1
|
Salom D, Kiser PD, Palczewski K. Insights into the Activation and Self-Association of Arrestin-1. Biochemistry 2024. [PMID: 39704710 DOI: 10.1021/acs.biochem.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in SAG, the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation. Since the discovery of Arrestin-1, substantial progress has been made in understanding the role of these regulatory proteins in phototransduction, including the characterization of visual phenotypes of animals and humans lacking this protein, discovery of splice variants, and documentation of its binding to inositol-polyphosphates. Arrestin-1 was one of the first structurally characterized proteins in the phototransduction cascade. However, there are knowledge gaps regarding the conformational intermediates leading to its binding to phosphorylated rhodopsin. Among various mammalian Arrestin-1 conformations captured via crystallography, the preactivated state is represented by the mutant R175E-Arrestin-1 and by a C-terminally truncated splice variant (p44). This report describes a novel purification method of Arrestin-1 from bovine retinas followed by limited proteolysis to obtain a protein resembling p44. We solved the crystal structure of this preactivated, shortened 3-367Arrestin-1 at a resolution of 1.40 Å. The structure reveals a more complete picture of the finger loop structure and of the role of the polar core in the activation of Arrestin-1. The structure of 3-367Arrestin-1 captures an intermediate form halfway between the inactive and fully activated conformations of Arrestin-1. Finally, we addressed the question of Arrestin-1 oligomerization by comparing the packing interfaces in different Arrestin-1 crystals and dimer models predicted by AlphaFold 3.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California 92697, United States
| | - Philip D Kiser
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California 92697, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
- Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
- Department of Clinical Pharmacy Practice, University of Irvine School of Pharmacy and Pharmaceutical Sciences, Irvine, California 92697, United States
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California 92697, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Barnes CL, Salom D, Namitz KEW, Smith WC, Knutson BA, Cosgrove MS, Kiser PD, Calvert PD. Mechanisms of amphibian arrestin 1 self-association and dynamic distribution in retinal photoreceptors. J Biol Chem 2024; 300:107966. [PMID: 39510183 PMCID: PMC11652889 DOI: 10.1016/j.jbc.2024.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Visual arrestin 1 (Arr1) is an essential protein for termination of the light response in photoreceptors. While mammalian Arr1s form dimers and tetramers at physiological concentrations in vitro, oligomerization in other vertebrates has not been studied. Here we examine self-association of Arr1 from two amphibian species, Xenopus laevis (xArr1) and Ambystoma tigrinum (salArr1). Sedimentation velocity analytical ultracentrifugation showed that xArr1 and salArr1 oligomerization is limited to dimers. The KD for dimer formation was 53 μM for xArr1 and 44 μM for salArr1, similar to the 69 μM KD for bovine Arr1 (bArr1) dimers. Mutations of orthologous amino acids important for mammalian Arr1 oligomerization had no impact on xArr1 dimerization. Crystallography showed that the fold of xArr1 closely resembles that of bArr1 and crystal structures in different space groups revealed two potential xArr1 dimer forms: a symmetric dimer with a C-domain interface (CC dimer), resembling the bArr1 solution dimer, and an asymmetric dimer with an N-domain/C-domain interface. Mutagenesis of residues predicted to interact in either of these two dimer forms yielded modest reduction in dimer affinity, suggesting that the dimer interfaces compete or are not unique. Indeed, small-angle X-ray scattering and protein painting data were consistent with a symmetric anti-parallel solution dimer (AP dimer) distinct from the assemblies observed by crystallography. Finally, a computational model evaluating xArr1 binding to compartment-specific partners and partitioning based on heterogeneity of available cytoplasmic spaces shows that Arr1 distribution in dark-adapted photoreceptors is largely explained by the excluded volume effect together with tuning by oligomerization.
Collapse
Affiliation(s)
- Cassandra L Barnes
- Center for Vision Research and the Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California, Irvine, California, USA
| | - Kevin E W Namitz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - W Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California, Irvine, California, USA; Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, VA Long Beach Medical Center, Long Beach, California, USA.
| | - Peter D Calvert
- Center for Vision Research and the Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
3
|
McElrath CJ, Benzow S, Zhuo Y, Marchese A. β-arrestin1 is an E3 ubiquitin ligase adaptor for substrate linear polyubiquitination. J Biol Chem 2023; 299:105474. [PMID: 37981209 PMCID: PMC10755771 DOI: 10.1016/j.jbc.2023.105474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling and trafficking are regulated by multiple mechanisms, including posttranslational modifications such as ubiquitination by E3 ubiquitin ligases. E3 ligases have been linked to agonist-stimulated ubiquitination of GPCRs via simultaneous binding to βarrestins. In addition, βarrestins have been suggested to assist E3 ligases for ubiquitination of key effector molecules, yet mechanistic insight is lacking. Here, we developed an in vitro reconstituted system and show that βarrestin1 (βarr1) serves as an adaptor between the effector protein signal-transducing adaptor molecule 1 (STAM1) and the E3 ligase atrophin-interacting protein 4. Via mass spectrometry, we identified seven lysine residues within STAM1 that are ubiquitinated and several types of ubiquitin linkages. We provide evidence that βarr1 facilitates the formation of linear polyubiquitin chains at lysine residue 136 on STAM1. This lysine residue is important for stabilizing the βarr1:STAM1 interaction in cells following GPCR activation. Our study identifies atrophin-interacting protein 4 as only the second E3 ligase known to conjugate linear polyubiquitin chains and a possible role for linear ubiquitin chains in GPCR signaling and trafficking.
Collapse
Affiliation(s)
- Chandler J McElrath
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sara Benzow
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
4
|
Yun Y, Yoon HJ, Jeong Y, Choi Y, Jang S, Chung KY, Lee HH. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin. Proc Natl Acad Sci U S A 2023; 120:e2301934120. [PMID: 37399373 PMCID: PMC10334748 DOI: 10.1073/pnas.2301934120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 07/05/2023] Open
Abstract
E3 ubiquitin ligase Mdm2 facilitates β-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, β-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the β-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the β-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of β-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the β-arrestin1 N-domain. The C-tail of β-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of β-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate β-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on β-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to β-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of β-arrestin1. These results show how the E3 ligase, Mdm2, interacts with β-arrestins to promote the internalization of GPCRs.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Yejin Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul05006, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
5
|
Maharana J, Sarma P, Yadav MK, Saha S, Singh V, Saha S, Chami M, Banerjee R, Shukla AK. Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation. Mol Cell 2023; 83:2091-2107.e7. [PMID: 37209686 PMCID: PMC7615930 DOI: 10.1016/j.molcel.2023.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Agonist-induced GPCR phosphorylation is a key determinant for the binding and activation of β-arrestins (βarrs). However, it is not entirely clear how different GPCRs harboring divergent phosphorylation patterns impart converging active conformation on βarrs leading to broadly conserved functional responses such as desensitization, endocytosis, and signaling. Here, we present multiple cryo-EM structures of activated βarrs in complex with distinct phosphorylation patterns derived from the carboxyl terminus of different GPCRs. These structures help identify a P-X-P-P type phosphorylation motif in GPCRs that interacts with a spatially organized K-K-R-R-K-K sequence in the N-domain of βarrs. Sequence analysis of the human GPCRome reveals the presence of this phosphorylation pattern in a large number of receptors, and its contribution in βarr activation is demonstrated by targeted mutagenesis experiments combined with an intrabody-based conformational sensor. Taken together, our findings provide important structural insights into the ability of distinct GPCRs to activate βarrs through a significantly conserved mechanism.
Collapse
Affiliation(s)
- Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
6
|
Role of Monomer/Tetramer Equilibrium of Rod Visual Arrestin in the Interaction with Phosphorylated Rhodopsin. Int J Mol Sci 2023; 24:ijms24054963. [PMID: 36902393 PMCID: PMC10003454 DOI: 10.3390/ijms24054963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The phototransduction cascade in vertebrate rod visual cells is initiated by the photoactivation of rhodopsin, which enables the activation of the visual G protein transducin. It is terminated by the phosphorylation of rhodopsin, followed by the binding of arrestin. Here we measured the solution X-ray scattering of nanodiscs containing rhodopsin in the presence of rod arrestin to directly observe the formation of the rhodopsin/arrestin complex. Although arrestin self-associates to form a tetramer at physiological concentrations, it was found that arrestin binds to phosphorylated and photoactivated rhodopsin at 1:1 stoichiometry. In contrast, no complex formation was observed for unphosphorylated rhodopsin upon photoactivation, even at physiological arrestin concentrations, suggesting that the constitutive activity of rod arrestin is sufficiently low. UV-visible spectroscopy demonstrated that the rate of the formation of the rhodopsin/arrestin complex well correlates with the concentration of arrestin monomer rather than the tetramer. These findings indicate that arrestin monomer, whose concentration is almost constant due to the equilibrium with the tetramer, binds to phosphorylated rhodopsin. The arrestin tetramer would act as a reservoir of monomer to compensate for the large changes in arrestin concentration in rod cells caused by intense light or adaptation.
Collapse
|
7
|
Watkins JM, Ross-Elliott TJ, Shan X, Lou F, Dreyer B, Tunc-Ozdemir M, Jia H, Yang J, Oliveira CC, Wu L, Trusov Y, Schwochert TD, Krysan P, Jones AM. Differential regulation of G protein signaling in Arabidopsis through two distinct pathways that internalize AtRGS1. Sci Signal 2021; 14:14/695/eabe4090. [PMID: 34376571 DOI: 10.1126/scisignal.abe4090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In animals, endocytosis of a seven-transmembrane GPCR is mediated by arrestins to propagate or arrest cytoplasmic G protein-mediated signaling, depending on the bias of the receptor or ligand, which determines how much one transduction pathway is used compared to another. In Arabidopsis thaliana, GPCRs are not required for G protein-coupled signaling because the heterotrimeric G protein complex spontaneously exchanges nucleotide. Instead, the seven-transmembrane protein AtRGS1 modulates G protein signaling through ligand-dependent endocytosis, which initiates derepression of signaling without the involvement of canonical arrestins. Here, we found that endocytosis of AtRGS1 initiated from two separate pools of plasma membrane: sterol-dependent domains and a clathrin-accessible neighborhood, each with a select set of discriminators, activators, and candidate arrestin-like adaptors. Ligand identity (either the pathogen-associated molecular pattern flg22 or the sugar glucose) determined the origin of AtRGS1 endocytosis. Different trafficking origins and trajectories led to different cellular outcomes. Thus, in this system, compartmentation with its associated signalosome architecture drives biased signaling.
Collapse
Affiliation(s)
- Justin M Watkins
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy J Ross-Elliott
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaoyi Shan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fei Lou
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bernd Dreyer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Jia
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jing Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celio Cabral Oliveira
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luguang Wu
- School of Agriculture and Food Science, University of Queensland, St. Lucia, Queensland Q4072, Australia
| | - Yuri Trusov
- School of Agriculture and Food Science, University of Queensland, St. Lucia, Queensland Q4072, Australia
| | - Timothy D Schwochert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick Krysan
- Department of Horticulture, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Chen Q, Zhuo Y, Sharma P, Perez I, Francis DJ, Chakravarthy S, Vishnivetskiy SA, Berndt S, Hanson SM, Zhan X, Brooks EK, Altenbach C, Hubbell WL, Klug CS, Iverson TM, Gurevich VV. An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins. J Mol Biol 2021; 433:166790. [PMID: 33387531 PMCID: PMC7870585 DOI: 10.1016/j.jmb.2020.166790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms "infinite" chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ivette Perez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Derek J Francis
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Susan M Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Evan K Brooks
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Wayne L Hubbell
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Böttke T, Ernicke S, Serfling R, Ihling C, Burda E, Gurevich VV, Sinz A, Coin I. Exploring GPCR-arrestin interfaces with genetically encoded crosslinkers. EMBO Rep 2020; 21:e50437. [PMID: 32929862 PMCID: PMC7645262 DOI: 10.15252/embr.202050437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
β‐arrestins (βarr1 and βarr2) are ubiquitous regulators of G protein‐coupled receptor (GPCR) signaling. Available data suggest that β‐arrestins dock to different receptors in different ways. However, the structural characterization of GPCR‐arrestin complexes is challenging and alternative approaches to study GPCR‐arrestin complexes are needed. Here, starting from the finger loop as a major site for the interaction of arrestins with GPCRs, we genetically incorporate non‐canonical amino acids for photo‐ and chemical crosslinking into βarr1 and βarr2 and explore binding topologies to GPCRs forming either stable or transient complexes with arrestins: the vasopressin receptor 2 (rhodopsin‐like), the corticotropin‐releasing factor receptor 1, and the parathyroid hormone receptor 1 (both secretin‐like). We show that each receptor leaves a unique footprint on arrestins, whereas the two β‐arrestins yield quite similar crosslinking patterns. Furthermore, we show that the method allows defining the orientation of arrestin with respect to the GPCR. Finally, we provide direct evidence for the formation of arrestin oligomers in the cell.
Collapse
Affiliation(s)
- Thore Böttke
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Stefan Ernicke
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Christian Ihling
- Institute of Pharmacy, Department of Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Edyta Burda
- Institute of Pharmacy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Andrea Sinz
- Institute of Pharmacy, Department of Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Zhuo Y, Gurevich VV, Vishnivetskiy SA, Klug CS, Marchese A. A non-GPCR-binding partner interacts with a novel surface on β-arrestin1 to mediate GPCR signaling. J Biol Chem 2020; 295:14111-14124. [PMID: 32753481 DOI: 10.1074/jbc.ra120.015074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
The multifaceted adaptor protein β-arr1 (β-arrestin1) promotes activation of focal adhesion kinase (FAK) by the chemokine receptor CXCR4, facilitating chemotaxis. This function of β-arr1 requires the assistance of the adaptor protein STAM1 (signal-transducing adaptor molecule 1) because disruption of the interaction between STAM1 and β-arr1 reduces CXCR4-mediated activation of FAK and chemotaxis. To begin to understand the mechanism by which β-arr1 together with STAM1 activates FAK, we used site-directed spin-labeling EPR spectroscopy-based studies coupled with bioluminescence resonance energy transfer-based cellular studies to show that STAM1 is recruited to activated β-arr1 by binding to a novel surface on β-arr1 at the base of the finger loop, at a site that is distinct from the receptor-binding site. Expression of a STAM1-deficient binding β-arr1 mutant that is still able to bind to CXCR4 significantly reduced CXCL12-induced activation of FAK but had no impact on ERK-1/2 activation. We provide evidence of a novel surface at the base of the finger loop that dictates non-GPCR interactions specifying β-arrestin-dependent signaling by a GPCR. This surface might represent a previously unidentified switch region that engages with effector molecules to drive β-arrestin signaling.
Collapse
Affiliation(s)
- Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Phosphorylated peptide of G protein-coupled receptor induces dimerization in activated arrestin. Sci Rep 2020; 10:10938. [PMID: 32616825 PMCID: PMC7331637 DOI: 10.1038/s41598-020-67944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Termination of the G-protein-coupled receptor signaling involves phosphorylation of its C-terminus and subsequent binding of the regulatory protein arrestin. In the visual system, arrestin-1 preferentially binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. Here, we have investigated binding of a synthetic phosphopeptide of bovine rhodopsin (residues 323-348) to the active variants of visual arrestin-1: splice variant p44, and the mutant R175E. Unlike the wild type arrestin-1, both these arrestins are monomeric in solution. Solution structure analysis using small angle X-ray scattering supported by size exclusion chromatography results reveal dimerization in both the arrestins in the presence of phosphopeptide. Our results are the first report, to our knowledge, on receptor-induced oligomerization in arrestin, suggesting possible roles for the cellular function of arrestin oligomers. Given high structural homology and the similarities in their activation mechanism, these results are expected to have implications for all arrestin isoforms.
Collapse
|
12
|
Cattoglio C, Pustova I, Darzacq X, Tjian R, Hansen AS. Assessing Self-interaction of Mammalian Nuclear Proteins by Co-immunoprecipitation. Bio Protoc 2020; 10:e3526. [PMID: 33654750 PMCID: PMC7842838 DOI: 10.21769/bioprotoc.3526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/25/2020] [Accepted: 01/13/2020] [Indexed: 11/02/2022] Open
Abstract
Protein-protein interactions constitute the molecular foundations of virtually all biological processes. Co-immunoprecipitation (CoIP) experiments are probably the most widely used method to probe both heterotypic and homotypic protein-protein interactions. Recent advances in super-resolution microscopy have revealed that several nuclear proteins such as transcription factors are spatially distributed into local high-concentration clusters in mammalian cells, suggesting that many nuclear proteins self-interact. These observations have further underscored the need for orthogonal biochemical approaches for testing if self-association occurs, and if so, what the mechanisms are. Here, we describe a CoIP protocol specifically optimized to test self-association of endogenously tagged nuclear proteins (self-CoIP), and to evaluate the role of nucleic acids in such self-interaction. This protocol has proven reliable and robust in our hands, and it can be used to test both homotypic and heterotypic (CoIP) protein-protein interactions.
Collapse
Affiliation(s)
- Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Iryna Pustova
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Anders S. Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
13
|
Gurevich VV, Gurevich EV. Targeting arrestin interactions with its partners for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:169-197. [PMID: 32312421 DOI: 10.1016/bs.apcsb.2019.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most vertebrates express four arrestin subtypes: two visual ones in photoreceptor cells and two non-visuals expressed ubiquitously. The latter two interact with hundreds of G protein-coupled receptors, certain receptors of other types, and numerous non-receptor partners. Arrestins have no enzymatic activity and work by interacting with other proteins, often assembling multi-protein signaling complexes. Arrestin binding to every partner affects cell signaling, including pathways regulating cell survival, proliferation, and death. Thus, targeting individual arrestin interactions has therapeutic potential. This requires precise identification of protein-protein interaction sites of both participants and the choice of the side of each interaction which would be most advantageous to target. The interfaces involved in each interaction can be disrupted by small molecule therapeutics, as well as by carefully selected peptides of the other partner that do not participate in the interactions that should not be targeted.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
14
|
Gurevich VV, Gurevich EV. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Cell Mol Life Sci 2019; 76:4413-4421. [PMID: 31422444 PMCID: PMC11105767 DOI: 10.1007/s00018-019-03272-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Mammalian arrestins are a family of four highly homologous relatively small ~ 45 kDa proteins with surprisingly diverse functions. The most striking feature is that each of the two non-visual subtypes can bind hundreds of diverse G protein-coupled receptors (GPCRs) and dozens of non-receptor partners. Through these interactions, arrestins regulate the G protein-dependent signaling by the desensitization mechanisms as well as control numerous signaling pathways in the G protein-dependent or independent manner via scaffolding. Some partners prefer receptor-bound arrestins, some bind better to the free arrestins in the cytoplasm, whereas several show no apparent preference for either conformation. Thus, arrestins are a perfect example of a multi-functional signaling regulator. The result of this multi-functionality is that reduction (by knockdown) or elimination (by knockout) of any of these two non-visual arrestins can affect so many pathways that the results are hard to interpret. The other difficulty is that the non-visual subtypes can in many cases compensate for each other, which explains relatively mild phenotypes of single knockouts, whereas double knockout is lethal in vivo, although cultured cells lacking both arrestins are viable. Thus, deciphering the role of arrestins in cell biology requires the identification of specific signaling function(s) of arrestins involved in a particular phenotype. This endeavor should be greatly assisted by identification of structural elements of the arrestin molecule critical for individual functions and by the creation of mutants where only one function is affected. Reintroduction of these biased mutants, or introduction of monofunctional stand-alone arrestin elements, which have been identified in some cases, into double arrestin-2/3 knockout cultured cells, is the most straightforward way to study arrestin functions. This is a laborious and technically challenging task, but the upside is that specific function of arrestins, their timing, subcellular specificity, and relations to one another could be investigated with precision.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
15
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
16
|
Mas L, Cieren A, Delphin C, Journet A, Aubry L. Calcium influx mediates the chemoattractant-induced translocation of the arrestin-related protein AdcC in Dictyostelium. J Cell Sci 2018; 131:jcs.207951. [PMID: 30209138 DOI: 10.1242/jcs.207951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Arrestins are key adaptor proteins that control the fate of cell-surface membrane proteins and modulate downstream signaling cascades. The Dictyostelium discoideum genome encodes six arrestin-related proteins, harboring additional modules besides the arrestin domain. Here, we studied AdcB and AdcC, two homologs that contain C2 and SAM domains. We showed that AdcC - in contrast to AdcB - responds to various stimuli (such as the chemoattractants cAMP and folate) known to induce an increase in cytosolic calcium by transiently translocating to the plasma membrane, and that calcium is a direct regulator of AdcC localization. This response requires the calcium-dependent membrane-targeting C2 domain and the double SAM domain involved in AdcC oligomerization, revealing a mode of membrane targeting and regulation unique among members of the arrestin clan. AdcB shares several biochemical properties with AdcC, including in vitro binding to anionic lipids in a calcium-dependent manner and auto-assembly as large homo-oligomers. AdcB can interact with AdcC; however, its intracellular localization is insensitive to calcium. Therefore, despite their high degree of homology and common characteristics, AdcB and AdcC are likely to fulfill distinct functions in amoebae.
Collapse
Affiliation(s)
- Lauriane Mas
- Université Grenoble Alpes, CEA, INSERM, BGE U1038, F-38000 Grenoble, France
| | - Adeline Cieren
- Université Grenoble Alpes, CEA, INSERM, BGE U1038, F-38000 Grenoble, France
| | - Christian Delphin
- Université Grenoble Alpes, INSERM U1216, GIN, F-38000 Grenoble, France
| | - Agnès Journet
- Université Grenoble Alpes, CEA, INSERM, BGE U1038, F-38000 Grenoble, France
| | - Laurence Aubry
- Université Grenoble Alpes, CEA, INSERM, BGE U1038, F-38000 Grenoble, France
| |
Collapse
|
17
|
Bandyopadhyay A, Van Eps N, Eger BT, Rauscher S, Yedidi RS, Moroni T, West GM, Robinson KA, Griffin PR, Mitchell J, Ernst OP. A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin. J Mol Biol 2018; 430:4102-4118. [PMID: 30120952 DOI: 10.1016/j.jmb.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022]
Abstract
Photoreceptors of the squid Loligo pealei contain a G-protein-coupled receptor (GPCR) signaling system that activates phospholipase C in response to light. Analogous to the mammalian visual system, signaling of the photoactivated GPCR rhodopsin is terminated by binding of squid arrestin (sArr). sArr forms a light-dependent, high-affinity complex with squid rhodopsin, which does not require prior receptor phosphorylation for interaction. This is at odds with classical mammalian GPCR desensitization where an agonist-bound phosphorylated receptor is needed to break stabilizing constraints within arrestins, the so-called "three-element interaction" and "polar core" network, before a stable receptor-arrestin complex can be established. Biophysical and mass spectrometric analysis of the squid rhodopsin-arrestin complex indicates that in contrast to mammalian arrestins, the sArr C-tail is not involved in a stable three-element interaction. We determined the crystal structure of C-terminally truncated sArr that adopts a basal conformation common to arrestins and is stabilized by a series of weak but novel polar core interactions. Unlike mammalian arrestin-1, deletion of the sArr C-tail does not influence kinetic properties of complex formation of sArr with the receptor. Hydrogen-deuterium exchange studies revealed the footprint of the light-activated rhodopsin on sArr. Furthermore, double electron-electron resonance spectroscopy experiments provide evidence that receptor-bound sArr adopts a conformation different from the one known for arrestin-1 and molecular dynamics simulations reveal the residues that account for the weak three-element interaction. Insights gleaned from studying this system add to our general understanding of GPCR-arrestin interaction.
Collapse
Affiliation(s)
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | - Ravikiran S Yedidi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tina Moroni
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Graham M West
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kelly Ann Robinson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
18
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
19
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
20
|
Chen Q, Perry NA, Vishnivetskiy SA, Berndt S, Gilbert NC, Zhuo Y, Singh PK, Tholen J, Ohi MD, Gurevich EV, Brautigam CA, Klug CS, Gurevich VV, Iverson TM. Structural basis of arrestin-3 activation and signaling. Nat Commun 2017; 8:1427. [PMID: 29127291 PMCID: PMC5681653 DOI: 10.1038/s41467-017-01218-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underlie coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling. While arrestins are mainly associated with GPCR signaling, arrestin-3 can signal independently of receptor interaction. Here the authors present the structure of arrestin-3 bound to inositol hexakisphosphate (IP6) and propose a model for arrestin-3 activation.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nathaniel C Gilbert
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.,Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Prashant K Singh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jonas Tholen
- University of Applied Sciences Emden/Leer, Emden, 26723, Germany
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA. .,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA. .,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
21
|
Tayou J, Wang Q, Jang GF, Pronin AN, Orlandi C, Martemyanov KA, Crabb JW, Slepak VZ. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein. J Biol Chem 2016; 291:9133-47. [PMID: 26895961 DOI: 10.1074/jbc.m115.694075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners.
Collapse
Affiliation(s)
- Junior Tayou
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Qiang Wang
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Alexey N Pronin
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Cesare Orlandi
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - John W Crabb
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Vladlen Z Slepak
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136,
| |
Collapse
|
22
|
Vishnivetskiy SA, Zhan X, Chen Q, Iverson TM, Gurevich VV. Arrestin expression in E. coli and purification. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:2.11.1-2.11.19. [PMID: 25446290 PMCID: PMC4260927 DOI: 10.1002/0471141755.ph0211s67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purified arrestin proteins are necessary for biochemical, biophysical, and crystallographic studies of these versatile regulators of cell signaling. Described herein is a basic protocol for arrestin expression in E. coli and purification of the tag-free wild-type and mutant arrestins. The method includes ammonium sulfate precipitation of arrestins from cell lysates, followed by heparin-Sepharose chromatography. Depending on the arrestin type and/or mutations, the next step is Q-Sepharose or SP-Sepharose chromatography. In many cases the nonbinding column is used as a filter to bind contaminants without retaining arrestin. In some cases both chromatographic steps must be performed sequentially to achieve high purity. Purified arrestins can be concentrated up to 10 mg/ml, remain fully functional, and withstand several cycles of freezing and thawing, provided that overall salt concentration is maintained at or above physiological levels.
Collapse
Affiliation(s)
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
23
|
Gurevich VV, Gurevich EV. Overview of different mechanisms of arrestin-mediated signaling. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:2.10.1-2.10.9. [PMID: 25446289 PMCID: PMC4260930 DOI: 10.1002/0471141755.ph0210s67] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arrestins are characterized by their ability to selectively bind active, phosphorylated GPCRs and suppress (arrest) receptor coupling to G proteins. Nonvisual arrestins are also signaling proteins in their own right, activating a variety of cellular pathways. Arrestins are highly flexible proteins that can assume many distinct conformations. In their receptor-bound conformation, arrestins have higher affinity for a subset of partners. This explains how receptor activation regulates certain branches of arrestin-dependent signaling via arrestin recruitment to GPCRs. However, free arrestins are also active molecular entities that act in other pathways and localize signaling proteins to particular subcellular compartments, such as cytoskeleton. These functions are regulated by the enhancement or reduction of arrestin affinity for target proteins by other binding partners and by proteolytic cleavage. Recent findings suggest that the two visual arrestins, arrestin-1 and arrestin-4, which are expressed in photoreceptor cells, do not regulate signaling solely via binding to photopigments but also interact with a variety of nonreceptor partners, critically affecting the health and survival of photoreceptor cells. Detailed in this overview are GPCR-dependent and independent modes of arrestin-mediated regulation of cellular signaling pathways.
Collapse
|