1
|
Weiser C, Petkova MV, Rengstl B, Döring C, von Laer D, Hartmann S, Küppers R, Hansmann ML, Newrzela S. Ectopic expression of transcription factor BATF3 induces B-cell lymphomas in a murine B-cell transplantation model. Oncotarget 2018; 9:15942-15951. [PMID: 29662618 PMCID: PMC5882309 DOI: 10.18632/oncotarget.24639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 02/24/2018] [Indexed: 12/03/2022] Open
Abstract
The mechanisms involved in malignant transformation of mature B and T lymphocytes are still poorly understood. In a previous study, we compared gene expression profiles of the tumor cells of Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) to their normal cellular counterparts and found the basic leucine zipper protein ATF-like 3 (BATF3) to be significantly upregulated in the tumor cells of both entities. To assess the oncogenic potential of BATF3 in lymphomagenesis and to dissect the molecular interactions of BATF3 in lymphoma cells, we retrovirally transduced murine mature T and B cells with a BATF3-encoding viral vector and transplanted each population into Rag1-deficient recipients. Intriguingly, BATF3-expressing B lymphocytes readily induced B-cell lymphomas after characteristic latencies, whereas T-cell transplanted animals remained healthy throughout the observation time. Further analyses revealed a germinal center B-cell-like phenotype of most BATF3-initiated lymphomas. In a multiple myeloma cell line, BATF3 inhibited BLIMP1 expression, potentially illuminating an oncogenic action of BATF3 in B-cell lymphomagenesis. In conclusion, BATF3 overexpression induces malignant transformation of mature B cells and might serve as a potential target in B-cell lymphoma treatment.
Collapse
Affiliation(s)
- Christian Weiser
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Mina V Petkova
- Experimental and Clinical Research Center (ECRC), Medical Faculty of the Charité and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Benjamin Rengstl
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Dorothee von Laer
- Division of Virology, Department of Hygiene, Microbiology, Social Medicine Medical University IBK, Innsbruck, Austria
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Newrzela
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Phadnis-Moghe AS, Crawford RB, Kaminski NE. Suppression of human B cell activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin involves altered regulation of B cell lymphoma-6. Toxicol Sci 2015; 144:39-50. [PMID: 25543051 PMCID: PMC4349138 DOI: 10.1093/toxsci/kfu257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces marked suppression of the primary humoral immune response in virtually every animal species evaluated thus far. In addition, epidemiological studies performed in areas of dioxin contamination have identified an association between TCDD exposure and an increased incidence of non-Hodgkin's lymphoma (NHL). Recent studies using an in vitro CD40 ligand model of human B cell differentiation have shown that TCDD impairs both B cell activation and differentiation. The present study extends these findings by identifying B cell lymphoma-6 [BCL-6] as a putative cellular target for deregulation by TCDD, which may contribute to suppression of B cell function as well as NHL. BCL-6 is a multifunctional transcriptional repressor frequently mutated in NHLs and known to regulate critical events of B cell activation and differentiation. In the presence of TCDD, BCL-6 protein levels were elevated and concurrently the same population of cells with high BCL-6 levels showed decreased CD80 and CD69 expression indicative of impaired cellular activation. The elevated BCL-6 levels resulted in a concomitant increase in BCL-6 DNA binding activity at its cognate binding site within an enhancer region for CD80. Furthermore, a small molecule inhibitor of BCL-6 activity reversed TCDD-mediated suppression of CD80 expression in human B cells. In the presence of a low-affinity ligand of the aryl hydrocarbon receptor (AHR), suppression of B cell activation and altered BCL-6 regulation were not observed. These results provide new mechanistic insights into the role of BCL-6 in the suppression of human B cell activation by TCDD.
Collapse
Affiliation(s)
- Ashwini S Phadnis-Moghe
- *Genetics Program, Center for Integrative Toxicology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824 *Genetics Program, Center for Integrative Toxicology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824
| | - Robert B Crawford
- *Genetics Program, Center for Integrative Toxicology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824 *Genetics Program, Center for Integrative Toxicology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824
| | - Norbert E Kaminski
- *Genetics Program, Center for Integrative Toxicology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824 *Genetics Program, Center for Integrative Toxicology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
3
|
Dunleavy K, Grant C, Wilson WH. Using biologic predictive factors to direct therapy of diffuse large B-cell lymphoma. Ther Adv Hematol 2013; 4:43-57. [PMID: 23610613 DOI: 10.1177/2040620712464508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
While diffuse large B-cell lymphoma (DLBCL) was once considered to be a single disease entity, recent biological insights have demonstrated that it can be divided up into at least three molecular subtypes. Gene expression profiling has revealed that DLBCL consists of a germinal center B-cell like subtype (GCB), an activated B-cell like subtype (ABC) and a primary mediastinal B-cell lymphoma subtype (PMBL). These three entities arise from different stages of B-cell differentiation and are characterized by distinct mechanisms of oncogenic activation. In GCB DLBCL, the BCL6 transcription factor may play an important role in tumor survival and treatment resistance and strategies that target this are under investigation. ABC DLBCL is characterized by high expression of target genes of the nuclear factor kappa B (NF-κB)/Rel family of transcription factors and strategies that target NF-κB are in clinical trials. PMBL is a distinct clinicopathologic entity that shares many molecular features with nodular sclerosis Hodgkin lymphoma (HL) and may benefit from dose intensity approaches and inhibition of the Janus kinases. Other biologic predictive factors such as MYC and BCL2 may be overexpressed in both the GCB and ABC subtypes and strategies that target these complexes are also being tested.
Collapse
Affiliation(s)
- Kieron Dunleavy
- Metabolism Branch, National Cancer Institute, Building 10, Room 4N-115, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
4
|
Sawant DV, Wu H, Kaplan MH, Dent AL. The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway. Mol Immunol 2013; 54:435-42. [PMID: 23416424 DOI: 10.1016/j.molimm.2013.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/16/2012] [Accepted: 01/12/2013] [Indexed: 12/19/2022]
Abstract
The transcriptional repressor Bcl6 is a critical regulator of T helper cell fate, and inhibits Th2-type inflammation. We have found that microRNA-21 (miR-21) is a novel target gene for Bcl6 in Treg cells. Bcl6 represses and Stat3 activates miR-21 transcription through a Stat3 binding element in the promoter, indicating opposing regulation of miR-21 by the two transcription factors via the same DNA site. Ectopic expression of miR-21 promoted Th2 differentiation in non-polarized T cells. The pro-Th2 activity of miR-21 was associated with increased Gata3 expression and decreased expression of the miR-21 target gene Sprouty1. Increased miR-21 promoted Th2 and Treg gene expression in wild-type Tregs. MiR-21 could thus help promote the Th2 bias of Bcl6-deficient conventional T cells and Treg cells. MiR21 expression is increased in Th2-type inflammation, and our results define miR-21 as a critical target of Bcl6, thus providing a new link between Bcl6 and Th2 inflammation. Finally, our results reveal a novel T cell autonomous role for miR-21 in promoting Th2 differentiation.
Collapse
Affiliation(s)
- Deepali V Sawant
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Various molecules participate in different phases of allergic reactions. This means that many genes are encoding molecules related to allergic reactions, such as cytokines, chemokines, and their receptors as effect or molecules. The transcriptional repressor BCL6 has emerged as a multifunctional regulator of lymphocyte differentiation and immune responses. BCL6-deficient (BCL6) mice display T helper type 2 (Th2)-type inflammation, which is caused by abnormality of both lymphoid cells and nonlymphoid cells. Thus, BCL6 apparently contributes to negative regulation of various central molecules such as cytokines, in particular Th2 cytokines, CC chemokines, and immunoglobulin E in allergic diseases. Therefore, BCL6 may be a molecular target for Th2-type allergic diseases.
Collapse
|
6
|
Barros P, Lam EWF, Jordan P, Matos P. Rac1 signalling modulates a STAT5/BCL-6 transcriptional switch on cell-cycle-associated target gene promoters. Nucleic Acids Res 2012; 40:7776-87. [PMID: 22723377 PMCID: PMC3439931 DOI: 10.1093/nar/gks571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression depends on binding of transcriptional regulators to gene promoters, a process controlled by signalling pathways. The transcriptional repressor B-cell lymphoma (BCL)-6 downregulates genes involved in cell-cycle progression and becomes inactivated following phosphorylation by the Rac1 GTPase-activated protein kinase PAK1. Interestingly, the DNA motifs recognized by BCL-6 and signal transducers and activators of transcription 5 (STAT5) are similar. Because STAT5 stimulation in epithelial cells can also be triggered by Rac1 signalling, we asked whether both factors have opposing roles in transcriptional regulation and whether Rac1 signalling may coordinate a transcription factor switch. We used chromatin immunoprecipitation to show that active Rac1 promotes release of the repressor BCL-6 while increasing binding of STAT5A to a BCL-6-regulated reporter gene. We further show in colorectal cell lines that the endogenous activation status of the Rac1/PAK1 pathway correlated with the phosphorylation status of BCL-6 and STAT5A. Three cellular genes (cyclin D2, p15INK4B, small ubiquitin-like modifier 1) were identified to be inversely regulated by BCL-6 and STAT5A and responded to Rac1 signalling with increased expression and corresponding changes in promoter occupancy. Together, our data show that Rac1 signalling controls a group of target genes that are repressed by BCL-6 and activated by STAT5A, providing novel insights into the modulation of gene transcription by GTPase signalling.
Collapse
Affiliation(s)
- Patrícia Barros
- Department of Genetics, National Health Institute Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | | | | | | |
Collapse
|
7
|
Abstract
Over the past 10 years, significant progress has been made in understanding HIV-associated lymphomas and improving the prognosis of these diseases. With the advent of combination antiretroviral therapy and the development of novel therapeutic strategies, most patients with HIV-associated lymphomas are cured. The outcome for the majority of patients with HIV-associated diffuse large B-cell lymphoma and Burkitt lymphoma in particular, is excellent, with recent studies supporting the role of rituximab in these diseases. Indeed, in the combination antiretroviral therapy era, the curability of many patients with HIV-associated lymphoma is similar to their HIV-negative counterparts. New treatment frontiers need to focus on improving the outcome for patients with advanced immune suppression and for those with adverse tumor biology, such as the activated B-cell type of diffuse large B-cell lymphoma and the virally driven lymphomas. Future clinical trials need to investigate novel targeted agents alone and in combination with chemotherapy.
Collapse
|
8
|
Abstract
Molecular diagnostics for lymphoid malignancies has undergone substantial technical evolution during the past two decades, moving from labor-intensive investigations of individual abnormalities to high-throughput genome-wide analyses. Accordingly, its role has expanded to new fields such as monitoring of minimal residual disease and, more recently, outcome prediction in specific lymphoma subtypes. One novel technology that has had a major impact on the molecular diagnosis of lymphoid malignancies is gene expression profiling by DNA microarrays. It has provided robust and distinct molecular signatures for the most common types of lymphomas and has identified novel subsets that would not be identified by conventional methods. It also has led to the construction of molecularly defined prognostic models in these lymphoma subtypes and to a better understanding of the molecular mechanisms of lymphomagenesis. This development will undoubtedly transform diagnostic medicine in the near future and lead us into an era when tumor diagnosis will incorporate the information of critical molecular abnormalities that will have significant impact on disease outcome in each individual tumor sample. Future treatments are likely to be founded on effective, individualized, and mechanism-based therapies with the least toxicity.
Collapse
|
9
|
Matsuda R, Hori T, Kitamura H, Takeuchi K, Fukagawa T, Harata M. Identification and characterization of the two isoforms of the vertebrate H2A.Z histone variant. Nucleic Acids Res 2010; 38:4263-73. [PMID: 20299344 PMCID: PMC2910051 DOI: 10.1093/nar/gkq171] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Histone variants play important roles in the epigenetic regulation of genome function. The histone variant H2A.Z is evolutionarily conserved from yeast to vertebrates, and it has been reported to have multiple effects upon gene expression and insulation, and chromosome segregation. Recently two genes encoding H2A.Z were identified in the vertebrate genome. However, it is not yet clear whether the proteins transcribed from these genes are functionally distinct. To address this issue, we knocked out each gene individually in chicken DT40 cells. We found that two distinct proteins, H2A.Z-1 and H2A.Z-2, were produced from these genes, and that these proteins could be separated on a long SDS–PAGE gel. The two isoforms were deposited to a similar extent by the SRCAP chromatin-remodeling complex, suggesting redundancy to their function. However, cells lacking either one of the two isoforms exhibited distinct alterations in cell growth and gene expression, suggesting that the two isoforms have differential effects upon nucleosome stability and chromatin structure. These findings provide insight into the molecular basis of the multiple functions of the H2A.Z gene products.
Collapse
Affiliation(s)
- Ryo Matsuda
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Rac1 is a member of the Rho family of small GTPases that not only regulates signaling pathways involved in cell adhesion and migration but also regulates gene transcription. Here we show that the transcriptional repressor BCL-6 is regulated by Rac1 signaling. Transfection of active Rac1 mutants into colorectal DLD-1 cells led to increased expression of a BCL-6-controlled luciferase reporter construct. Conversely, inhibition of endogenous Rac1 activation by the Rac1 inhibitor NSC23766 decreased reporter activity. Moreover, BCL-6 lost its typical localization to nuclear dots upon activation of Rac1 and became predominantly soluble in a non-chromatin-bound cell fraction. Rac1 signaling also regulated the expression of endogenous BCL-6-regulated genes, including the p50 precursor NF-kappaB1/p105 and the cell adhesion molecule CD44. Interestingly, these effects were not stimulated by the alternative splice variant Rac1b. The mechanism of BCL-6 inhibition does not involve formation of a stable Rac1/BCL-6 complex and is independent of Rac-induced reactive oxygen species production or Jun NH(2)-terminal kinase activation. We show that PAK1 mediates inhibition downstream of Rac and can directly phosphorylate BCL-6. Together, these data provide substantial evidence that Rac1 signaling inhibits the transcriptional repressor BCL-6 in colorectal cells and reveal a novel pathway that links Rac1 signaling to the regulation of gene transcription.
Collapse
|
11
|
Hofmann WP, Fernandez B, Herrmann E, Welsch C, Mihm U, Kronenberger B, Feldmann G, Spengler U, Zeuzem S, Sarrazin C. Somatic hypermutation and mRNA expression levels of the BCL-6 gene in patients with hepatitis C virus-associated lymphoproliferative diseases. J Viral Hepat 2007; 14:484-91. [PMID: 17576390 DOI: 10.1111/j.1365-2893.2006.00833.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C virus (HCV) infection leads to mixed cryoglobulinaemia (MC) and B-cell non-Hodgkin lymphoma (B-NHL). Aberrant somatic hypermutation and deregulation of the oncogene BCL-6 is associated with lymphomagenesis. Recently, HCV was shown to induce BCL-6 mutations in vitro. The BCL-6 gene (area B) was cloned and sequenced from peripheral blood mononuclear cells (PBMC) of 21 chronically HCV-infected patients with or without MC and B-NHL, and six healthy controls. Mutational frequencies, genetic complexity and diversity were calculated. BCL-6 mRNA from PBMC was quantified by real-time polymerase chain reaction, and additional sustained virologic responders to antiviral therapy and HBV patients served as controls. The overall/recurrent mutational frequencies tended to be lower in MC and B-NHL patients when compared with controls (P = 0.15 and 0.06, respectively). Genetic complexity was significantly lower in MC and B-NHL patients (P = 0.025). BCL-6 mRNA concentration was decreased in all HCV patients when compared with healthy controls, sustained virologic responder and HBV patients (P = 0.005). Although HCV can induce BCL-6 mutations in vitro, lower mutational frequencies and decreased BCL-6 mRNA expression in vivo suggest no major role of aberrant somatic hypermutation in HCV-associated MC and B-NHL.
Collapse
Affiliation(s)
- W P Hofmann
- Klinik für Innere Medizin II, Kirrbergerstrasse, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shaffer AL, Wright G, Yang L, Powell J, Ngo V, Lamy L, Lam LT, Davis RE, Staudt LM. A library of gene expression signatures to illuminate normal and pathological lymphoid biology. Immunol Rev 2007; 210:67-85. [PMID: 16623765 DOI: 10.1111/j.0105-2896.2006.00373.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genomics has provided a lever to pry open lymphoid cells and examine their regulatory biology. The large body of available gene expression data has also allowed us to define the of coordinately expressed genes, termed gene expression signatures, which characterize the states of cellular physiology that reflect cellular differentiation, activation of signaling pathways, and the action of transcription factors. Gene expression signatures that reflect the action of individual transcription factors can be defined by perturbing transcription factor function using RNA interference (RNAi), small-molecule inhibition, and dominant-negative approaches. We have used this methodology to define gene expression signatures of various transcription factors controlling B-cell differentiation and activation, including BCL-6, B lymphocyte-induced maturation protein-1 (Blimp-1), X-box binding protein-1 (XBP1), nuclear factor-kappaB (NF-kappaB), and c-myc. We have also curated a wide variety of gene expression signatures from the literature and assembled these into a signature database. Statistical methods can define whether any signature in this database is differentially expressed in independent biological samples, an approach we have used to gain mechanistic insights into the origin and clinical behavior of B-cell lymphomas. We also discuss the use of genomic-scale RNAi libraries to identify genes and pathways that may serve as therapeutic targets in B-cell malignancies.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Broxmeyer HE, Sehra S, Cooper S, Toney LM, Kusam S, Aloor JJ, Marchal CC, Dinauer MC, Dent AL. Aberrant regulation of hematopoiesis by T cells in BAZF-deficient mice. Mol Cell Biol 2007; 27:5275-85. [PMID: 17526724 PMCID: PMC1952080 DOI: 10.1128/mcb.01967-05] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BAZF (BCL-6b) protein is highly similar to the BCL-6 transcriptional repressor. While BCL-6 has been characterized extensively, relatively little is known about the normal function of BAZF. In order to understand the physiological role of BAZF, we created BAZF-deficient mice. Unlike BCL-6-deficient mice, BAZF-deficient mice are healthy and normal in size. However, BAZF-deficient mice have a hematopoietic progenitor phenotype that is almost identical to that of BCL-6-deficient mice. Compared to wild-type mice, both BAZF-deficient and BCL-6-deficient mice have greatly reduced numbers of cycling hematopoietic progenitor cells (HPC) in the BM and greatly increased numbers of cycling HPC in the spleen. In contrast to HPC from wild-type mice, HPC from BAZF-deficient and BCL-6-deficient mice are resistant to chemokine-induced myelosuppression and do not show a synergistic growth response to granulocyte-macrophage colony-stimulating factor plus stem cell factor. Depletion of CD8 T cells in BAZF-deficient mice reverses several of the hematopoietic defects in these mice. Since both BAZF- and BCL-6-deficient mice have defects in CD8 T-cell differentiation, we hypothesize that both BCL-6 and BAZF regulate HPC homeostasis by an indirect pathway involving CD8 T cells.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology and The Walther Oncology Center, 950 W. Walnut St. R2 302, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wamstad JA, Bardwell VJ. Characterization of Bcor expression in mouse development. Gene Expr Patterns 2007; 7:550-7. [PMID: 17344103 PMCID: PMC2002546 DOI: 10.1016/j.modgep.2007.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/04/2007] [Accepted: 01/24/2007] [Indexed: 11/24/2022]
Abstract
Mutation of the gene encoding the transcriptional corepressor BCOR results in the X-linked disorder Oculofaciocardiodental syndrome (OFCD or MCOPS2). Female OFCD patients suffer from severe ocular, craniofacial, cardiac, and digital developmental defects and males do not survive through gestation. BCOR can mediate transcriptional repression by the oncoprotein BCL6 and has the ability to reduce transcriptional activation by AF9, a known mixed-lineage leukemia (MLL) fusion partner. The essential role of BCOR in development and its ability to modulate activity of known oncogenic proteins prompted us to determine the expression profile of Bcor during mouse development. Identification of independently transcribed exons in the 5' untranslated region of Bcor suggests that three independent promoters control the expression of Bcor in mice. Although Bcor is widely expressed in adult mouse tissues, analysis of known spliced isoforms in the coding region of Bcor reveals differential isoform usage. Whole mount in situ hybridization of mouse embryos shows that Bcor is strongly expressed in the extraembryonic tissue during gastrulation and expression significantly increases throughout the embryo after embryonic turning. During organogenesis and fetal stages Bcor is differentially expressed in multiple tissue lineages, with a notable presence in the developing nervous system. Strikingly, we observed that Bcor expression in the eye, brain, neural tube, and branchial arches correlates with tissues affected in OFCD patients.
Collapse
Affiliation(s)
- Joseph A Wamstad
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
15
|
Dey P. Role of ancillary techniques in diagnosing and subclassifying non-Hodgkin's lymphomas on fine needle aspiration cytology. Cytopathology 2006; 17:275-87. [PMID: 16961657 DOI: 10.1111/j.1365-2303.2006.00331.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-Hodgkin's lymphomas (NHL) are tumours of the lymphoid cells. During the process of development of lymphoid cells, neoplasia may evolve at any point. Neoplastic cells usually carry the imprint of cell of origin at the stage of origin. Various types of NHL may have similar morphology with wide variation in origin, immunophenotype and other biological features. Different ancillary laboratory techniques may help to overcome the limitations of morphology in this aspect. The commonly used ancillary techniques in lymphomas are immunocytochemistry (IC), flow cytometry, Southern blot (SB) technique, polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH). In addition, laser scanning cytometry (LSC) and DNA microarray technologies are in the research phase. Various laboratory techniques are used for immunophenotyping, demonstration of monoclonality, identification of chromosomal translocation, assessment of cell kinetics and expression of mRNA in the tumour cells. Flow cytometry helps in rapid immunophenotying of NHL and it has an added advantage over IC in recognizing the co-expression of CD markers. Fine needle aspiration cytology (FNAC) combined with flow immunophenotyping may help us to diagnose and subclassify certain NHLs, such as follicular lymphoma and mantle cell lymphoma, which were previously recognized as pure morphological entities. Loss of morphology is one of the important limitations of flow cytometry. LSC can overcome this limitation by studying morphology along with the immunophenotyping pattern of individual cells. Chromosomal changes in NHL can be identified by SB, PCR and FISH. Molecular diagnosis of NHL helps in diagnosis, subclassification, prognostic assessment and even in planning of therapy. DNA microarray is a relatively newer and promising technology. It gives information about the expression of several thousands of genes in a tumour in a single experiment. In the near future, FNAC combined with ancillary techniques may play a major role in diagnosis, subclassification and management of lymphomas.
Collapse
Affiliation(s)
- P Dey
- Cytology Department, Kuwait Cancer Control Center, Shuwaikh, Kuwait.
| |
Collapse
|
16
|
Sandlund JT, Kastan MB, Kennedy W, Behm F, Entrekin E, Pui CH, Kalwinsky DT, Raimondi SC. A subtle t(3;8) results in plausible juxtaposition of MYC and BCL6 in a child with Burkitt lymphoma/leukemia and ataxia-telangiectasia. ACTA ACUST UNITED AC 2006; 168:69-72. [PMID: 16772123 DOI: 10.1016/j.cancergencyto.2005.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/22/2005] [Indexed: 11/17/2022]
Abstract
Translocations involving 3q27 that affect the BCL6 gene are common and specific chromosomal abnormalities in B-cell precursor non-Hodgkin lymphoma (mainly diffuse large-cell and follicular lymphoma), but they have not been reported in Burkitt lymphoma. Here, we describe a case in which a BCL6 rearrangement and additional complex cytogenetic abnormalities occurred in a child with Burkitt lymphoma/leukemia and ataxia-telangiectasia. Although cytogenetic analysis of the bone marrow revealed clonal abnormalities of chromosome arms 8q and 14p and other subclonal abnormalities, the t(8;14) or its variants typically associated with Burkitt lymphoma were not observed. Fluorescence in situ hybridization with locus-specific probes and multicolor spectral karyotyping demonstrated a complex pattern of chromosomal rearrangements leading to a subtle t(3;8)(q27;q24.1) that rearranged BCL6 and placed it adjacent to MYC. We speculate that this genetic lesion occurred as a result of chromosomal instability due to the underlying disease.
Collapse
Affiliation(s)
- John T Sandlund
- Department of Hematology/Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kis LL, Takahara M, Nagy N, Klein G, Klein E. IL-10 can induce the expression of EBV-encoded latent membrane protein-1 (LMP-1) in the absence of EBNA-2 in B lymphocytes and in Burkitt lymphoma- and NK lymphoma-derived cell lines. Blood 2006; 107:2928-35. [PMID: 16332968 DOI: 10.1182/blood-2005-06-2569] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEBV-positive nasopharyngeal carcinoma and Hodgkin, T, and natural killer (NK) lymphomas express EBNA-1 and the latent membrane proteins (LMP1-2; type II latency). In contrast to type III EBV-transformed lymphoblastoid cell lines, in these cells the LMPs are expressed in the absence of EBNA-2. We have previously reported that exposure to CD40 ligand and IL-4 could induce LMP-1 in an in vitro EBV-infected Hodgkin lymphoma-derived cell line, which expressed only EBNA-1. We show now that both human and EBV-encoded IL-10 can induce LMP-1 in the absence of EBNA-2 in the Daudi, P3HR1, and other BL cell lines. Interestingly, induction of LMP-1 was not accompanied by the downregulation of BCL-6. IL-10 could also induce LMP-1 in the conditional lymphoblastoid cell line ER/EB2-5 where EBNA-2 was downregulated in the absence of estrogen. Moreover, IL-10 could induce the expression of LMP-1 in tonsillar B cells infected with the nontransforming, EBNA-2-deficient EBV strain P3HR1 and enhance LMP-1 expression in 2 EBV-positive NK lymphoma lines. The demonstration that IL-10 can induce the expression of LMP-1 in an EBNA-2-independent manner shows that the major transforming EBV gene LMP-1 can be induced by extracellular signals in lymphoid cells, and IL-10 might contribute to the establishment of type II EBV latency.
Collapse
Affiliation(s)
- Lorand L Kis
- Microbiology and Tumor Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Melnick AM, Adelson K, Licht JD. The theoretical basis of transcriptional therapy of cancer: can it be put into practice? J Clin Oncol 2005; 23:3957-70. [PMID: 15867201 DOI: 10.1200/jco.2005.14.498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant gene silencing is a frequent event in cancer and plays a critical role in the molecular pathogenesis of malignant transformation. The two major mechanisms of silencing in cancer include transcriptional repression by mutated or aberrantly expressed transcription factors, and aberrant epigenetic silencing by hypermethylation of tumor suppressor or DNA repair-related genes. Both of these mechanisms require the activities of multiprotein chromatin remodeling and modifying machines, several of which may be mutated in cancer. The end result is genetic reprogramming of cells to express combinations of genes that confer the neoplastic phenotype. Recent discoveries in transcriptional biochemistry and gene regulation indicate that therapeutic agents can be engineered to specifically target these mechanisms. We provide a framework for the clinical or translational scientist to consider how such drugs might be developed and what their impact might be on restoring cells to normal genetic programming.
Collapse
Affiliation(s)
- Ari M Melnick
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
19
|
Bartholdy B, Matthias P. Transcriptional control of B cell development and function. Gene 2004; 327:1-23. [PMID: 14960357 DOI: 10.1016/j.gene.2003.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/14/2003] [Accepted: 11/07/2003] [Indexed: 12/17/2022]
Abstract
The generation, development, maturation and selection of mammalian B lymphocytes is a complex process that is initiated in the embryo and proceeds throughout life to provide the organism an essential part of the immune system it requires to cope with pathogens. Transcriptional regulation of this highly complex series of events is a major control mechanism, although control is also exerted on all other layers, including splicing, translation and protein stability. This review summarizes our current understanding of transcriptional control of the well-studied murine B cell development, which bears strong similarity to its human counterpart. Animal and cell models with loss of function (gene "knock outs") or gain of function (often transgenes) have significantly contributed to our knowledge about the role of specific transcription factors during B lymphopoiesis. In particular, a large number of different transcriptional regulators have been linked to distinct stages of the life of B lymphocytes such as: differentiation in the bone marrow, migration to the peripheral organs and antigen-induced activation.
Collapse
Affiliation(s)
- Boris Bartholdy
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, PO Box 2543, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
20
|
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003. [PMID: 14638851 DOI: 10.1172/jci200320039] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malignant cells often display defects in autophagy, an evolutionarily conserved pathway for degrading long-lived proteins and cytoplasmic organelles. However, as yet, there is no genetic evidence for a role of autophagy genes in tumor suppression. The beclin 1 autophagy gene is monoallelically deleted in 40-75% of cases of human sporadic breast, ovarian, and prostate cancer. Therefore, we used a targeted mutant mouse model to test the hypothesis that monoallelic deletion of beclin 1 promotes tumorigenesis. Here we show that heterozygous disruption of beclin 1 increases the frequency of spontaneous malignancies and accelerates the development of hepatitis B virus-induced premalignant lesions. Molecular analyses of tumors in beclin 1 heterozygous mice show that the remaining wild-type allele is neither mutated nor silenced. Furthermore, beclin 1 heterozygous disruption results in increased cellular proliferation and reduced autophagy in vivo. These findings demonstrate that beclin 1 is a haplo-insufficient tumor-suppressor gene and provide genetic evidence that autophagy is a novel mechanism of cell-growth control and tumor suppression. Thus, mutation of beclin 1 or other autophagy genes may contribute to the pathogenesis of human cancers.
Collapse
Affiliation(s)
- Xueping Qu
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112:1809-20. [PMID: 14638851 PMCID: PMC297002 DOI: 10.1172/jci20039] [Citation(s) in RCA: 1822] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cells often display defects in autophagy, an evolutionarily conserved pathway for degrading long-lived proteins and cytoplasmic organelles. However, as yet, there is no genetic evidence for a role of autophagy genes in tumor suppression. The beclin 1 autophagy gene is monoallelically deleted in 40-75% of cases of human sporadic breast, ovarian, and prostate cancer. Therefore, we used a targeted mutant mouse model to test the hypothesis that monoallelic deletion of beclin 1 promotes tumorigenesis. Here we show that heterozygous disruption of beclin 1 increases the frequency of spontaneous malignancies and accelerates the development of hepatitis B virus-induced premalignant lesions. Molecular analyses of tumors in beclin 1 heterozygous mice show that the remaining wild-type allele is neither mutated nor silenced. Furthermore, beclin 1 heterozygous disruption results in increased cellular proliferation and reduced autophagy in vivo. These findings demonstrate that beclin 1 is a haplo-insufficient tumor-suppressor gene and provide genetic evidence that autophagy is a novel mechanism of cell-growth control and tumor suppression. Thus, mutation of beclin 1 or other autophagy genes may contribute to the pathogenesis of human cancers.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis Regulatory Proteins
- Autophagy
- Beclin-1
- Blotting, Southern
- Cell Division
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA Primers/genetics
- Female
- Genotype
- Hepatitis B virus/metabolism
- Heterozygote
- Male
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Microscopy, Fluorescence
- Models, Genetic
- Mutation
- Neoplasms/genetics
- Proteins/genetics
- Recombination, Genetic
- Thymus Gland/metabolism
- Time Factors
Collapse
Affiliation(s)
- Xueping Qu
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The non-Hodgkin's lymphomas encompass a wide spectrum of hematologic neoplasms that exhibit different clinical and biological features. Lymphomas classically have been initially assessed based on their cytologic and histologic features. Morphology alone is often inadequate as similar appearing neoplasms may be immunophenotypically and molecularly heterogeneous. Molecular diagnostic methods can provide an additional level of testing that not only helps refine diagnoses but can provide prognostic information. New methods are being refined that may provide information to establish precise diagnostic profiles, provide targets for therapy and provide more sensitive methods for monitoring the success of treatment. Molecular methods will be increasingly utilized and eventually required as the accepted method of diagnosis and for monitoring the disease. Understanding of the molecular abnormality and the pathogenesis of the neoplasm hopefully will lead to therapeutic intervention aimed at the specific molecular defect or its product. The molecular pathology of the non-Hodgkin's lymphomas is discussed.
Collapse
Affiliation(s)
- J R Krause
- Department of Pathology, Tulane Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
23
|
Abstract
The BCL6 gene is often structurally altered and probably 'misregulated' in two different types of human B-cell non-Hodgkin lymphomas (BNHL) thought to arise from germinal centre B cells. BCL6 encodes a BTB/POZ and zinc finger protein whose biochemical properties support a role as a DNA-binding transcriptional repressor and disclose, in part, the underlying mechanisms. In contrast, the study of the 'oncogenic' structural alterations of BCL6 in BNHL and of its cellular functions gives rise to much more heterogeneous data with no obvious unifying picture so that how and even whether BCL6 contributes to lymphomagenesis remains unclear. This review will summarize the current knowledge about the 'oncogenic' alterations and cellular functions of BCL6 and, based on some results, will propose the following hypotheses: (1) In various systems, including in memory T cells and also in germinal centre B cells and possibly in certain postmitotic cells, BCL6 may act by stabilizing a particular stage of differentiation. (2) Both its ambivalent effects on cell survival and the heterogeneous consequences of its alterations in BNHL suggest that BCL6 can be oncogenic not only upon overexpression or persistent expression, as often proposed, but also, similar to some of its relatives, upon 'accidental' downregulation.
Collapse
|
24
|
Abstract
BCL-6 is an important regulator of the immune system. It is required for GC formation and T cell dependent antibody responses. Mice deficient in BCL-6 fail to form GC and mount reduced levels of T cell-dependent antibody responses. BCL-6 (-/-) mice, in addition, develop a massive inflammatory response in many organs characterized by eosinophilic infiltration and hyper-IgE production, a typical Th2 hyperimmune response. This suggests a negative role of BCL-6 in Th2 pathway. The BCL-6 gene encodes a POZ/zinc finger transcription repressor highly expressed in GC B cells, but not in pre-GC B cells or in more differentiated memory or plasma cells. By functioning as a potent transcriptional repressor of various target genes, BCL-6 modulates IL-4, BCR, and CD40L signals for normal B cell development. In B cell lymphomas, structural alterations of the BCL-6 promoter region, including chromosome translocation and somatic hypermutation, represent the most frequent genetic lesions associated with non-Hodgkin lymphoma, especially of diffuse large cell lymphoma, a malignancy often derived from germinal centre (GC) B cells. This suggests that deregulated expression of BCL-6 may contribute to lymphomagenesis.
Collapse
Affiliation(s)
- Huifeng Niu
- Institute of Cancer Genetics, University of Columbia, New York, NY 10032, USA
| |
Collapse
|
25
|
Harris NL, Stein H, Coupland SE, Hummel M, Favera RD, Pasqualucci L, Chan WC. New approaches to lymphoma diagnosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2002:194-220. [PMID: 11722985 DOI: 10.1182/asheducation-2001.1.194] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent years have brought an explosion of new diagnostic tools to the pathology of lymphomas, which have permitted more precise disease definition and recognition of factors that can predict prognosis and response to treatment. These new methods exploit both the biological features of normal lymphocytes as they progress through differentiation pathways and the genetic abnormalities that characterize malignant transformation. These features can be assessed in individual tumors with techniques that detect proteins (immunophenotyping), messenger RNA (in-situ hybridization), or changes in DNA [Southern blot, PCR, fluorescence in-situ hybridization (FISH), and gene sequencing]. Recently, the novel technology of "gene chips" or DNA microarrays has greatly enhanced the efficiency of analyzing expression of many genes simultaneously at the RNA level. Understanding the relationship of lymphoid neoplasms to their normal counterparts and the genetic events that lead to malignant transformation in lymphoid cells are essential for physicians caring for patients with lymphoma, since these are the basis of modern classification, diagnosis, and prognosis prediction. Although microarray technology is not ready for prime time in the daily diagnosis of lymphoma, practitioners should understand its potential and limitations. The vast majority of lymphoid neoplasms worldwide are derived from B lymphocytes at various stages of differentiation. The review by Harald Stein and colleagues present the events of normal B-cell differentiation that are relevant to understanding the biology of B-cell neoplasia. These include antigen receptor [immunoglobulin (Ig)] gene rearrangement, somatic mutations of the Ig variable region genes, receptor editing, Ig heavy chain class switch, and differential expression of a variety of adhesion molecules and receptor proteins as the cell progresses from a precursor B cell to a mature plasma cell. Most lymphoid neoplasms have genetic abnormalities, many of which appear to occur during the gene rearrangements and mutations that characterize normal B-cell differentiation. Dr. Riccardo Dalla Favera reviews the mechanisms of these translocations and other abnormalities, and their consequences for lymphocyte biology. The association of specific abnormalities with individual lymphomas is reviewed. Dr. Wing C. Chan reviews the technology and applications of DNA microarray analysis, its promises and pitfalls, and what it has already told us about the biology of lymphomas. Finally, what does this all mean? The applications, both current and future, of these discoveries to the diagnosis and treatment of patients with lymphoma are discussed by Dr. Nancy Lee Harris.
Collapse
Affiliation(s)
- N L Harris
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Chen W, Palanisamy N, Schmidt H, Teruya-Feldstein J, Jhanwar SC, Zelenetz AD, Houldsworth J, Chaganti RS. Deregulation of FCGR2B expression by 1q21 rearrangements in follicular lymphomas. Oncogene 2001; 20:7686-93. [PMID: 11753646 DOI: 10.1038/sj.onc.1204989] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Revised: 08/22/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022]
Abstract
We report here the molecular cloning and characterization of a t(1;14)(q21;q32) in a follicular lymphoma (FL) with an unusual BCL2 aberration. Fluorescence in situ hybridization (FISH) and Southern blot analysis of tumor cells identified the translocation breakpoint within the 5' switch region of IGHG (Sgamma). We cloned the chimeric breakpoint region approximately 1.5 kbp downstream from the HindIII site of 5'Sgamma2 on chromosome 14q32 and identified a 360-bp novel segment with homology to the CpG island clone 11h8. Two BAC clones containing this sequence were isolated and mapped to 1q21 by FISH. BAC 342/P13 contained sequences homologous to Fcgamma receptors 2A, 3A, 2B, 3B, and a heat shock protein gene HSP70B. The translocation brought the Sgamma2 region of a productive IGH allele 20 approximately 30 kbp upstream of FCGR2B. As a result of the translocation, the b2 isoform of FCGR2B was overexpressed in the tumor. Screening of a panel of 76 B-cell lymphomas with 1q21-23 cytogenetic aberrations by Southern blot analysis using breakpoint probes identified an additional FL with a t(14;18)(q32;q21) and a breakpoint in the FCGR2B region. These results suggest that FCGR2B may be deregulated by 1q21 aberration in BCL2 rearranged FLs and possibly play a role in their progression.
Collapse
MESH Headings
- Adult
- Antigens, CD/genetics
- Blotting, Southern/methods
- Chromosome Aberrations
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 14
- Cloning, Molecular
- Female
- Gene Expression Regulation
- Gene Rearrangement
- Humans
- In Situ Hybridization, Fluorescence/methods
- Lymphoma, Follicular/genetics
- Lymphoma, Non-Hodgkin/genetics
- Mutagenesis, Insertional
- Proto-Oncogene Proteins c-bcl-2/genetics
- Receptors, IgG/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- W Chen
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen W, Itoyama T, Chaganti RS. Splicing factor SRP20 is a novel partner of BCL6 in a t(3;6)(q27;p21) translocation in transformed follicular lymphoma. Genes Chromosomes Cancer 2001; 32:281-4. [PMID: 11579468 DOI: 10.1002/gcc.1191] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The BCL6 gene mapped at chromosome band 3q27 encodes a zinc-finger transcription factor and is frequently rearranged and deregulated in B-cell non-Hodgkin's lymphoma (NHL) by promiscuous chromosomal translocations which involve diverse genes. We identified a novel t(3;6)(q27;p21) in a follicular lymphoma (FL) with histologic evidence of transformation and, by cloning the translocation junction, determined that the SRP20 gene was the partner. In this translocation, the 5' regulatory region of the BCL6 was substituted by a putative regulatory region of SRP20. Previously, we hypothesized that substitution of BCL6 promoter by those of the partner genes that were constitutively expressed throughout B-cell development led to persistent and inappropriate expression of BCL6. We examined the expression pattern of SRP20 during B-cell development by Northern blot analysis of a panel of B-cell lines representing various stages of B-cell development and noted that SRP20 mRNA was expressed throughout B-cell development. The SRP20 gene plays an important role in regulation of pre-mRNA splicing, and is expressed specifically in lymphoid tissues. This study provides the first evidence of SRP20 gene rearrangement in human hematopoietic malignancies.
Collapse
Affiliation(s)
- W Chen
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Migliazza A, Cayanis E, Bosch-Albareda F, Komatsu H, Martinotti S, Toniato E, Kalachikov S, Bonaldo MF, Jelene P, Ye X, Rzhetsky A, Qu X, Chien M, Inghirami G, Gaidano G, Vitolo U, Saglio G, Resegotti L, Zhang P, Soares MB, Russo J, Fischer SG, Edelman IS, Efstratiadis A, Dalla-Favera R. Molecular pathogenesis of B-cell chronic lymphocytic leukemia: analysis of 13q14 chromosomal deletions. Curr Top Microbiol Immunol 2001; 252:275-84. [PMID: 11125485 DOI: 10.1007/978-3-642-57284-5_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
MESH Headings
- Alleles
- Antigens, Neoplasm/analysis
- CD5 Antigens/analysis
- Cell Line, Transformed
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 13/ultrastructure
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mutation
- Neoplasm Proteins/genetics
- Proto-Oncogenes
Collapse
Affiliation(s)
- A Migliazza
- Institute of Cancer Genetics, Columbia University, New York; USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The rapid increase in the incidence of the B cell non-Hodgkin's lymphomas (NHL) and improved understanding of the mechanisms involved in their development renders timely a review of the theoretical and practical aspects of molecular abnormalities in B cell NHL.In Section I, Dr. Macintyre addresses the practical aspects of the use of molecular techniques for the diagnosis and therapeutic management of patients with B cell NHL. While detection of clonal Ig rearrangements is widely used to distinguish reactive from malignant lymphoproliferative disorders, molecular informativity is variable. The relative roles of cytogenetic, molecular and immunological techniques in the detection of genetic abnormalities and their protein products varies with the clinical situation. Consequently, the role of molecular analysis relative to morphological classification is evolving. Integrated diagnostic services are best equipped to cope with these changes. Recent evidence that large scale gene expression profiling allows improved prognostic stratification of diffuse large cell lymphoma suggests that the choice of diagnostic techniques will continue to change significantly and rapidly.In Section II, Dr. Willerford reviews current understanding of the mechanisms involved in immunoglobulin (Ig) gene rearrangement during B lymphoid development and the way in which these processes may contribute to Ig-locus chromosome translocations in lymphoma. Recent insights into the regulation of Ig gene diversification indicate that genetic plasticity in B lymphocytes is much greater than previously suspected. Physiological genomic instability, which may include isotype switching, recombination revision and somatic mutation, occurs in germinal centers in the context of immune responses and may explain longstanding clinical observations that link immunity and lymphoid neoplasia. Data from murine models and human disorders predisposing to NHL have been used to illustrate these issues.In Section III, Dr. Morris reviews the characteristics and consequences of deregulation of novel “proto-oncogenes” involved in B cell NHL, including PAX5 (chromosome 9p 13), BCL8 (15q11-q13), BCL9, MUC1, FcγRIIB and other 1q21-q22 genes and BCL10 (1p22). The AP12-MLT/MALT1 [t(11;18)(q21;q21)] fusion transcript is also described.
Collapse
|
30
|
Abstract
AbstractThe rapid increase in the incidence of the B cell non-Hodgkin's lymphomas (NHL) and improved understanding of the mechanisms involved in their development renders timely a review of the theoretical and practical aspects of molecular abnormalities in B cell NHL.In Section I, Dr. Macintyre addresses the practical aspects of the use of molecular techniques for the diagnosis and therapeutic management of patients with B cell NHL. While detection of clonal Ig rearrangements is widely used to distinguish reactive from malignant lymphoproliferative disorders, molecular informativity is variable. The relative roles of cytogenetic, molecular and immunological techniques in the detection of genetic abnormalities and their protein products varies with the clinical situation. Consequently, the role of molecular analysis relative to morphological classification is evolving. Integrated diagnostic services are best equipped to cope with these changes. Recent evidence that large scale gene expression profiling allows improved prognostic stratification of diffuse large cell lymphoma suggests that the choice of diagnostic techniques will continue to change significantly and rapidly.In Section II, Dr. Willerford reviews current understanding of the mechanisms involved in immunoglobulin (Ig) gene rearrangement during B lymphoid development and the way in which these processes may contribute to Ig-locus chromosome translocations in lymphoma. Recent insights into the regulation of Ig gene diversification indicate that genetic plasticity in B lymphocytes is much greater than previously suspected. Physiological genomic instability, which may include isotype switching, recombination revision and somatic mutation, occurs in germinal centers in the context of immune responses and may explain longstanding clinical observations that link immunity and lymphoid neoplasia. Data from murine models and human disorders predisposing to NHL have been used to illustrate these issues.In Section III, Dr. Morris reviews the characteristics and consequences of deregulation of novel “proto-oncogenes” involved in B cell NHL, including PAX5 (chromosome 9p 13), BCL8 (15q11-q13), BCL9, MUC1, FcγRIIB and other 1q21-q22 genes and BCL10 (1p22). The AP12-MLT/MALT1 [t(11;18)(q21;q21)] fusion transcript is also described.
Collapse
|