1
|
Fernández-Quintero ML, Fischer ALM, Kokot J, Waibl F, Seidler CA, Liedl KR. The influence of antibody humanization on shark variable domain (VNAR) binding site ensembles. Front Immunol 2022; 13:953917. [PMID: 36177031 PMCID: PMC9514858 DOI: 10.3389/fimmu.2022.953917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
|
2
|
Cheong WS, Leow CY, Abdul Majeed AB, Leow CH. Diagnostic and therapeutic potential of shark variable new antigen receptor (VNAR) single domain antibody. Int J Biol Macromol 2020; 147:369-375. [PMID: 31926922 PMCID: PMC7112388 DOI: 10.1016/j.ijbiomac.2020.01.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 12/29/2022]
Abstract
Conventional monoclonal antibodies (mAbs) have been widely used in research and diagnostic applications due to their high affinity and specificity. However, multiple limitations, such as large size, complex structure and sensitivity to extreme ambient temperature potentially weaken the performance of mAbs in certain applications. To address this problem, the exploration of new antigen binders is extensively required in relation to improve the quality of current diagnostic platforms. In recent years, a new immunoglobulin-based protein, namely variable domain of new antigen receptor (VNAR) was discovered in sharks. Unlike conventional mAbs, several advantages of VNARs, include small size, better thermostability and peculiar paratope structure have attracted interest of researchers to further explore on it. This article aims to first present an overview of the shark VNARs and outline the characteristics as an outstanding new reagent for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wei Shien Cheong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| |
Collapse
|
3
|
Born WK, Huang Y, Zeng W, Torres RM, O'Brien RL. A Special Connection between γδ T Cells and Natural Antibodies? Arch Immunol Ther Exp (Warsz) 2016; 64:455-462. [PMID: 27235134 PMCID: PMC5507014 DOI: 10.1007/s00005-016-0403-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Natural antibodies (NAbs) play an important role in early host defense, autophagy and tissue remodeling, and in immune regulation. They arise spontaneously (without specific immunization), and are already present at birth. NAbs are produced by B1 B cells, MZ B cells and other B cell types. They include all major Ig subclasses but IgM antibodies are prevalent, especially early in development. NAbs may be poly-specific, recognize particular auto-antigens, or detect neo-determinants such as those exposed during apoptosis or generated by oxidation. NAbs do not require cognate T cell help but depend on soluble mediators produced by T cells. Our recent studies suggest that γδ T cells may have a special relationship with NAbs, and play a prominent role in their regulation, in part through the fine-tuning of IL-4 levels. The spontaneously activated state of these cells likely enables their cytokine production and other functions in the absence of external stimulation. Ontogenetically, the earlier arising γδ T cells are better positioned than αβ T cells to shape the developing repertoire of NAbs. Intriguingly, ligand specificities of NAbs and γδ T cell receptors appear to be overlapping, perhaps allowing γδ cognate help for certain NAb specificities. Via NAbs, γδ T cells could exert a regulatory influence on numerous processes in health and disease.
Collapse
Affiliation(s)
- Willi K Born
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Str., Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, USA.
| | - Yafei Huang
- Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Str., Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, USA
| |
Collapse
|
4
|
Szirovicza L, López P, Kopena R, Benkő M, Martín J, Pénzes JJ. Random Sampling of Squamate Reptiles in Spanish Natural Reserves Reveals the Presence of Novel Adenoviruses in Lacertids (Family Lacertidae) and Worm Lizards (Amphisbaenia). PLoS One 2016; 11:e0159016. [PMID: 27399970 PMCID: PMC4939969 DOI: 10.1371/journal.pone.0159016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
Here, we report the results of a large-scale PCR survey on the prevalence and diversity of adenoviruses (AdVs) in samples collected randomly from free-living reptiles. On the territories of the Guadarrama Mountains National Park in Central Spain and of the Chafarinas Islands in North Africa, cloacal swabs were taken from 318 specimens of eight native species representing five squamate reptilian families. The healthy-looking animals had been captured temporarily for physiological and ethological examinations, after which they were released. We found 22 AdV-positive samples in representatives of three species, all from Central Spain. Sequence analysis of the PCR products revealed the existence of three hitherto unknown AdVs in 11 Carpetane rock lizards (Iberolacerta cyreni), nine Iberian worm lizards (Blanus cinereus), and two Iberian green lizards (Lacerta schreiberi), respectively. Phylogeny inference showed every novel putative virus to be a member of the genus Atadenovirus. This is the very first description of the occurrence of AdVs in amphisbaenian and lacertid hosts. Unlike all squamate atadenoviruses examined previously, two of the novel putative AdVs had A+T rich DNA, a feature generally deemed to mirror previous host switch events. Our results shed new light on the diversity and evolution of atadenoviruses.
Collapse
Affiliation(s)
- Leonóra Szirovicza
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 21 Hungária krt., Budapest, H-1143, Hungary
| | - Pilar López
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C.S.I.C, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Renáta Kopena
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C.S.I.C, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 21 Hungária krt., Budapest, H-1143, Hungary
| | - José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C.S.I.C, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Judit J. Pénzes
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 21 Hungária krt., Budapest, H-1143, Hungary
| |
Collapse
|
5
|
Wang Y, Xu S, Su Y, Ye B, Hua Z. Molecular characterization and expression analysis of complement component C9 gene in the whitespotted bambooshark, Chiloscyllium plagiosum. FISH & SHELLFISH IMMUNOLOGY 2013; 35:599-606. [PMID: 23684808 DOI: 10.1016/j.fsi.2013.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Complement system is known as highly sophisticated immune defense mechanism for antigen recognition as well as effector functions. Activation of the terminal pathway of the complement system leads to the assembly of terminal complement complexes (C5b-9), which induces the characteristic complement-mediated cytolysis. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. In this article, a full-length cDNA of C9 (CpC9) is identified from cartilaginous species, the whitespotted bambooshark, Chiloscyllium plagiosum by RACE. The CpC9 cDNA is 2263 bp in length, encoding a protein of 603 amino acids, which shares 42% and 43% identity with human and Xenopus C9 respectively. Through sequence alignment and comparative analysis, the CpC9 protein was found well conserved, with the typical modular architecture in TCCs and nearly unanimous cysteine composition from fish to mammal. Phylogenetic analysis places it in a clade with C9 orthologs in higher vertebrate and as a sister taxa to the Xenopus. Expression analysis revealed that CpC9 is constitutively highly expressed in shark liver, with much less or even undetectable expression in other tissues; demonstrating liver is the primary tissue for C9synthesis. To sum up, the structural conservation and distinctive phylogenetics might indicate the potentially vital role of CpC9 in shark immune response, though it remains to be confirmed by further study.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, No. 22 Hankou Rd, Gulou District, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
6
|
Vas J, Grönwall C, Silverman GJ. Fundamental roles of the innate-like repertoire of natural antibodies in immune homeostasis. Front Immunol 2013; 4:4. [PMID: 23386848 PMCID: PMC3564042 DOI: 10.3389/fimmu.2013.00004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 01/03/2013] [Indexed: 11/13/2022] Open
Abstract
The composition of the early immune repertoire is biased with prominent expression of spontaneously arising B cell clones that produce IgM with recurrent and often autoreactive binding specificities. Amongst these naturally arising antibodies (NAbs) are IgM antibodies that specifically recognized amaged and senescent cells, often via oxidation-associated neo-determinants. These NAbs are present from birth and can be further boosted by apoptotic cell challenge. Recent studies have shown that IgM NAb to apoptotic cells can enhance phagocytic clearance, as well as suppress proinflammatory responses induced via Toll-like receptors, and block pathogenic IgG-immune complex (IC)-mediated inflammatory responses. Specific antibody effector functions appear to be involved, as these anti-inflammatory properties are dependent on IgM-mediated recruitment of the early recognition factors of complement. Clinical surveys have suggested that anti-apoptotic cell (AC) IgM NAbs may modulate disease activity in some patients with autoimmune disease. In mechanistic studies, anti-AC NAbs were shown to act in dendritic cells by inhibition of the mitogen-activated protein kinase (MAPK) pathway, a primary signal transduction pathway that controls inflammatory responses. This immunomodulatory pathway has an absolute requirement for the induction of MAPK phosphatase-1. Taken together, recent studies have elucidated the novel properties of a class of protective NAbs, which may directly blunt inflammatory responses through a primitive pathway for regulation of the innate immune system.
Collapse
Affiliation(s)
- Jaya Vas
- Laboratory of B Cell Immunobiology, Department of Medicine, New York University School of Medicine New York, NY, USA
| | | | | |
Collapse
|
7
|
Sandmeier FC, Tracy CR, Dupré S, Hunter K. A trade-off between natural and acquired antibody production in a reptile: implications for long-term resistance to disease. Biol Open 2012; 1:1078-82. [PMID: 23213387 PMCID: PMC3507188 DOI: 10.1242/bio.20122527] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/30/2012] [Indexed: 01/29/2023] Open
Abstract
Vertebrate immune systems are understood to be complex and dynamic, with trade-offs among different physiological components (e.g., innate and adaptive immunity) within individuals and among taxonomic lineages. Desert tortoises (Gopherus agassizii) immunised with ovalbumin (OVA) showed a clear trade-off between levels of natural antibodies (NAbs; innate immune function) and the production of acquired antibodies (adaptive immune function). Once initiated, acquired antibody responses included a long-term elevation in antibodies persisting for more than one year. The occurrence of either (a) high levels of NAbs or (b) long-term elevations of acquired antibodies in individual tortoises suggests that long-term humoral resistance to pathogens may be especially important in this species, as well as in other vertebrates with slow metabolic rates, concomitantly slow primary adaptive immune responses, and long life-spans.
Collapse
Affiliation(s)
- Franziska C Sandmeier
- Ecology, Evolution, and Conservation Biology Program, Department of Biology, University of Nevada , Reno, NV 89557 , USA
| | | | | | | |
Collapse
|
8
|
Magnadottir B, Gudmundsdottir S, Gudmundsdottir BK, Helgason S. Natural antibodies of cod (Gadus morhua L.): Specificity, activity and affinity. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:309-16. [DOI: 10.1016/j.cbpb.2009.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/02/2009] [Accepted: 07/09/2009] [Indexed: 02/01/2023]
|
9
|
Adelman MK, Schluter SF, Marchalonis JJ. The natural antibody repertoire of sharks and humans recognizes the potential universe of antigens. Protein J 2004; 23:103-18. [PMID: 15106876 DOI: 10.1023/b:jopc.0000020077.73751.76] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In ancestral sharks, a rapid emergence in the evolution of the immune system occurred, giving jawed-vertebrates the necessary components for the combinatorial immune response (CIR). To compare the natural antibody (NAb) repertoires of the most divergent vertebrates with the capacity to produce antibodies, we isolated NAbs to the same set of antigens by affinity chromatography from two species of Carcharhine sharks and from human polyclonal IgG and IgM antibody preparations. The activities of the affinity-purified anti-T-cell receptor (anti-TCR) NAbs were compared with those of monoclonal anti-TCR NAbs that were generated from a systemic lupus erythematosus patient. We report that sharks and humans, representing the evolutionary extremes of vertebrate species sharing the CIR, have NAbs to human TCRs, Igs, the human senescent cell antigen, and to numerous retroviral antigens, indicating that essential features of the combinatorial repertoire and the capacity to recognize the potential universe of antigens is shared among all jawed-vertebrates.
Collapse
Affiliation(s)
- Miranda K Adelman
- Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
10
|
Sunyer JO, Boshra H, Lorenzo G, Parra D, Freedman B, Bosch N. Evolution of complement as an effector system in innate and adaptive immunity. Immunol Res 2004; 27:549-64. [PMID: 12857998 DOI: 10.1385/ir:27:2-3:549] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For a long time, the complement system in mammals has been regarded as a biological system that plays an essential role in innate immunity. More recently, it has been recognized that the complement system contributes heavily to the generation and development of an acquired immune response. In fact, this ancient mechanism of defense has evolved from a primitive mechanism of innate immune recognition in invertebrate species to that of an effector system that bridges the innate with the adaptive immune response in vertebrate species. When and how did complement evolve into a shared effector system between innate and adaptive immunity? To answer this question, our group is interested in understanding the role of complement in innate and adaptive immune responses in an evolutionary relevant species: the teleost fish. The attractiveness of this species as an animal model is based on two important facts. First, teleost fish are one of the oldest animal species to have developed an adaptive immune response. Second, the complement system of teleost fish offers a unique feature, which is the structural and functional diversity of its main effector protein, C3, the third component of the complement system.
Collapse
Affiliation(s)
- J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|