied this defect in viable virion formation to a reduction in viral late gene expression. Lastly, we observed an overall reduction in vDNA replication in the ORF20-deficient virus, implying a key role for ORF20 in the regulation of lytic replication. Taken together, these results capture the essential role of KSHV ORF20 in progressing viral lytic infection by regulating vDNA replication alongside other crucial lytic proteins within KSHV replication compartments. IMPORTANCE Kaposi's Sarcoma-associated herpesvirus (KSHV) is a herpesvirus that induces lifelong infection, and as such, its lytic replication is carefully controlled to allow for efficient dissemination from its long-term reservoir and for the spread of the virus to new hosts. Viral DNA replication involves many host and viral proteins, coordinating both in time and space to successfully progress through the viral life cycle. Yet, this process is still not fully understood. We investigated the role of the poorly characterized viral protein ORF20, and through proximity labeling, we found that ORF20 interacts with ORF59 in replication compartments and affects DNA replication and subsequent steps of the late viral life cycle. Collectively, these results provide insights into the possible contribution of ORF20 to the complex lytic DNA replication process and suggest that this highly conserved protein may be an important modulator of this key viral mechanism.
Collapse
Affiliation(s)
- D. Hoffman
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - W. Rodriguez
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - D. Macveigh-Fierro
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - J. Miles
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - M. Muller
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
11
|
Ulas ST, Dasdelen S. [Multicentric Castleman's disease combined with polyserositis and POEMS syndrome: case report and review article]. Internist (Berl) 2021; 62:777-785. [PMID: 34137908 DOI: 10.1007/s00108-021-01063-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Castleman disease (CD) is a very rare disorder characterised by hyperplasia of the lymphoid tissue. The aetiology varies considerably and includes autoimmunological, infectious, autoinflammatory and paraneoplastic diseases (e.g. MGUS with POEMS syndrome). What they all have in common is usually a dysregulation/overproduction of certain cytokines and growth factors (including interleukin 6 and VEGF). The sum of these changes sometimes causes very heterogeneous symptoms and thus often makes early diagnosis difficult. The prognosis of unrecognised and untreated disease is very serious and has an average 5‑year survival rate of 55-77%. The present paper describes the case of a 79-year-old patient with refractory polyserositis who was correctly diagnosed after > 8 years.
Collapse
Affiliation(s)
- Sevtap Tugce Ulas
- Klinik für Radiologie, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Süha Dasdelen
- Klinik für Nephrologie, Vivantes Humboldt-Klinikum, Am Nordgraben 2, 13509, Berlin, Deutschland. .,Private Universitätsklinik Witten/Herdecke, Witten/Herdecke, Deutschland.
| |
Collapse
|
12
|
Angius F, Ingianni A, Pompei R. Human Herpesvirus 8 and Host-Cell Interaction: Long-Lasting Physiological Modifications, Inflammation and Related Chronic Diseases. Microorganisms 2020; 8:E388. [PMID: 32168836 PMCID: PMC7143610 DOI: 10.3390/microorganisms8030388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/13/2023] Open
Abstract
Oncogenic and latent-persistent viruses belonging to both DNA and RNA groups are known to cause serious metabolism alterations. Among these, the Human Herpesvirus 8 (HHV8) infection induces stable modifications in biochemistry and cellular metabolism, which in turn affect its own pathological properties. HHV8 enhances the expression of insulin receptors, supports the accumulation of neutral lipids in cytoplasmic lipid droplets and induces alterations in both triglycerides and cholesterol metabolism in endothelial cells. In addition, HHV8 is also known to modify immune response and cytokine production with implications for cell oxidative status (i.e., reactive oxygen species activation). This review underlines the recent findings regarding the role of latent and persistent HHV8 viral infection in host physiology and pathogenesis.
Collapse
|
13
|
Golas G, Jang SJ, Naik NG, Alonso JD, Papp B, Toth Z. Comparative analysis of the viral interferon regulatory factors of KSHV for their requisite for virus production and inhibition of the type I interferon pathway. Virology 2019; 541:160-173. [PMID: 32056714 DOI: 10.1016/j.virol.2019.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 01/23/2023]
Abstract
Unique among human viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) encodes several homologs of cellular interferon regulatory factors (vIRFs). Since KSHV expresses multiple factors that can inhibit interferon (IFN) signaling to promote virus production, it is still unclear to what extent vIRFs contribute to these specific processes during KSHV infection. To study the function of vIRFs during viral infection, we engineered 3xFLAG-tagged-vIRF and vIRF-knockout recombinant KSHV clones, which were utilized to test vIRF expression, as well as their requirement for viral replication, virus production, and inhibition of the type I IFN pathway in different models of lytic KSHV infection. Our data show that all vIRFs can be expressed as lytic viral proteins, yet were dispensable for KSHV production and inhibition of type I IFN. Nevertheless, as vIRFs were able to suppress IFN-stimulated antiviral genes, vIRFs may still promote the KSHV lytic cycle in the presence of an ongoing antiviral response.
Collapse
Affiliation(s)
- Gavin Golas
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - Seung Jin Jang
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - Nenavath Gopal Naik
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - Juan D Alonso
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610, USA; UF Genetics Institute, Gainesville, FL, 32610, USA; UF Health Cancer Center, Gainesville, FL, 32610, USA; UF Informatics Institute, Gainesville, FL, 32610, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610, USA; UF Genetics Institute, Gainesville, FL, 32610, USA; UF Health Cancer Center, Gainesville, FL, 32610, USA.
| |
Collapse
|
14
|
Vo MT, Smith BJ, Nicholas J, Choi YB. Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus. Nat Commun 2019; 10:3203. [PMID: 31324791 PMCID: PMC6642096 DOI: 10.1038/s41467-019-11164-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/24/2019] [Indexed: 01/07/2023] Open
Abstract
Viral control of mitochondrial quality and content has emerged as an important mechanism for counteracting the host response to virus infection. Despite the knowledge of this crucial function of some viruses, little is known about how herpesviruses regulate mitochondrial homeostasis during infection. Human herpesvirus 8 (HHV-8) is an oncogenic virus causally related to AIDS-associated malignancies. Here, we show that HHV-8-encoded viral interferon regulatory factor 1 (vIRF-1) promotes mitochondrial clearance by activating mitophagy to support virus replication. Genetic interference with vIRF-1 expression or targeting to the mitochondria inhibits HHV-8 replication-induced mitophagy and leads to an accumulation of mitochondria. Moreover, vIRF-1 binds directly to a mitophagy receptor, NIX, on the mitochondria and activates NIX-mediated mitophagy to promote mitochondrial clearance. Genetic and pharmacological interruption of vIRF-1/NIX-activated mitophagy inhibits HHV-8 productive replication. Our findings uncover an essential role of vIRF-1 in mitophagy activation and promotion of HHV-8 lytic replication via this mechanism.
Collapse
Affiliation(s)
- Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Barbara J Smith
- Department of Cell Biology, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John Nicholas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
15
|
Manzano M, Patil A, Waldrop A, Dave SS, Behdad A, Gottwein E. Gene essentiality landscape and druggable oncogenic dependencies in herpesviral primary effusion lymphoma. Nat Commun 2018; 9:3263. [PMID: 30111820 PMCID: PMC6093911 DOI: 10.1038/s41467-018-05506-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/26/2018] [Indexed: 12/26/2022] Open
Abstract
Primary effusion lymphoma (PEL) is caused by Kaposi's sarcoma-associated herpesvirus. Our understanding of PEL is poor and therefore treatment strategies are lacking. To address this need, we conducted genome-wide CRISPR/Cas9 knockout screens in eight PEL cell lines. Integration with data from unrelated cancers identifies 210 genes as PEL-specific oncogenic dependencies. Genetic requirements of PEL cell lines are largely independent of Epstein-Barr virus co-infection. Genes of the NF-κB pathway are individually non-essential. Instead, we demonstrate requirements for IRF4 and MDM2. PEL cell lines depend on cellular cyclin D2 and c-FLIP despite expression of viral homologs. Moreover, PEL cell lines are addicted to high levels of MCL1 expression, which are also evident in PEL tumors. Strong dependencies on cyclin D2 and MCL1 render PEL cell lines highly sensitive to palbociclib and S63845. In summary, this work comprehensively identifies genetic dependencies in PEL cell lines and identifies novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Mark Manzano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ajinkya Patil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alexander Waldrop
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Sandeep S Dave
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Amir Behdad
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
16
|
Human Herpesvirus 8 Interferon Regulatory Factors 1 and 3 Mediate Replication and Latency Activities via Interactions with USP7 Deubiquitinase. J Virol 2018; 92:JVI.02003-17. [PMID: 29343584 DOI: 10.1128/jvi.02003-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) encodes four viral interferon regulatory factors (vIRF-1 to -4) that likely function to suppress innate immune and cellular stress responses through inhibitory interactions with various cellular proteins involved in these activities. It is notable that vIRF-1 and -4 have been reported to interact with the deubiquitinase ubiquitin-specific protease 7 (USP7), substrates of which include p53 and the p53-targeting and -destabilizing ubiquitin E3 ligase MDM2. Structural studies of vIRF-1 and vIRF-4 USP7 binding sequences in association with USP7 have been reported; both involve interactions with N-terminal-domain residues of USP7 via EGPS and ASTS motifs in vIRF-1 and vIRF-4, respectively, but vIRF-4 residues also contact the catalytic site. However, the biological activities of vIRF-1 and vIRF-4 via USP7 interactions are unknown. Here, we report that vIRF-3, which is latently, as well as lytically, expressed in HHV-8-infected primary effusion lymphoma (PEL) cells, also interacts with USP7-via duplicated EGPS motifs-and that this interaction is important for PEL cell growth and viability. The interaction also contributes to suppression of productive virus replication by vIRF-3, which we identify here. We further show that vIRF-1, which is expressed at low levels in PEL latency, promotes latent PEL cell viability and that this activity and vIRF-1-promoted productive replication (reported previously) involve EGPS motif-mediated USP7 targeting by vIRF-1. This study is the first to identify latent and lytic functions of vIRF-1 and vIRF-3, respectively, and to address the biological activities of these vIRFs through their interactions with USP7.IMPORTANCE HHV-8 is associated with Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease; both latent and lytic viral functions are believed to contribute. Viral interferon regulatory factors specified by HHV-8 are thought to be critically important for successful productive replication through suppression of innate immune and stress responses triggered by the lytic cycle. Latently expressed vIRF-3 contributes significantly to PEL cell survival. Here, we identify ubiquitin-specific protease 7 (USP7) deubiquitinase targeting by vIRF-3 (in addition to previously reported USP7 binding by vIRF-1 and vIRF-4); the importance of vIRF-1 and vIRF-3 interactions with USP7 for latent PEL cell growth and viability; and the positive and negative contributions, respectively, of USP7 targeting by vIRF-1 and vIRF-3 to HHV-8 productive replication. This is the first report of the biological importance of vIRF-1 in PEL cell latency, the modulation of productive replication by vIRF-3, and the contributions of vIRF-USP7 interactions to HHV-8 biology.
Collapse
|
17
|
Chen M, Sun F, Han L, Qu Z. Kaposi's sarcoma herpesvirus (KSHV) microRNA K12-1 functions as an oncogene by activating NF-κB/IL-6/STAT3 signaling. Oncotarget 2017; 7:33363-73. [PMID: 27166260 PMCID: PMC5078101 DOI: 10.18632/oncotarget.9221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 01/01/2023] Open
Abstract
The human oncogenic virus Kaposi's sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. KSHV possesses over hundred genes, including 25 microRNAs (miRNAs). The roles of these miRNAs and many other viral genes in KSHV biology and pathogenesis remain largely unknown. Accordingly, the molecular mechanisms by which KSHV induces tumorigenesis are still poorly defined. Here, we identify KSHV miRNA K12-1 (miR-K12-1) as a novel viral oncogene by activating two important transcription factors, nuclear factor-κb (NF-κB) and signal transducer and activator of transcription 3 (STAT3). Interestingly, miR-K12-1 activates STAT3 indirectly through inducing NF-κB activation and NF-κB-dependent expression of the cytokine interleukin-6 (IL-6) by repressing the expression of the NF-κB inhibitor IκBα. Accordingly, expression of ectopic IκBα or knockdown of NF-κB RelA, IL-6 or STAT3 prevents expression of cell growth genes and suppresses the oncogenicities of both miR-K12-1 and KSHV. These data identify miR-K12-1/NF-κB/IL-6/STAT3 as a novel oncogenic signaling underlying KSHV tumorigenesis. These data also provide the first evidence showing that IL-6/STAT3 signaling acts as an essential mediator of NF-κB oncogenic actions. These findings significantly improve our understanding of KSHV pathogenesis and oncogenic interaction between NF-κB and STAT3.
Collapse
Affiliation(s)
- Mingqing Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Fan Sun
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lei Han
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhaoxia Qu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Farré D, Martínez-Vicente P, Engel P, Angulo A. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion. Eur J Immunol 2017; 47:780-796. [PMID: 28383780 DOI: 10.1002/eji.201746984] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Martínez-Vicente
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
19
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Foreman HCC, Armstrong J, Santana AL, Krug LT, Reich NC. The replication and transcription activator of murine gammaherpesvirus 68 cooperatively enhances cytokine-activated, STAT3-mediated gene expression. J Biol Chem 2017; 292:16257-16266. [PMID: 28821622 DOI: 10.1074/jbc.m117.786970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses (γHVs) have a dynamic strategy for lifelong persistence, involving productive infection, latency, and intermittent reactivation. In latency reservoirs, such as B lymphocytes, γHVs exist as viral episomes and express few viral genes. Although the ability of γHV to reactivate from latency and re-enter the lytic phase is challenging to investigate and control, it is known that the γHV replication and transcription activator (RTA) can promote lytic reactivation. In this study, we provide first evidence that RTA of murine γΗV68 (MHV68) selectively binds and enhances the activity of tyrosine-phosphorylated host STAT3. STAT3 is a transcription factor classically activated by specific tyrosine 705 phosphorylation (pTyr705-STAT3) in response to cytokine stimulation. pTyr705-STAT3 forms a dimer that avidly binds a consensus target site in the promoters of regulated genes, and our results indicate that RTA cooperatively enhances the ability of pTyr705-STAT3 to induce expression of a STAT3-responsive reporter gene. As indicated by coimmunoprecipitation, in latently infected B cells that are stimulated to reactivate MHV68, RTA bound specifically to endogenous pTyr705-STAT3. An in vitro binding assay confirmed that RTA selectively recognizes pTyr705-STAT3 and indicated that the C-terminal transactivation domain of RTA was required for enhancing STAT3-directed gene expression. The cooperation of these transcription factors may influence both viral and host genes. During MHV68 de novo infection, pTyr705-STAT3 promoted the temporal expression of ORF59, a viral replication protein. Our results demonstrate that MHV68 RTA specifically recognizes and recruits activated pTyr705-STAT3 during the lytic phase of infection.
Collapse
Affiliation(s)
- Hui-Chen Chang Foreman
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Julie Armstrong
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Alexis L Santana
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Laurie T Krug
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Nancy C Reich
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
21
|
Thomasini RL, Pereira FSM. Impact of different types of herpesviral infections in the oral cavity. World J Stomatol 2016; 5:22-27. [DOI: 10.5321/wjs.v5.i2.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/28/2015] [Accepted: 03/23/2016] [Indexed: 02/06/2023] Open
Abstract
The herpesviruses are ubiquitous, doubled-stranded DNA viruses that can reactivate under conditions such as immunosuppressive therapy, acquired immunodeficiency syndrome, malnutrition, and immunosenescence. There are eight types of herpesviruses: Human herpesvirus simplex (HSV) type I (HSV-1) and HSV type II (HSV-2), varicella-zoster virus (VZV), epstein-Barr virus (EBV), cytomegalovirus, human herpesvirus (HHV)-6, HHV-7, and HHV-8 or Kaposi’s sarcoma herpesvirus. Some of these viruses can infect the oral cavity, leading to different types of lesions. Specifically, labial herpes (HSV-1 and less frequently HSV-2), zoster (VZV), infectious mononucleosis and oral hairy leukoplakia (EBV), and Kaposi’s Sarcoma (HHV-8) are the most common viruses infecting the oral cavity. Some of these viruses can act in synergy with other herpesviruses or as distinct infectious agents. Other herpesviruses may have indirect effects in periodontal disease. The diagnosis is frequently based on signs and symptoms and depends on the experience of the examiner. Cytopathologic and/or histopathologic examination as well as immunological methods such as ELISA could help to elucidate cases. In addition, molecular techniques which can be sensitive and specific have been reported in the literature. These methods require low amounts of sample and could offer results faster than other traditional methods.
Collapse
|
22
|
El-Araby AM, Fouad AA, Hanbal AM, Abdelwahab SM, Qassem OM, El-Araby ME. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises. Arch Pharm (Weinheim) 2016; 349:73-90. [PMID: 26754591 DOI: 10.1002/ardp.201500375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.
Collapse
Affiliation(s)
- Amr M El-Araby
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Amr M Hanbal
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Omar M Qassem
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanya, Jeddah, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
23
|
Genome-Wide Mapping of the Binding Sites and Structural Analysis of Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2 Reveal that It Is a DNA-Binding Transcription Factor. J Virol 2015; 90:1158-68. [PMID: 26537687 DOI: 10.1128/jvi.01392-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/14/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The oncogenic herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is known to encode four viral interferon regulatory factors (vIRF1 to -4) to subvert the host antiviral immune response, but their detailed DNA-binding profiles as transcription factors in the host remain uncharacterized. Here, we first performed genome-wide vIRF2-binding site mapping in the human genome using chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq). vIRF2 was capable of binding to the promoter regions of 100 putative target genes. Importantly, we confirmed that vIRF2 can specifically interact with the promoters of the genes encoding PIK3C3, HMGCR, and HMGCL, which are associated with autophagosome formation or tumor progression and metastasis, and regulate their transcription in vivo. The crystal structure of the vIRF2 DNA-binding domain (DBD) (referred to here as vIRF2DBD) showed variable loop conformations and positive-charge distributions different from those of vIRF1 and cellular IRFs that are associated with DNA-binding specificities. Structure-based mutagenesis revealed that Arg82 and Arg85 are required for the in vitro DNA-binding activity of vIRF2DBD and can abolish the transcription regulation function of vIRF2 on the promoter reporter activity of PIK3C3, HMGCR, and HMGCL. Collectively, our study provided unique insights into the DNA-binding potency of vIRF2 and suggested that vIRF2 could act as a transcription factor of its target genes in the host antiviral immune response. IMPORTANCE The oncogenic herpesvirus KSHV is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV has developed a unique mechanism to subvert the host antiviral immune responses by encoding four homologues of cellular interferon regulatory factors (vIRF1 to -4). However, none of their DNA-binding profiles in the human genome have been characterized until now, and the structural basis for their diverse DNA-binding properties remain poorly understood. In this study, we performed the first genome-wide vIRF2-binding site mapping in the human genome and found vIRF2 can bind to the promoter regions of 100 target cellular genes. X-ray structure analysis and functional studies provided unique insights into its DNA-binding potency and regulation of target gene expression. Our study suggested that vIRF2 could act as a transcription factor of its target genes and contribute to KSHV infection and pathogenesis through versatile functions.
Collapse
|
24
|
Modulation of Mitochondrial Antiviral Signaling by Human Herpesvirus 8 Interferon Regulatory Factor 1. J Virol 2015; 90:506-20. [PMID: 26512076 DOI: 10.1128/jvi.01903-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/14/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Mitochondrial lipid raft-like microdomains, experimentally also termed mitochondrial detergent-resistant membrane fractions (mDRM), play a role as platforms for recruiting signaling molecules involved in antiviral responses such as apoptosis and innate immunity. Viruses can modulate mitochondrial functions for their own survival and replication. However, viral regulation of the antiviral responses via mDRM remains incompletely understood. Here, we report that human herpesvirus 8 (HHV-8) gene product viral interferon regulatory factor 1 (vIRF-1) is targeted to mDRM during virus replication and negatively regulates the mitochondrial antiviral signaling protein (MAVS)-mediated antiviral responses. The N-terminal region of vIRF-1 interacts directly with membrane lipids, including cardiolipin. In addition, a GxRP motif within the N terminus of vIRF-1, conserved in the mDRM-targeting region of mitochondrial proteins, including PTEN-induced putative kinase 1 (PINK1) and MAVS, was found to be important for vIRF-1 association with mitochondria. Furthermore, MAVS, which has the potential to promote vIRF-1 targeting to mDRM possibly by inducing cardiolipin exposure on the outer membrane of mitochondria, interacts with vIRF-1, which, in turn, inhibits MAVS-mediated antiviral signaling. Consistent with these results, vIRF-1 targeting to mDRM contributes to promotion of HHV-8 productive replication and inhibition of associated apoptosis. Combined, our results suggest novel molecular mechanisms for negative-feedback regulation of MAVS by vIRF-1 during virus replication. IMPORTANCE Successful virus replication is in large part achieved by the ability of viruses to counteract apoptosis and innate immune responses elicited by infection of host cells. Recently, mitochondria have emerged to play a central role in antiviral signaling. In particular, mitochondrial lipid raft-like microdomains appear to function as platforms in cell apoptosis signaling. However, viral regulation of antiviral signaling through the mitochondrial microdomains remains incompletely understood. The present study demonstrates that HHV-8-encoded vIRF-1 targets to the mitochondrial detergent-resistant microdomains via direct interaction with cardiolipin and inhibits MAVS protein-mediated apoptosis and type I interferon gene expression in a negative-feedback manner, thus promoting HHV-8 productive replication. These results suggest that vIRF-1 is the first example of a viral protein to inhibit mitochondrial antiviral signaling through lipid raft-like microdomains.
Collapse
|
25
|
Yao S, Hu M, Hao T, Li W, Xue X, Xue M, Zhu X, Zhou F, Qin D, Yan Q, Zhu J, Gao SJ, Lu C. MiRNA-891a-5p mediates HIV-1 Tat and KSHV Orf-K1 synergistic induction of angiogenesis by activating NF-κB signaling. Nucleic Acids Res 2015; 43:9362-78. [PMID: 26446987 PMCID: PMC4627096 DOI: 10.1093/nar/gkv988] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/19/2015] [Indexed: 12/03/2022] Open
Abstract
Co-infection with HIV-1 and Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of aggressive AIDS-related Kaposi's sarcoma (AIDS-KS) characterized by abnormal angiogenesis. The impact of HIV-1 and KSHV interaction on the pathogenesis and extensive angiogenesis of AIDS-KS remains unclear. Here, we explored the synergistic effect of HIV-1 Tat and KSHV oncogene Orf-K1 on angiogenesis. Our results showed that soluble Tat or ectopic expression of Tat enhanced K1-induced cell proliferation, microtubule formation and angiogenesis in chorioallantoic membrane and nude mice models. Mechanistic studies revealed that Tat promoted K1-induced angiogenesis by enhancing NF-κB signaling. Mechanistically, we showed that Tat synergized with K1 to induce the expression of miR-891a-5p, which directly targeted IκBα 3′ untranslated region, leading to NF-κB activation. Consequently, inhibition of miR-891a-5p increased IκBα level, prevented nuclear translocation of NF-κB p65 and ultimately suppressed the synergistic effect of Tat- and K1-induced angiogenesis. Our results illustrate that, by targeting IκBα to activate the NF-κB pathway, miR-891a-5p mediates Tat and K1 synergistic induction of angiogenesis. Therefore, the miR-891a-5p/NF-κB pathway is important in the pathogenesis of AIDS-KS, which could be an attractive therapeutic target for AIDS-KS.
Collapse
Affiliation(s)
- Shuihong Yao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China Medical School, Quzhou College of Technology, Quzhou 324000, P.R. China
| | - Minmin Hu
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Tingting Hao
- Department of Medical Laboratory, The Affiliated Hospital of Xuzhou Medical College, Xuzhou 221000, P.R. China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Xue Xue
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Min Xue
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Xiaofei Zhu
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Feng Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Di Qin
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P.R. China Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P.R. China Department of Microbiology, Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
26
|
Grewal R, Cucuianu A, Swanepoel C, Dima D, Petrushev B, Pop B, Berindan-Neagoe I, Abayomi EA, Tomuleasa C. The role of microRNAs in the pathogenesis of HIV-related lymphomas. Crit Rev Clin Lab Sci 2015. [PMID: 26218036 DOI: 10.3109/10408363.2015.1030063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incidence of HIV-related lymphomas (HRLs) is increased by 60-100 times in patients with HIV. When compared to the general population, patients with HRLs often present with extranodal lymphoid proliferation, most frequently of the gastrointestinal tract, central nervous system, liver and bone marrow. MicroRNAs (miRs) are non-coding double-stranded RNA molecules of 18-25 nucleotides that regulate post-translational gene expression by inhibiting translation or promoting degradation of messenger RNA complementary sequences. Before their discovery, tumorigenesis was thought to have been caused by the alteration of protein-coding oncogenes and tumor-suppressor genes, but once identified in B-cell chronic lymphocytic leukemia, miRs function as either oncogenes or tumor-suppressor genes was confirmed in different types of malignancies. Since miRs are clearly involved in tumorigenesis in many cancers, their role in HRLs is now receiving attention. A few studies have been conducted thus far in some HRLs on the involvement of miR in the pathogenesis of lymphoid malignancies. Since B-cell lymphomas arise from various stages of B-cell development in both HIV-infected and HIV-naïve patients, investigators have tried to determine the different miR signatures in B-cell development. As classic immunohistochemistry staining is sometimes not enough for the differential diagnosis of HRLs, in the present review, we have described the potential use of miRs in the prognosis and diagnosis of these diseases.
Collapse
Affiliation(s)
- Ravnit Grewal
- a Division of Hematopathology , Tygerberg Academic Hospital , Tygerberg , South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sun F, Xiao Y, Qu Z. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance. J Biol Chem 2015; 290:7362-8. [PMID: 25681443 DOI: 10.1074/jbc.c115.637918] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. However, how KSHV induces tumorigenesis remains largely unknown. Here, we demonstrate that one important mechanism underlying the tumorigenesis of KSHV is through transcriptional repression of the tumor suppressor gene PDZ-LIM domain-containing protein 2 (PDLIM2). PDLIM2 expression is repressed in KSHV-transformed human umbilical vascular endothelial cells as well as in KSHV-associated cancer cell lines and primary tumors. Importantly, PDLIM2 repression is essential for KSHV-induced persistent activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and subsequent tumorigenesis and tumor maintenance. Our mechanistic studies indicate that PDLIM2 repression by KSHV involves DNA methylation. Notably, the epigenetic repression of PDLIM2 can be reversed by 5-aza-2-deoxycytidine and vitamin D to suppress KSHV-associated cancer cell growth. These studies not only improve our understanding of KSHV pathogenesis but also provide immediate therapeutic strategies for KSHV-mediated cancers, particularly those associated with AIDS.
Collapse
Affiliation(s)
- Fan Sun
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Yadong Xiao
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and
| | - Zhaoxia Qu
- From the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232, and the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
28
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
Collapse
|
29
|
Uppal T, Banerjee S, Sun Z, Verma SC, Robertson ES. KSHV LANA--the master regulator of KSHV latency. Viruses 2014; 6:4961-98. [PMID: 25514370 PMCID: PMC4276939 DOI: 10.3390/v6124961] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV), like other human herpes viruses, establishes a biphasic life cycle referred to as dormant or latent, and productive or lytic phases. The latent phase is characterized by the persistence of viral episomes in a highly ordered chromatin structure and with the expression of a limited number of viral genes. Latency Associated Nuclear Antigen (LANA) is among the most abundantly expressed proteins during latency and is required for various nuclear functions including the recruitment of cellular machineries for viral DNA replication and segregation of the replicated genomes to daughter cells. LANA achieves these functions by recruiting cellular proteins including replication factors, chromatin modifying enzymes and cellular mitotic apparatus assembly. LANA directly binds to the terminal repeat region of the viral genome and associates with nucleosomal proteins to tether to the host chromosome. Binding of LANA to TR recruits the replication machinery, thereby initiating DNA replication within the TR. However, other regions of the viral genome can also initiate replication as determined by Single Molecule Analysis of the Replicated DNA (SMARD) approach. Recent, next generation sequence analysis of the viral transcriptome shows the expression of additional genes during latent phase. Here, we discuss the newly annotated latent genes and the role of major latent proteins in KSHV biology.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Sagarika Banerjee
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|