1
|
Jurado S, Illa O, Álvarez-Larena A, Pannecouque C, Busqué F, Alibés R. Conformationally Locked Carbocyclic Nucleosides Built on a 4'-Hydroxymethyl-3'-hydroxybicyclo[4.1.0]heptane Template. Stereoselective Synthesis and Antiviral Activity. J Org Chem 2022; 87:15166-15177. [PMID: 36300902 PMCID: PMC9680032 DOI: 10.1021/acs.joc.2c01661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two new families of enantiomerically pure carbocyclic nucleoside analogues based on a cyclohexane moiety with five chiral centers and a fused cyclopropyl ring have been synthesized. A highly regio- and stereoselective synthetic approach for the modular construction of the functionalized bicyclo[4.1.0]heptyl azide intermediate 6 has been established. Key steps to achieve this asymmetric synthesis involved highly diastereoselective allylic oxidation and hydroboration reactions. The first family of compounds, 1a,b and 2, presents different natural nucleobases, whereas the second one 3a-e bears functionalized 1,2,3-triazoles. These derivatives have been tested as antiviral agents, and compound 3d has shown to display moderate activity against coxsackie B4 virus.
Collapse
Affiliation(s)
- Sergio Jurado
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Ona Illa
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Angel Álvarez-Larena
- Servei
de Difracció de Raigs X, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Christophe Pannecouque
- Department
of Microbiology and Immunology, Laboratory of Virology and Chemotherapy,
Rega Institute for Medical Research, KU
Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Félix Busqué
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain,
| | - Ramon Alibés
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain,
| |
Collapse
|
2
|
Alex J, Landa E, Trivedi A, Parsons II LM, Shabo N. Extraordinary Creatine Phosphokinase Levels in Coxsackie B Necrotizing Myopathy Complicated by Rhabdomyolysis. Cureus 2022; 14:e25201. [PMID: 35747057 PMCID: PMC9211034 DOI: 10.7759/cureus.25201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Coxsackie B infections can have varying clinical presentations. Necrotizing myopathy and rhabdomyolysis with remarkably high creatine phosphokinase levels is a rare complication associated with high morbidity and mortality. A 28-year-old male presented with complaints of weakness, body aches, and decreased urine output. Initial lab work showed a creatine phosphokinase level estimated at 5,366,100 U/l. Initial Coxsackie B4 titers were at 1:160. Muscle biopsy of the right calf revealed necrotizing myopathy consistent with viral myopathy. This case highlights Coxsackie B4 as a potential pathogen that can cause extensive muscle necrosis producing extreme creatine phosphokinase levels leading to rhabdomyolysis. Taking a comprehensive history is essential to identify viral prodromal symptoms to guide broader serological testing for uncommon viral species.
Collapse
|
3
|
Kim SH, Shin HH, Kim JH, Park JH, Jeon ES, Lim BK. Protein Kinase B2 (PKB2/AKT2) Is Essential for Host Protection in CVB3-Induced Acute Viral Myocarditis. Int J Mol Sci 2022; 23:ijms23031489. [PMID: 35163412 PMCID: PMC8836114 DOI: 10.3390/ijms23031489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Protein kinase B2 (AKT2) is involved in various cardiomyocyte signaling processes, including those important for survival and metabolism. Coxsackievirus B3 (CVB3) is one of the most common pathogens that cause myocarditis in humans. The role of AKT2 in CVB3 infection is not yet well understood. We used a cardiac-specific AKT2 knockout (KO) mouse to determine the role of AKT2 in CVB3-mediated myocarditis. CVB3 was injected intraperitoneally into wild-type (WT) and KO mice. The mice’s survival rate was recorded: survival in KO mice was significantly decreased compared with WT mice (WT vs. KO: 73.3 vs. 27.1%). Myocardial damage and inflammation were significantly increased in the hearts of KO mice compared with those of WT mice. Moreover, from surface ECG, AKT2 KO mice showed a prolonged atria and ventricle conduction time (PR interval, WT vs. KO: 47.27 ± 1.17 vs. 64.79 ± 7.17 ms). AKT2 deletion induced severe myocarditis and cardiac dysfunction due to CVB3 infection. According to real-time PCR, the mRNA level of IL-1, IL-6, and TNF-α decreased significantly in KO mice compared with WT mice on Days 5 after infection. In addition, innate immune response antiviral effectors, Type I interferon (interferon-α and β), and p62, were dramatically suppressed in the heart of KO mice. In particular, the adult cardiac myocytes isolated from the heart showed high induction of TLR4 protein in KO mice in comparison with WT. AKT2 deletion suppressed the activation of Type I interferon and p62 transcription in CVB3 infection. In cardiac myocytes, AKT2 is a key signaling molecule for the heart from damage through the activation of innate immunity during acute myocarditis.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Korea; (S.-H.K.); (H.-H.S.); (J.-H.K.)
| | - Ha-Hyeon Shin
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Korea; (S.-H.K.); (H.-H.S.); (J.-H.K.)
| | - Jin-Ho Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Korea; (S.-H.K.); (H.-H.S.); (J.-H.K.)
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea;
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine 50 Irwon dong, Gangnam-gu, Seoul 06351, Korea;
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Korea; (S.-H.K.); (H.-H.S.); (J.-H.K.)
- Correspondence: author: ; Tel.: +82-43-830-8605; Fax: +82-43-830-8579
| |
Collapse
|
4
|
Antiviral Peptides Targeting the Helicase Activity of Enterovirus Nonstructural Protein 2C. J Virol 2021; 95:JVI.02324-20. [PMID: 33789997 DOI: 10.1128/jvi.02324-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses belong to the genus Enterovirus of the family Picornaviridae and include four human enterovirus groups (EV-A to -D): the epidemic of enteroviruses such as human enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) is a threat to global public health. Enteroviral protein 2C is the most conserved nonstructural protein among all enteroviruses and possesses RNA helicase activity that plays pivotal roles during enteroviral life cycles, which makes 2C an attractive target for developing antienterovirus drugs. In this study, we designed a peptide, named 2CL, based on the structure of EV-A71 2C. This peptide effectively impaired the oligomerization of EV-A71 2C protein and inhibited the RNA helicase activities of 2C proteins encoded by EV-A71 and CVA16, both of which belong to EV-A, and showed potent antiviral efficacy against EV-A71 and CVA16 in cells. Moreover, the 2CL treatment elicited a strong in vivo protective efficacy against lethal EV-A71 challenge. In addition, the antiviral strategy of targeting the 2C helicase activity can be applied to inhibit the replication of EV-B. Either 2CL or B-2CL, the peptide redesigned based on the 2CL-corresponding sequence of EV-Bs, could exert effective antiviral activity against two important EV-Bs, coxsackievirus B3 and echovirus 11. Together, our findings demonstrated that targeting the helicase activity of 2C with a rationally designed peptide is an efficient antiviral strategy against enteroviruses, and 2CL and B-2CL show promising clinical potential to be further developed as broad-spectrum antienterovirus drugs.IMPORTANCE Enteroviruses are a large group of positive-sense single-stranded RNA viruses and include numerous human pathogens, such as enterovirus A71 (EV-A71), coxsackieviruses, and echoviruses. However, no approved EV antiviral drugs are available. Enteroviral 2C is the most conserved nonstructural protein among all enteroviruses and contains the RNA helicase activity critical for the viral life cycle. Herein, according to the structure of EV-A71 2C, we designed a peptide that effectively inhibited the RNA helicase activities of EV-A71- and coxsackievirus A16 (CVA16)-encoded 2C proteins. Moreover, this peptide exerted potent antiviral effects against EV-A71 and CVA16 in cells and elicited therapeutic efficacy against lethal EV-A71 challenge in vivo Furthermore, we demonstrate that the strategy of targeting the 2C helicase activity can be used for other relevant enteroviruses, including coxsackievirus B3 and echovirus 11. In summary, our findings provide compelling evidence that the designed peptides targeting the helicase activity of 2C could be broad-spectrum antivirals for enteroviruses.
Collapse
|
5
|
Musharrafieh R, Kitamura N, Hu Y, Wang J. Development of broad-spectrum enterovirus antivirals based on quinoline scaffold. Bioorg Chem 2020; 101:103981. [PMID: 32559580 DOI: 10.1016/j.bioorg.2020.103981] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/09/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Non-polio enteroviruses such as enterovirus A71 (EV-A71), EV-D68, and coxsackievirus B3 (CVB3) are significant human pathogens with disease manifestations ranging from mild flu-like symptoms to more severe encephalitis, myocarditis, acute flaccid paralysis/myelitis, and even death. There is currently no effective antivirals to prevent or treat non-polio enterovirus infection. In this study, we report our progress in developing potent and broad-spectrum antivirals against these non-polio enteroviruses. Starting from our previously developed lead compounds that had potent antiviral activity against EV-D68, we synthesized 43 analogs and profiled their broad-spectrum antiviral activity against additional EV-D68, EV-A71, and CVB3 viruses. Promising candidates were also selected for mouse microsomal stability test to prioritize lead compounds for future in vivo mouse model studies. Collectively, this multi-parameter optimization process revealed a promising lead compound 6aw that showed single-digit to submicromolar EC50 values against two EV-D68 strains (US/KY and US/MO), two EV-A71 strains (Tainan and US/AK), and one CVB3 strain, with a high selectivity index. Encouragingly, 6aw was stable in mouse microsomes with a half-life of 114.7 min. Overall, 6aw represents one of the most potent broad-spectrum antiviral against non-polio enteroviruses, rendering it a promising lead candidate for non-polio enteroviruses with translational potential.
Collapse
Affiliation(s)
- Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, United States
| | - Naoya Kitamura
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
6
|
Inhibition of RNA Helicase Activity Prevents Coxsackievirus B3-Induced Myocarditis in Human iPS Cardiomyocytes. Int J Mol Sci 2020; 21:ijms21093041. [PMID: 32344926 PMCID: PMC7246926 DOI: 10.3390/ijms21093041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
AIMS Coxsackievirus B3 (CVB3) is known to be an important cause of myocarditis and dilated cardiomyopathy. Enterovirus-2C (E2C) is a viral RNA helicase. It inhibits host protein synthesis. Based on these facts, we hypothesize that the inhibition of 2C may suppress virus replication and prevent enterovirus-mediated cardiomyopathy. METHODS AND RESULTS We generated a chemically modified enterovirus-2C inhibitor (E2CI). From the in vitro assay, E2CI was showed strong antiviral effects. For in vivo testing, mice were treated with E2CI intraperitoneally injected daily for three consecutive days at a dose of 8mg/kg per day, after CVB3 post-infection (p.i) (CVB3 + E2CI, n = 33). For the infected controls (CVB3 only, n = 35), mice were injected with PBS (phosphate buffered saline) in a DBA/2 strain to establish chronic myocarditis. The four-week survival rate of E2CI-treated mice was significantly higher than that of controls (92% vs. 71%; p < 0.05). Virus titers and myocardial damage were significantly reduced in the E2CI treated group. In addition, echocardiography indicated that E2CI administration dramatically maintained mouse heart function compared to control at day 28 p.i chronic stage (LVIDD, 3.1 ± 0.08 vs. 3.9 ± 0.09, p < 0.01; LVDS, 2.0 ± 0.07 vs. 2.5 ± 0.07, p < 0.001; FS, 34.8 ± 1.6% vs. 28.5 ± 1.5%; EF, 67. 9 ± 2.9% vs. 54.7 ± 4.7%, p < 0.05; CVB3 + E2CI, n = 6 vs. CVB3, n = 4). Moreover, E2CI is effectively worked in human iPS (induced pluripotent stem cell) derived cardiomyocytes. CONCLUSION Enterovirus-2C inhibitor (E2CI) was significantly reduced viral replication, chronic myocardium damage, and CVB3-induced mortality in DBA/2 mice. These results suggested that E2CI is a novel therapeutic agent for the treatment of enterovirus-mediated diseases.
Collapse
|
7
|
Hanson PJ, Hossain AR, Qiu Y, Zhang HM, Zhao G, Li C, Lin V, Sulaimon S, Vlok M, Fung G, Chen VH, Jan E, McManus BM, Granville DJ, Yang D. Cleavage and Sub-Cellular Redistribution of Nuclear Pore Protein 98 by Coxsackievirus B3 Protease 2A Impairs Cardioprotection. Front Cell Infect Microbiol 2019; 9:265. [PMID: 31396490 PMCID: PMC6667557 DOI: 10.3389/fcimb.2019.00265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Myocarditis, inflammation of the heart muscle, affects all demographics and is a major cause of sudden and unexpected death in young people. It is most commonly caused by viral infections of the heart, with coxsackievirus B3 (CVB3) being among the most prevalent pathogens. To understand the molecular pathogenesis of CVB3 infection and provide strategies for developing treatments, we examined the role of a key nuclear pore protein 98 (NUP98) in the setting of viral myocarditis. NUP98 was cleaved as early as 2 h post-CVB3 infection. This cleavage was further verified through both the ectopic expression of viral proteases and in vitro using purified recombinant CVB3 proteases (2A and 3C), which demonstrated that CVB3 2A but not 3C is responsible for this cleavage. By immunostaining and confocal imaging, we observed that cleavage resulted in the redistribution of NUP98 to punctate structures in the cytoplasm. Targeted siRNA knockdown of NUP98 during infection further increased viral protein expression and viral titer, and reduced cell viability, suggesting a potential antiviral role of NUP98. Moreover, we discovered that expression levels of neuregulin-1 (NRG1), a cardioprotective gene, and presenilin-1 (PSEN1), a cellular protease processing the tyrosine kinase receptor ERBB4 of NRG1, were reliant upon NUP98 and were downregulated during CVB3 infection. In addition, expression of these NUP98 target genes in myocardium tissue not only occurred at an earlier phase of infection, but also appeared in areas away from the initial inflammatory regions. Collectively, CVB3-induced cleavage of NUP98 and subsequent impairment of the cardioprotective NRG1-ERBB4/PSEN1 signaling cascade may contribute to increased myocardial damage in the context of CVB3-induced myocarditis. To our knowledge, this is the first study to demonstrate the link between NUP98 and the NRG1 signaling pathway in viral myocarditis.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Al Rohet Hossain
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Ye Qiu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Huifang M Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Cheng Li
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Veena Lin
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Saheedat Sulaimon
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Jefferson College of Population Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Gabriel Fung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Victoria H Chen
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eric Jan
- Jefferson College of Population Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bruce M McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David J Granville
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
8
|
Park JH, Park JH, Choi W, Lim BK. Specific elimination of coxsackievirus B3 infected cells with a protein engineered toxin-antitoxin system. Mol Cell Toxicol 2019; 15:425-430. [PMID: 32226459 PMCID: PMC7097453 DOI: 10.1007/s13273-019-0046-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 11/28/2022]
Abstract
Backgrounds Coxsackievirus B3 (CVB3) is a member of the family Picornaviridae, and along with polio-viruses, belongs to the Enterovirus genus. The CVB3 genome is composed single-stranded RNA encoding polyproteins, which are cleaved to individual functional proteins by 2A and 3C proteases proteins which have been targeted for drug development. Here, we showed that protease activity required to activate a toxic protein may be used to prevent viral infection. Methods We modified the MazE-MazF antitoxin-toxin system of Escherichia coli to fuse a C-terminal fragment of MazE to the N-terminal end of toxin MazF with a linker having a specific protease cleavage site for CVB3. This fusion protein formed a stable dimer and was capable of inactivating the mRNA interferase activity of MazF which cleaves the ACA sequence in mRNA substrates. Results The incubation of 2A proteases with the fusion proteins induced cleavage between the MazE and MazF fragments from the fusion proteins; the subsequent release of MazF significantly inhibited virus replication. Additionally, we note that, CVB3 infected HeLa cells quickly died through a MazF toxin mediated effect before virus protein expression. Conclusion These findings suggest that the MazEF fusion protein has a strong potential to be developed as an anti-virus therapy following CVB3 infection.
Collapse
Affiliation(s)
- Jung-Ho Park
- 1Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28120 Republic of Korea
| | - Jin-Ho Park
- 2Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, 28024 Republic of Korea
| | - Wonho Choi
- 1Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28120 Republic of Korea
| | - Byung-Kwan Lim
- 2Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, 28024 Republic of Korea
| |
Collapse
|
9
|
MCPIP1 inhibits coxsackievirus B3 replication by targeting viral RNA and negatively regulates virus-induced inflammation. Med Microbiol Immunol 2017; 207:27-38. [PMID: 29043433 DOI: 10.1007/s00430-017-0523-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Abstract
Monocyte chemotactic protein-induced protein 1(MCPIP1) is identified as an important inflammatory regulator during immune response. MCPIP1 possesses antiviral activities against several viruses, such as Japanese encephalitis. However, its role on Coxsackievirus B3 (CVB3) infection, a positive-stranded RNA virus, has not been addressed. Here, we reported that MCPIP1 was up-regulated in cardiomyocytes by CVB3 infection and in hearts and pancreas of infected mice. Then we found that overexpression of MCPIP1 inhibited CVB3 replication and knockdown of it promoted virus replication. Luciferase assay demonstrated MCPIP1 targeting non-ARE region of CVB3 3'UTR, which was dependent on its RNase, RNA binding and oligomerization abilities, but not deubiquitinase activity. We further verified that MCPIP1 negatively regulated CVB3-induced inflammatory response in macrophages. Thus, our data suggest MCPIP1 as a potent host defense against CVB3 infection and viral myocarditis.
Collapse
|
10
|
Dai Q, Zhang D, Yu H, Xie W, Xin R, Wang L, Xu X, He X, Xiong J, Sheng H, Zhang L, Zhang K, Hu X. Berberine Restricts Coxsackievirus B Type 3 Replication via Inhibition of c-Jun N-Terminal Kinase (JNK) and p38 MAPK Activation In Vitro. Med Sci Monit 2017; 23:1448-1455. [PMID: 28341822 PMCID: PMC5389531 DOI: 10.12659/msm.899804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background At present, the treatment of coxsackievirus-induced myocarditis remains difficult. Berberine (BBR), an isoquinoline alkaloid isolated from traditional medicine herbs, exhibits significant anti-viral efficacy against various viruses. However, the underlying mechanism by which BBR controls CVB3 infection has not yet been reported. The purpose of this study was to investigate the anti-viral efficacy of BBR against CVB3 infection and its mechanism. Material/Methods In our experiments, the protein levels of VP1 and MAPKs signal pathway were measured by Western blot. The mRNA level of VP1 was measured by RT-PCR. The virus titers were determined by TCID50 assay. Results We found that BBR treatment significantly decreased CVB3 replication in HeLa cells. In addition, the BBR treatment reduced the phosphorylation levels of JNK and p38 MAPK upon CVB3 infection in both HeLa cells and primary rat myocardial cells. Conclusions Taken together, these results suggest that BBR inhibits CVB3 replication through the suppression of JNK and p38 MAPK activation, shedding new light on the investigation of therapeutic strategies against CVB3-induced viral myocarditis.
Collapse
Affiliation(s)
- Qian Dai
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Di Zhang
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland).,Department of Microbiology, College of Basic Medical Sciences, 3rd Military Medical University, Chongqing, China (mainland)
| | - Wei Xie
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Rong Xin
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Lei Wang
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Xiaohui Xu
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland).,Department of Microbiology, College of Basic Medical Sciences, 3rd Military Medical University, Chongqing, China (mainland)
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Le Zhang
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland)
| | - Xiaomei Hu
- Central Laboratory, Xinqiao Hospital, 3rd Military Medical University, Chongqing, China (mainland).,Department of Microbiology, College of Basic Medical Sciences, 3rd Military Medical University, Chongqing, China (mainland)
| |
Collapse
|
11
|
Wang Q, Wehrens XHT. Connecting enterovirus infection to dystrophin dysfunction in dilated cardiomyopathy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S23. [PMID: 27867991 DOI: 10.21037/atm.2016.10.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Qiongling Wang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA; Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Peter AK, Bradford WH, Dalton ND, Gu Y, Chao CJ, Peterson KL, Knowlton KU. Increased Echogenicity and Radiodense Foci on Echocardiogram and MicroCT in Murine Myocarditis. PLoS One 2016; 11:e0159971. [PMID: 27486657 PMCID: PMC4972301 DOI: 10.1371/journal.pone.0159971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 01/12/2023] Open
Abstract
Objectives To address the question as to whether echocardiographic and/or microcomputed tomography (microCT) analysis can be utilized to assess the extent of Coxsackie B virus (CVB) induced myocarditis in the absence of left ventricular dysfunction in the mouse. Background Viral myocarditis is a significant clinical problem with associated inflammation of the myocardium and myocardial injury. Murine models of myocarditis are commonly used to study the pathophysiology of the disease, but methods for imaging the mouse myocardium have been limited to echocardiographic assessment of ventricular dysfunction and, to a lesser extent, MRI imaging. Methods Using a murine model of myocarditis, we used both echocardiography and microCT to assess the extent of myocardial involvement in murine myocarditis using both wild-type mice and CVB cleavage-resistant dystrophin knock-in mice. Results Areas of increased echogenicity were only observed in the myocardium of Coxsackie B virus infected mice. These echocardiographic abnormalities correlated with the extent of von Kossa staining (a marker of membrane permeability), inflammation, and fibrosis. Given that calcium phosphate uptake as imaged by von Kossa staining might also be visualized using microCT, we utilized microCT imaging which allowed for high-resolution, 3-dimensional images of radiodensities that likely represent calcium phosphate uptake. As with echocardiography, only mice infected with Coxsackie B virus displayed abnormal accumulation of calcium within individual myocytes indicating increased membrane permeability only upon exposure to virus. Conclusions These studies demonstrate new, quantitative, and semi-quantitative imaging approaches for the assessment of myocardial involvement in the setting of viral myocarditis in the commonly utilized mouse model of viral myocarditis.
Collapse
Affiliation(s)
- Angela K. Peter
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- BioFrontiers, University of Colorado, Boulder, Colorado, United States of America
| | - William H. Bradford
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Nancy D. Dalton
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Yusu Gu
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Chieh-Ju Chao
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Department of Internal Medicine, Mayo Clinic College of Medicine, Phoenix, Arizona, United States of America
- Department of Medicine, John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois, United States of America
| | - Kirk L. Peterson
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Kirk U. Knowlton
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
13
|
Cellular Proteins Act as Bridge Between 5' and 3' Ends of the Coxsackievirus B3 Mediating Genome Circularization During RNA Translation. Curr Microbiol 2015; 71:387-95. [PMID: 26139182 DOI: 10.1007/s00284-015-0866-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/01/2015] [Indexed: 01/19/2023]
Abstract
The positive single-stranded RNA genome of the Coxsackievirus B3 (CVB3) contains a 5' untranslated region (UTR) which hosts the internal ribosome entry site (IRES) element that governs cap-independent translation initiation and a polyadenylated 3' UTR which is required for stimulating the IRES activity. Viral RNA genomes could circularize to regulate initiation of translation and RNA synthesis at 5' and 3' ends. Interactions could either take place by direct RNA-RNA contacts, through cellular protein bridges mediating RNA circularization or both. Accordingly, we aimed to assess the nature of molecular interactions between these two regions and to evaluate cellular factors required for mRNA 3' end-mediated stimulation of CVB3 IRES-driven translation. By gel shift assays, we have showed that combining, in vitro, 5' and 3' UTR fragments had no discernible effect on the structures of RNAs, arguing against the presence of specific canonical RNA-RNA cyclization sequences between these two regions. Competitive UV crosslinking assays using BHK-21 cell extract showed common cellular proteins eIF3b, PTB, and La binding to both 5'- and 3' end RNAs. PCBP 1-2 and PABP were shown to bind, respectively, to 5' and 3' UTR probes. Taking together, these data suggest that CVB3 5'-3' end bridging occurs through 5' UTR-protein-protein-3' UTR interactions and not through RNA-RNA direct contact. The dual involvement of the 3' and 5' UTRs in controlling viral translation and RNA synthesis highlights the relevance of these regions in the infectious virus life cycle, making them suitable candidates for targeted CVB3 antiviral therapy.
Collapse
|
14
|
Souii A, Ben M'hadheb-Gharbi M, Gharbi J. Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol Biotechnol 2014; 55:179-202. [PMID: 23881360 DOI: 10.1007/s12033-013-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5' untranslated region (5'UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA-protein and RNA-RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5' and 3'UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir-Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | | | | |
Collapse
|
15
|
In vitro molecular characterization of RNA-proteins interactions during initiation of translation of a wild-type and a mutant Coxsackievirus B3 RNAs. Mol Biotechnol 2013; 54:515-27. [PMID: 22923320 DOI: 10.1007/s12033-012-9592-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5' untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. With the aim to identify proteins interacting with CVB3 wild-type and Sabin3-like IRESes and to study interactions between HeLa cell or BHK-21 protein extracts and CVB3 RNAs, UV-cross-linking assays were performed. We have observed a number of proteins that specifically interact with both RNAs. In particular, molecular weights of five of these proteins resemble to those of the eukaryotic translation initiation factors 4G, 3b, 4B, and PTB. According to cross-linking patterns obtained, we have demonstrated a better affinity of CVB3 RNA binding to BHK-21 proteins and a reduced interaction of the mutant RNA with almost cellular polypeptides compared to the wild-type IRES. On the basis of phylogeny of some initiation factors and on the knowledge of the initiation of translation process, we focused on the interaction of both IRESes with eIF3, p100 (eIF4G), and 40S ribosomal subunit by filter-binding assays. We have demonstrated a better affinity of binding to the wild-type CVB3 IRES. Thus, the reduction efficiency of the mutant RNA to bind to cellular proteins involved in the translation initiation could be the reason behind inefficient IRES function.
Collapse
|
16
|
Okonko IO, Adebiyi AA, Ogah OS, Adu FD. Enteroviruses as a possible cause of hypertension, dilated cardiomyopathy (DCM) and hypertensive heart failure (HHF) in South western Nigeria. Afr Health Sci 2013; 13:1098-106. [PMID: 24940338 DOI: 10.4314/ahs.v13i4.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human enteroviruses have long been associated with various diseases of man resulting into a wide range of acute symptoms involving the cardiac and skeletal muscles, central nervous system, pancreas, skin and mucous membranes. OBJECTIVE To assess the role of enteroviruses in the etiology of hypertension, DCM and HHF. METHODS We obtained stool specimens from 70 subjects comprising 65 patients and 5 controls and isolation was carried out on RD, L20B, HEp-2C and Vero cell lines and identified by neutralization with standard antisera (RIVM). Thirty-six enteroviruses were isolated and identified to be Coxsackieviruses-B5, A9, Echoviruses 1, 6, 7, 9, 11, 12, 22, 30 and Poliovirus type 1 and 3. RESULTS Three most frequently occurring enterovirus serotypes which constitute 60.0% of the 30 NPEV typed and 50.0% of all the isolates were Echoviruses, Coxsackie-B5-virus and Coxsackievirus-A9. Echoviruses constituted 50.0% of all the serotypes while Coxsackieviruses-B5 and A9 accounts for the 27.8 % and 5.6% respectively. Enteroviral isolation rate was higher in age groups 51 years and above. The percentage of study subjects who had Coxsackie-B5-viruses and echoviruses was significantly (P<0.05) higher in cases of hypertension, HHF and DCM than in control subjects. Coxackie-B5-virus, Echovirus-6 and Echovirus-11 were found in both study locations. CONCLUSION The findings of this study showed that Enteroviruses may likely be involved in the etiology of hypertension, DCM and HHF. Further studies would therefore be necessary for the prevention and control of these diseases.
Collapse
Affiliation(s)
- I O Okonko
- Medical Microbiology & Virology Unit, Department of Microbiology, University of Port Harcourt, East-West Road, P.M.B. 5323, Choba, Port Harcourt, Rivers State, Nigeria
| | - A A Adebiyi
- Cardiology Unit, Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - O S Ogah
- Division of Cardiology, Department of Medicine, University College Hospital, Ibadan, Nigeria
| | - F D Adu
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Tao Z, Song Y, Li Y, Liu Y, Jiang P, Lin X, Liu G, Song L, Wang H, Xu A. Coxsackievirus B3, Shandong Province, China, 1990-2010. Emerg Infect Dis 2013; 18:1865-7. [PMID: 23092737 PMCID: PMC3559141 DOI: 10.3201/eid1811.120090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To determine the cause of a 2008 outbreak of aseptic meningitis in Shandong Province, China, we analyzed samples from outbreak patients and coxsackievirus B3 samples collected during 1990–2010 surveillance. The cause of the outbreak was coxsackievirus B3, genogroup D. Frequent travel might increase importation of other coxsackievirus B3 genogroups.
Collapse
Affiliation(s)
- Zexin Tao
- Shandong Center for Disease Control and Prevention, Jinan, People’s Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Souii A, Gharbi J, M’hadheb-Gharbi MB. Molecular Analysis of RNA-RNA Interactions between 5' and 3' Untranslated Regions during the Initiation of Translation of a Cardiovirulent and a Live-Attenuated Coxsackievirus B3 Strains. Int J Mol Sci 2013; 14:4525-44. [PMID: 23439556 PMCID: PMC3634434 DOI: 10.3390/ijms14034525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/16/2013] [Accepted: 02/20/2013] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, meningitis and pancreatitis. CVB3 overcome their host cells by usurping the translation machinery to benefit viral gene expression. This is accomplished through alternative translation initiation in a cap independent manner at the viral internal ribosomal entry site. The 5′ untranslated region (5′UTR) of CVB3 genomic RNA is highly structured. It is the site of multiple RNA-protein and RNA-RNA interactions and it plays a critical role during translation initiation. Similar to the 5′UTR, CVB3 3′ untranslated region (3′UTR) also contains secondary structural elements consisting of three stem-loops followed by a poly (A) tail sequence. Long-range RNA-RNA interactions between 5′ and 3′ ends of some viral genomes have been observed. Because of their dual role in translation and replication, the 5′ and 3′UTRs represent promising candidates for the study of CVB3 cardiovirulence. Taking into account that efficient initiation of mRNA translation depends on a temporally and spatially orchestrated sequence of protein-protein, protein-RNA and RNA-RNA interactions, and that, at present, little is known about RNA-RNA interactions between CVB3 5′ and 3′UTRs, we aimed in the present study, to assess a possible RNA-RNA interaction between 5′ and 3′UTRs during the initiation of translation of a wild-type and a previously characterized mutant (Sabin3-like) CVB3 strains and to investigate the effect of the Sabin3-like mutation on these potential interactions. For this purpose, “Electrophoretic Mobility Shift” assays were carried out. Data obtained did not show any RNA-RNA direct interactions between the 5′- and 3′- ends. Therefore, we can suggest that the possible mechanism by which 3′UTR enhances CVB3 IRES activity may be by bridging the 5′ to the 3′ end through RNA-protein interaction and not through RNA-RNA direct contact. However, these findings need to be confirmed by carrying out further experiments.
Collapse
Affiliation(s)
- Amira Souii
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR99-ES27), Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir 5000, Tunisia; E-Mails: (J.G.); (M.B.M.-G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +216-24-845-996
| | - Jawhar Gharbi
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR99-ES27), Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir 5000, Tunisia; E-Mails: (J.G.); (M.B.M.-G.)
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, Monastir 5000, Tunisia
| | - Manel Ben M’hadheb-Gharbi
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR99-ES27), Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir 5000, Tunisia; E-Mails: (J.G.); (M.B.M.-G.)
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, Monastir 5000, Tunisia
| |
Collapse
|
19
|
Kim JH, Seok H, Lim BK. Cardiac-specific Coxsackievirus and Adenovirus Receptor (CAR) Deletion Inhibit Enterovirus Infection in Murine Heart. ACTA ACUST UNITED AC 2013. [DOI: 10.4167/jbv.2013.43.3.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jin-Hee Kim
- Department of Herber Skin Care, College of Herbal Bio-industry, Gyeongsan-si, Gyeongsangbuk-do, Korea
| | - Heon Seok
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Korea
| |
Collapse
|
20
|
Rigante D, Cantarini L, Piastra M, Angelone DF, Valentini P, Pardeo M, Buonsenso D, Delogu AB, Serranti D, De Nisco A, Compagnone A, De Rosa G. Kawasaki syndrome and concurrent Coxsackie virus B3 infection. Rheumatol Int 2012; 32:4037-40. [PMID: 21052673 PMCID: PMC7080020 DOI: 10.1007/s00296-010-1613-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 10/13/2010] [Indexed: 12/30/2022]
Abstract
We describe two previously healthy children who were hospitalized in the same period in different departments of our University with clinical signs of Kawasaki syndrome, which were treated with intravenous immunoglobulins and acetylsalicylic acid: in both cases, Coxsackie virus infection was concurrently demonstrated by enzyme-linked immunosorbent assay, and complement fixation test identified antibodies to serotype B3. In the acute phase, both patients presented hyperechogenic coronary arteries, but no cardiologic sequels in the mid term. The etiological relationship between Kawasaki syndrome and Coxsackie viruses is only hypothetical; however, the eventual identification of ad hoc environmental triggers is advisable in front of children with Kawasaki syndrome, with the aim of optimizing epidemiological surveillance and understanding the intimate biological events of this condition.
Collapse
Affiliation(s)
- Donato Rigante
- Department of Pediatric Sciences, Università Cattolica Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yao H, Zhang Y, He F, Wang C, Xiao Z, Zou J, Wang F, Liu Z. Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo. BMC Infect Dis 2012; 12:177. [PMID: 22863145 PMCID: PMC3482581 DOI: 10.1186/1471-2334-12-177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/28/2012] [Indexed: 11/20/2022] Open
Abstract
Background Coxsackievirus B3 is an important infectious agent of viral myocarditis, pancreatitis and aseptic meningitis, but there are no specific antiviral therapeutic reagents in clinical use. RNA interference-based technology has been developed to prevent the viral infection. Methods To evaluate the impact of RNA interference on viral replication, cytopathogenicity and animal survival, short hairpin RNAs targeting the viral 2B region (shRNA-2B) expressed by a recombinant vector (pGCL-2B) or a recombinant lentivirus (Lenti-2B) were tansfected in HeLa cells or transduced in mice infected with CVB3. Results ShRNA-2B exhibited a significant effect on inhibition of viral production in HeLa cells. Furthermore, shRNA-2B improved mouse survival rate, reduced the viral tissues titers and attenuated tissue damage compared with those of the shRNA-NC treated control group. Lenti-2B displayed more effective role in inhibition of viral replication than pGCL-2B in vivo. Conclusions Coxsackievirus B3 2B is an effective target of gene silencing against coxsackievirus B3 infection, suggesting that shRNA-2B is a potential agent for further development into a treatment for enterviral diseases.
Collapse
Affiliation(s)
- Hailan Yao
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Riabi S, Gaaloul I, Harrath R, Aouni M. Persistent infection of human intestinal Caco-2 cell line by Coxsackieviruses B. ACTA ACUST UNITED AC 2011; 60:347-51. [PMID: 22178701 DOI: 10.1016/j.patbio.2011.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/15/2011] [Indexed: 10/14/2022]
Abstract
Coxsackieviruses B (CV-B, Picornaviridae family, genus Enterovirus) are characterized by their ability to cause cytopathic effects in tissue culture. These viruses are considered highly cytolytic, but can establish persistence/latency in susceptible cells, indicating that a regulatory mechanism may exist to shut off viral protein synthesis and replication under certain situations. The persistence of coxsackieviral B RNA is of great interest because of its implication in the pathogenesis of several chronic human diseases. However, a few studies have dealt with the persistence of these viruses at the intestinal level. The aim of this study is to test the capacity of the six CV-B serotypes to establish persistent infection in human intestinal Caco-2 cell line. Ten CV-B isolates, including CV-B3 prototype strain (Nancy) and a recombinant isolate (B3-B4), were tested. Six CV-B isolates were found to establish persistent infections in Caco-2 cell line. Persistent replication was proved by the detection of viral RNA from cell cultures, VP1 capsid protein detection by immunofluorescence (IF) staining, and the release of infectious particles up to two months and a half after infection without any obvious cytolysis. In addition, our results suggest that the establishment of a persistent infection is serotype-independent.
Collapse
Affiliation(s)
- S Riabi
- Laboratory of Transmissible Diseases, Faculty of Pharmacy, Monastir, Tunisia.
| | | | | | | |
Collapse
|
23
|
Fechner H, Pinkert S, Geisler A, Poller W, Kurreck J. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 2011; 16:8475-503. [PMID: 21989310 PMCID: PMC6264230 DOI: 10.3390/molecules16108475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/16/2023] Open
Abstract
Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.
Collapse
Affiliation(s)
- Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
- Author to whom correspondence should be addressed; ; Tel.: +49-30-31472181; Fax: +49-30-31427502
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| | - Anja Geisler
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| |
Collapse
|
24
|
Yoo JK, Galligan CL, Virtanen C, Fish EN. Identification of a novel antigen-presenting cell population modulating antiinfluenza type 2 immunity. ACTA ACUST UNITED AC 2010; 207:1435-51. [PMID: 20547825 PMCID: PMC2901068 DOI: 10.1084/jem.20091373] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antiinfluenza type 2 (T2) immunity contributes to both immunopathology and immunoprotection, yet the underlying mechanisms modulating T2 immunity remain ill defined. We describe a novel mouse antigen (Ag)-presenting cell (APC), designated late-activator APC (LAPC). After pulmonary influenza A (H1N1) virus infection, LAPCs enter the lungs, capture viral Ag, and subsequently migrate to the draining lymph node (DLN) and spleen, with delayed kinetics relative to dendritic cells (DCs). In the DLN, influenza virus–activated LAPCs present Ag and selectively induce T helper type 2 (Th2) effector cell polarization by cell–cell contact–mediated modulation of GATA-3 expression. In adoptive transfer experiments, influenza virus–activated LAPCs augmented Th2 effector T cell responses in the DLN, increased production of circulating antiinfluenza immunoglobulin, and increased levels of T2 cytokines in bronchoalveolar lavage fluid in recipient influenza virus–infected mice. LAPC-recipient mice exhibited exacerbated pulmonary pathology, with delayed viral clearance and enhanced pulmonary eosinophilia. Collectively, our results identify and highlight the importance of LAPCs as immunomodulators of T2 immunity during influenza A virus infection.
Collapse
Affiliation(s)
- Jae-Kwang Yoo
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2M1, Canada
| | | | | | | |
Collapse
|
25
|
Verma B, Bhattacharyya S, Das S. Polypyrimidine tract-binding protein interacts with coxsackievirus B3 RNA and influences its translation. J Gen Virol 2010; 91:1245-55. [PMID: 20071487 DOI: 10.1099/vir.0.018507-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have investigated the possible role of trans-acting factors interacting with the untranslated regions (UTRs) of coxsackievirus B3 (CVB3) RNA. We show here that polypyrimidine tract-binding protein (PTB) binds specifically to both 5' and 3' UTRs, but with different affinity. We have demonstrated that PTB is a bona fide internal ribosome entry site (IRES) trans-acting factor (ITAF) for CVB3 RNA by characterizing the effect of partial silencing of PTB ex vivo in HeLa cells. Furthermore, IRES activity in BSC-1 cells, which are reported to have a very low level of endogenous PTB, was found to be significantly lower than that in HeLa cells. Additionally, we have mapped the putative contact points of PTB on the 5' and 3' UTRs by an RNA toe-printing assay. We have shown that the 3' UTR is able to stimulate CVB3 IRES-mediated translation. Interestingly, a deletion of 15 nt at the 5' end or 14 nt at the 3' end of the CVB3 3' UTR reduced the 3' UTR-mediated enhancement of IRES activity ex vivo significantly, and a reduced interaction was shown with PTB. It appears that the PTB protein might help in circularization of the CVB3 RNA by bridging the ends necessary for efficient translation of the viral RNA.
Collapse
Affiliation(s)
- Bhupendra Verma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
26
|
Chen P, Chen R, Yang Y, Yu Y, Xie Y, Zou Y, Ge J, Chen H. Coxsackievirus B3 infection promotes generation of myeloid dendritic cells from bone marrow and accumulation in the myocardium. Int Immunopharmacol 2009; 9:1304-12. [PMID: 19664723 DOI: 10.1016/j.intimp.2009.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/27/2009] [Accepted: 07/27/2009] [Indexed: 01/21/2023]
Abstract
Myocarditis is associated with increased number of CD4+ T cells in the myocardium after coxsackievirus B3 (CVB3) infection. Previous studies show that CD11c+ myeloid dendritic cells (mDC) loaded with myosin could induce myocarditis. This study aims to investigate the generation and accumulation of mDC in CVB3-induced myocarditis. The presence of mDC in myocardium was detected by immunohistochemisty. Bone marrow-derived mDC were generated from uninfected and CVB3-infected mice. The percentage of CD11c+ mDC on cultured cells and mean fluorescence index (MFI) of double positive cells (CD11c+CD40+, CD11c+CD80+) were measured by flow cytometry. The expression of chemokine receptors (CCR5, CCR7) on mDC and chemokines (CCL4, CCL19) in the myocardium was detected. The migration of mDC in response to CCL4 or CCL19 was measured by chemotaxis assay. Mature mDC were elevated in the myocardium from CVB3-infected mice. The percentage of mDC generated from CVB3-infected group was increased. The MFI of CD11c+CD40+ and CD11c+CD80+ was increased in CVB3-infected group. The mDC showed a down-regulation of CCR5 and unaffected CCR7 mRAN levels associated with elevated CCL4 and CCL19 in the myocardium in CVB3-infected group. Numbers of migrating bone marrow-derived mDC from CVB3-infected mice were increased in vitro. We conclude that CVB3 infection induced the greater generation of mDC from bone marrow and accumulation of mature mDC in myocardial tissues. This migration was associated with increased levels of both CCL4 and CCL19 in the heart tissue. These suggest that blocking the migration of mDC may provide a novel therapy for myocarditis.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Myers SE, LaRue R, Shaw DP, Love BC, M KN, Njenga MK. Pathogenesis of coxsackievirus-B5 acquired from intra-renal porcine islet cell xenografts in diabetic mice. Xenotransplantation 2009; 16:91-8. [PMID: 19392724 DOI: 10.1111/j.1399-3089.2009.00522.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND We previously demonstrated the ability of a human isolate of coxsackievirus-B5 (CVB5) to infect productively adult porcine islet cells (PICs) in vitro. PICs infected with CVB5 remain viable, and upon transplantation reversed diabetes in C56BL/6 mice for up to 5 days. METHODS In the present work, we expanded this graft-to-host xenozoonosis model by examining the long-term functionality of CVB5-infected PIC xenografts in immunosuppressed mice. And, we characterized the pathogenesis of CVB5 infection in mice resulting from directional transmission of the virus from PIC xenografts to surrounding tissues in a mouse model for immunosuppressed human PIC xenograft recipients. RESULTS Both acutely (12 h) and chronically (72 h) infected PIC xenografts functioned in vivo to reverse diabetes in mice. The efficacy of both infected and un-infected PICs was transient beyond 5 days post-inoculation and the long-term functionality of the grafts was compromised by host-to-graft rejection. CVB5-infected PIC xenografts transmitted infectious virus to immunosuppressed recipient mice resulting in extensive histopathologic changes. The virus replicated in the heart, liver, spleen, kidney, pancreas, brain and skeletal muscle in higher levels in severe-combined immunodeficient (SCID) mice that were directly inoculated with virus when compared to controls. In addition, infectious virus was recovered for up to 22 days after inoculation in SCID mice whereas it was only detected up to Day 4 PI in non-SCID mice. CONCLUSIONS Immunosuppressed PIC xenograft recipients may be more susceptible to infection with CVB5 which could target the xenograft leading to disseminated infection in the host.
Collapse
Affiliation(s)
- Suzanne E Myers
- Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Chi CY, Tseng FC, Liu DP, Chang YW, Wu HC, Huang YF, Hwang KP, Hsu YW, Wang SM, Liu CC, Wu HS, Yang JY, Yang CF, Wang JR, Su IJ. Investigations of clinical isolations of oral poliovirus vaccine strains between 2000 and 2005 in southern Taiwan. J Clin Virol 2009; 45:129-34. [PMID: 19394265 DOI: 10.1016/j.jcv.2009.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 03/20/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND In Taiwan, trivalent oral poliovirus vaccine (tOPV) is in the routine immunization schedule, but its association with illnesses had not been examined. OBJECTIVES To investigate clinical presentations and viral characteristics of patients with poliovirus isolates. STUDY DESIGN Clinical data, vaccination records and viral sequences were retrospectively analyzed for patients from whom polioviruses were isolated during 2000-2005. RESULTS OPV-like strains were the only pathogen identified in 208 children who were diagnosed with lower respiratory tract infection (24.5%), acute gastroenteritis (16.8%) or upper respiratory tract infection (10.6%). Timing of poliovirus isolation relative to the tOPV vaccination was unusual in 59 patients, including 6 before any dose and 53 more than 10 weeks after the 3rd or later dose of tOPV. Sequence analyses of the VP1, 2C and 3C/D regions for 19 poliovirus isolates revealed that 4 had previously reported neurovirulence reversions, 1 had intertypic recombination, and 6 had both. No patient had neurological complications, but 3 died of myocarditis, including 2 with recombinant strains and 1 who never received OPV. CONCLUSION This study describes the isolation of OPV-like strains from patients with a variety of illnesses, raising concerns about their pathogenic potential in an area where tOPV is routinely administered. The detection of genetic variations among OPV-like strains warrants continuing surveillance for these variants in patients with severe illnesses besides neurological complications.
Collapse
Affiliation(s)
- Chia-Yu Chi
- Division of Infectious Diseases, National Health Research Institutes, 367 Sheng-Li Road, Tainan 704, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc Natl Acad Sci U S A 2008; 105:20446-51. [PMID: 19074283 DOI: 10.1073/pnas.0810372105] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A conundrum of innate antiviral immunity is how nucleic acid-sensing Toll-like receptors (TLRs) and RIG-I/MDA5 receptors cooperate during virus infection. The conventional wisdom has been that the activation of these receptor pathways evokes type I IFN (IFN) responses. Here, we provide evidence for a critical role of a Toll-like receptor 3 (TLR3)-dependent type II IFN signaling pathway in antiviral innate immune response against Coxsackievirus group B serotype 3 (CVB3), a member of the positive-stranded RNA virus family picornaviridae and most prevalent virus associated with chronic dilated cardiomyopathy. TLR3-deficient mice show a vulnerability to CVB3, accompanied by acute myocarditis, whereas transgenic expression of TLR3 endows even type I IFN signal-deficient mice resistance to CVB3 and other types of viruses, provided that type II IFN signaling remains intact. Taken together, our results indicate a critical cooperation of the RIG-I/MDA5-type I IFN and the TLR3-type II IFN signaling axes for efficient innate antiviral immune responses.
Collapse
|
30
|
Mihatsch K, Nestler M, Saluz HP, Henke A, Munder T. Proapoptotic protein Siva binds to the muscle protein telethonin in cardiomyocytes during coxsackieviral infection. Cardiovasc Res 2008; 81:108-15. [PMID: 18849585 DOI: 10.1093/cvr/cvn276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Coxsackievirus B3 (CVB3) is known to cause a variety of human diseases including acute and chronic myocarditis as well as dilated cardiomyopathy (DCM). However, the mechanisms by which CVB3 causes diseases are not well understood. METHODS AND RESULTS Studies identifying protein-protein interactions during CVB3 infection are useful in delineating the pathogenesis of acute or chronic myocarditis. Screening a human heart cDNA library revealed a yet unknown interaction partner of the proapoptotic protein Siva. We demonstrate that Siva specifically interacts with the heart and skeletal muscle protein telethonin. The expression of Siva is increased in heart tissue of CVB3-infected mice and the proteins colocalize in cardiomyocytes. CONCLUSION telethonin might be involved in CVB3-mediated cell damage and in the resulting cardiac dysfunction due to the interaction with Siva. We suggest a molecular mechanism through which coxsackieviral infection contributes to the pathogenesis of chronic myocarditis and in particular of acquired forms of DCM.
Collapse
Affiliation(s)
- Katharina Mihatsch
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology e. V. - Hans Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
31
|
Replication of coxsackievirus B3 in primary cell cultures generates novel viral genome deletions. J Virol 2007; 82:2033-7. [PMID: 18057248 DOI: 10.1128/jvi.01774-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Coxsackievirus B3 (CVB3) generates 5'-terminally deleted genomes (TDs) during replication in murine hearts. We show here that CVB3 populations with TDs can also be generated within two to three passages of CVB3 in primary, but not immortalized, cell cultures. Deletions of less than 49 nucleotides increase in size during passage, while 5' TDs of 49 nucleotides appear to be the maximum deletion size. The cellular environment of contact-inhibited primary cell cultures or the myocardium in vivo is sufficient for the selection of 5' TDs over undeleted genomes.
Collapse
|
32
|
M'hadheb-Gharbi MB, Kean KM, Gharbi J. Molecular analysis of the role of IRES stem-loop V in replicative capacities and translation efficiencies of Coxsackievirus B3 mutants. Mol Biol Rep 2007; 36:255-62. [PMID: 18027104 DOI: 10.1007/s11033-007-9174-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 10/30/2007] [Indexed: 11/27/2022]
Abstract
Coxsackievirus B3 (CVB3) is a principal viral cause of acute myocarditis in humans and has been implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, it has been demonstrated elsewhere that, for several wild-type CB3 strains, the primary molecular determinant of cardiovirulence phenotype localizes to the 5' nontranslated region (5'NTR) and capsid. Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA-RNA and RNA-protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on one most frequently occurring family of tetraloop sequences, namely, the GNRA sequence, especially the GNAA sequence conserved in all enteroviruses. Here in this study, through construction of CVB3 chimeric mutants, the predicted stem loop (SL) V within the 5'NTR has been identified as important in determining viral cardiovirulence. Replication assays in HeLa cell monolayers revealed that wild-type CVB3 virus and two of the six mutants constructed here grow efficiently, whereas other mutant viruses replicate poorly. Furthermore, the in vitro translation products from these mutants and wild-type CVB3, demonstrated that the two mutants who replicate efficiently, translated at relatively equivalent amount than the wild-type. However, other mutants demonstrated a low efficiency in their production of protein when translated in a Rabbit Reticulocytes Lysats.
Collapse
Affiliation(s)
- Manel Ben M'hadheb-Gharbi
- Unité de Pathogenèse et Virulence Virales (PVV), Laboratoire des Maladies Dominantes Transmissibles (MDT-01), Faculté de Pharmacie, Université de Monastir, Avenue Avicenne, Monastir, 5000, Tunisia
| | | | | |
Collapse
|
33
|
M'hadheb-Gharbi MB, Paulous S, Aouni M, Kean KM, Gharbi J. The substitution U475 --> C with Sabin3-like mutation within the IRES attenuate Coxsackievirus B3 cardiovirulence. Mol Biotechnol 2007; 36:52-60. [PMID: 17827538 DOI: 10.1007/s12033-007-0019-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
The Sabin3 mutation in the viral RNA plays an important role in directing attenuation phenotype of Sabin vaccine strain of poliovirus type 1 (PV1). We previously described that Sabin3-like mutation introduced in Coxsackievirus B3 (CVB3) genome led to a defective mutant. However, this mutation do not led to destruction of secondary structure motif C within the stem-loop V of CVB3 RNA because of the presence of one nucleotide difference (C --> U) in the region encompassing the Sabin3 mutation at nucleotides 471 of PV1 and 475 of CVB3 RNA. In order to reproduce the same sequence of PV1 sabin3 vaccine strain, we introduce in this study an additional mutation (U475 --> C) to CVB3 Sabin3-like mutant. Our results demonstrated that Sabin3-like+C mutant displayed a decreased translation initiation defects when translated in cell-free system. This translation initiation defect was correlated with reduced yields of infectious virus particles in HeLa cells in comparison with Sabin3-like mutant and wild-type CVB3 viruses. Inoculation of Swiss mice with mutant viruses resulted in no inflammatory heart disease when compared to heart of mice infected with wild-type. Theses findings indicate that the double mutant could be exploited for the development of a live attenuated vaccine against CVB3.
Collapse
Affiliation(s)
- Manel Ben M'hadheb-Gharbi
- Unité de Pathogenèse et Virulence Virales (PVV), Laboratoire des Maladies Transmissibles (MDT-01), Université de Monastir, Faculté de Pharmacie, Avenue Avicenne, Monastir, 5000, Tunisia
| | | | | | | | | |
Collapse
|
34
|
Reifenberg K, Lehr HA, Torzewski M, Steige G, Wiese E, Küpper I, Becker C, Ott S, Nusser P, Yamamura KI, Rechtsteiner G, Warger T, Pautz A, Kleinert H, Schmidt A, Pieske B, Wenzel P, Münzel T, Löhler J. Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:463-72. [PMID: 17556594 PMCID: PMC1934522 DOI: 10.2353/ajpath.2007.060906] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic heart failure is associated with an activation of the immune system characterized among other factors by the cardiac synthesis and serum expression of proinflammatory cytokines. There is unequivocal clinical and experimental evidence that the cytokine tumor necrosis factor-alpha is involved in the development of chronic heart failure, but a putative cardiotoxic potential of the proinflammatory cytokine interferon (IFN)-gamma remains primarily unknown. To investigate this issue we analyzed the cardiac phenotype of SAP-IFN-gamma transgenic mice, which constitutively express IFN-gamma in their livers and hence exhibit high circulating serum levels of this cytokine. SAP-IFN-gamma mice spontaneously developed chronic active myocarditis, characterized by the infiltration of not only CD4(+) and CD8(+) T cells but also Mac2(+) (galectin 3(+)) macrophages and CD11c(+) dendritic cells, eventually culminating in cardiomyopathy. Echocardiographic analyses exhibited a left ventricular dilation and impaired systolic function induced by IFN-gamma overexpression. IFN-gamma-mediated cardiotoxicity was associated with high-level cardiac transcription of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-12 and the macrophage-attracting chemokines MCP1 and MIP1-alpha. Myotoxic IFN-gamma effects could not be detected in smooth or striated muscle tissue, suggesting cardiomyocellular specificity of the toxic IFN-gamma effect. The precise mechanism of IFN-gamma cardiotoxicity remains to be elucidated.
Collapse
Affiliation(s)
- Kurt Reifenberg
- Central Laboratory Animal Facility, Johannes Gutenberg-University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Martin U, Jarasch N, Nestler M, Rassmann A, Munder T, Seitz S, Zell R, Wutzler P, Henke A. Antiviral effects of pan-caspase inhibitors on the replication of coxsackievirus B3. Apoptosis 2007; 12:525-33. [PMID: 17211569 DOI: 10.1007/s10495-006-0015-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/14/2006] [Indexed: 11/27/2022]
Abstract
The induction of apoptosis during coxsackievirus B3 (CVB3) infection is well documented. In order to study whether the inhibition of apoptosis has an impact on CVB3 replication, the pan-caspase inhibitor Z-VAD-FMK was used. The decreased CVB3 replication is based on reduced accumulation of both viral RNA and viral proteins. These effects are due to an inhibitory influence of Z-VAD-FMK on the proteolytic activity of the CVB3 proteases 2A and 3C, which was demonstrated by using the target protein poly(A)-binding protein (PABP). The antiviral effect of the structurally different pan-caspase inhibitor Q-VD-OPH was independently of the viral protease inhibition and resulted in suppression of virus progeny production and impaired release of newly produced CVB3 from infected cells. A delayed release of cytochrome c into the cytoplasm was detected in Q-VD-OPH-treated CVB3-infected cells pointing to an involvement of caspases in the initial steps of mitochondrial membrane-permeabilization.
Collapse
Affiliation(s)
- Ulrike Martin
- Institute of Virology and Antiviral Therapy, Medical Center, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ben M'hadheb-Gharbi M, Gharbi J, Paulous S, Brocard M, Komaromva A, Aouni M, Kean KM. Effects of the Sabin-like mutations in domain V of the internal ribosome entry segment on translational efficiency of the Coxsackievirus B3. Mol Genet Genomics 2006; 276:402-12. [PMID: 16909284 DOI: 10.1007/s00438-006-0155-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/21/2006] [Indexed: 01/28/2023]
Abstract
The domain V within the internal ribosome entry segment (IRES) of poliovirus (PV) is expected to be important in its own neurovirulence because it contains an attenuating mutation in each of the Sabin vaccine strains. In this study, we try to find out if the results observed in the case of Sabin vaccine strains of PV can be extrapolated to another virus belonging to the same genus of enteroviruses but with a different tropism. To test this hypothesis, we used the coxsackievirus B3 (CVB3), known to be the most common causal agent of viral myocarditis. The introduction of the three PV Sabin-like mutations in the equivalent positions (nucleotides 484, 485, and 473) to the domain V of the CVB3 IRES results in significant reduced viral titer of the Sabin3-like mutant (Sab3-like) but not on those of Sab1- and Sab2-like mutants. This low titer was correlated with poor translation efficiency in vitro when all mutants were translated in rabbit reticulocyte lysates. However, elucidation by biochemical probing of the secondary structure of the entire domain V of the IRES of Sabin-like mutants reveals no distinct profiles in comparison with the wild-type counterpart. Prediction of secondary structure by MFOLD program indicates a structural perturbation of the stem containing the Sab3-like mutation, suggesting that specific protein-viral RNA interactions are disrupted, preventing efficient viral translation.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Viral/genetics
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Enterovirus B, Human/pathogenicity
- HeLa Cells
- Humans
- In Vitro Techniques
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Poliovirus/genetics
- Poliovirus/metabolism
- Poliovirus/pathogenicity
- Poliovirus Vaccine, Oral/genetics
- Protein Biosynthesis
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Rabbits
- Species Specificity
- Virulence/genetics
Collapse
Affiliation(s)
- Manel Ben M'hadheb-Gharbi
- Unité de Pathogenèse et Virulence Virales, Laboratoire des Maladies Dominantes Transmissibles (MDT-01), Faculté de Pharmacie, Avenue Avicenne, Monastir, 5000, Tunisia,
| | | | | | | | | | | | | |
Collapse
|
37
|
Baxter NJ, Roetzer A, Liebig HD, Sedelnikova SE, Hounslow AM, Skern T, Waltho JP. Structure and dynamics of coxsackievirus B4 2A proteinase, an enyzme involved in the etiology of heart disease. J Virol 2006; 80:1451-62. [PMID: 16415022 PMCID: PMC1346940 DOI: 10.1128/jvi.80.3.1451-1462.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2A proteinases (2A(pro)) from the picornavirus family are multifunctional cysteine proteinases that perform essential roles during viral replication, involving viral polyprotein self-processing and shutting down host cell protein synthesis through cleavage of the eukaryotic initiation factor 4G (eIF4G) proteins. Coxsackievirus B4 (CVB4) 2A(pro) also cleaves heart muscle dystrophin, leading to cytoskeletal dysfunction and the symptoms of human acquired dilated cardiomyopathy. We have determined the solution structure of CVB4 2A(pro) (extending in an N-terminal direction to include the C-terminal eight residues of CVB4 VP1, which completes the VP1-2A(pro) substrate region). In terms of overall fold, it is similar to the crystal structure of the mature human rhinovirus serotype 2 (HRV2) 2A(pro), but the relatively low level (40%) of sequence identity leads to a substantially different surface. We show that differences in the cI-to-eI2 loop between HRV2 and CVB4 2A(pro) translate to differences in the mechanism of eIF4GI recognition. Additionally, the nuclear magnetic resonance relaxation properties of CVB4 2A(pro), particularly of residues G1 to S7, F64 to S67, and P107 to G111, reveal that the substrate region is exchanging in and out of a conformation in which it occupies the active site with association and dissociation rates in the range of 100 to 1,000 s(-1). This exchange influences the conformation of the active site and points to a mechanism for how self-processing can occur efficiently while product inhibition is avoided.
Collapse
Affiliation(s)
- Nicola J Baxter
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Schultheiss HP, Kapp JF, Grötzbach G. New therapeutics targets in chronic viral cardiomyopathy. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:287-303. [PMID: 16329668 PMCID: PMC7123174 DOI: 10.1007/3-540-30822-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Dilated cardiomyopathy (DCM) is a prevalent heart muscle disease characterized by impaired contractility and dilation of the ventricles. Recent clinical research suggests that cardiotropic viruses are important environmental pathogenic factors in human DCM, which may therefore be considered as a chronic viral cardiomyopathy. All virus-positive DCM patients thus come into the focus of virological research and should be considered for antiviral strategies. Interferon-β therapy has been shown to mediate virus elimination in patients with adenovirus or coxsackievirus persistence.We discuss here several possible new molecular targets for patients infected with cardiotropic viruses in (1) the cellular virus uptake system, (2) virus-induced cellular signaling pathways, and (3) interactions between virus-encoded proteins with important cellular target proteins. The potential of these approaches in the setting of a chronic viral infection is significantly different from that in an acute viral infection. Specific problems encountered in a chronic situation and possible solutions are discussed.
Collapse
Affiliation(s)
- H. -P. Schultheiss
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, Germany
| | - J. -F. Kapp
- Specialized Therapeutics, M1/3-9, Berlex Inc., Montville, NJ 07045 USA
| | - G. Grötzbach
- Medical Development, Specialized Therapeutics, Cardiovascular Europe, Schering AG, 13342 Berlin, Germany
| |
Collapse
|
39
|
Dan M, Chantler JK. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J Virol 2005; 79:9285-95. [PMID: 15994822 PMCID: PMC1168767 DOI: 10.1128/jvi.79.14.9285-9295.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a common human pathogen that is endemic throughout the world. There is currently no vaccine available, although the virus is known to be highly lethal to newborns and has been associated with heart disease and pancreatitis in older children and adults. Previously, we showed that the virulence of CVB3 is reduced by a lysine-to-arginine substitution in the capsid protein VP2 (K2168R) or a glutamic acid-to-glycine substitution in VP3 (E3060G). In this report, we show that the double mutant virus CVB3(KR/EG) displays additional attenuation, particularly for the pancreas, in A/J mice. In addition, two other attenuating mutations have been identified in the capsid protein VP1. When either the aspartic acid residue D1155 was replaced with glutamic acid or the proline residue P1126 was replaced with methionine, the resulting mutant also possessed an attenuated phenotype. Moreover, when either of these mutations was incorporated into CVB3(KR/EG), the resulting triple mutant viruses, CVB3(KR/EG/DE) and CVB3(KR/EG/PM), were completely noncardiovirulent and caused only small foci of damage to the pancreas, even at a high dose. Both triple mutants were found to be immunogenic, and a single injection of young A/J mice with either was found to protect them from a subsequent lethal challenge with wild-type CVB3. These findings indicate that the triple mutants could be exploited for the development of a live attenuated vaccine against CVB3.
Collapse
Affiliation(s)
- M Dan
- Department of Pathology and Laboratory Medicine, University of British Columbia, #318, BCRICWH, 950 West 28th Ave., Vancouver, British Columbia, Canada V5Z4H4
| | | |
Collapse
|
40
|
Kim KS, Tracy S, Tapprich W, Bailey J, Lee CK, Kim K, Barry WH, Chapman NM. 5'-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 2005; 79:7024-41. [PMID: 15890942 PMCID: PMC1112132 DOI: 10.1128/jvi.79.11.7024-7041.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult human enteroviral heart disease is often associated with the detection of enteroviral RNA in cardiac muscle tissue in the absence of infectious virus. Passage of coxsackievirus B3 (CVB3) in adult murine cardiomyocytes produced CVB3 that was noncytolytic in HeLa cells. Detectable but noncytopathic CVB3 was also isolated from hearts of mice inoculated with CVB3. Sequence analysis revealed five classes of CVB3 genomes with 5' termini containing 7, 12, 17, 30, and 49 nucleotide deletions. Structural changes (assayed by chemical modification) in cloned, terminally deleted 5'-nontranslated regions were confined to the cloverleaf domain and localized within the region of the deletion, leaving key functional elements of the RNA intact. Transfection of CVB3 cDNA clones with the 5'-terminal deletions into HeLa cells generated noncytolytic virus (CVB3/TD) which was neutralized by anti-CVB3 serum. Encapsidated negative-strand viral RNA was detected using CsCl-purified CVB3/TD virions, although no negative-strand virion RNA was detected in similarly treated parental CVB3 virions. The viral protein VPg was detected on CVB3/TD virion RNA molecules which terminate in 5' CG or 5' AG. Detection of viral RNA in mouse hearts from 1 week to over 5 months postinoculation with CVB3/TD demonstrated that CVB3/TD virus strains replicate and persist in vivo. These studies describe a naturally occurring genomic alteration to an enteroviral genome associated with long-term viral persistence.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Cytopathogenic Effect, Viral
- DNA, Viral/genetics
- Enterovirus B, Human/genetics
- Enterovirus B, Human/pathogenicity
- Enterovirus B, Human/physiology
- Enterovirus Infections/virology
- Genome, Viral
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred A
- Molecular Sequence Data
- Myocarditis/virology
- Myocytes, Cardiac/virology
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Virus Assembly
- Virus Replication
Collapse
Affiliation(s)
- K-S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Douche-Aourik F, Bourlet T, Mosnier JF, Jacques J, Decoene C, Stankowiak C, Pozzetto B, Andréoletti L. Association between enterovirus endomyocardial infection and late severe cardiac events in some adult patients receiving heart transplants. J Med Virol 2005; 75:47-53. [PMID: 15543592 DOI: 10.1002/jmv.20236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enteroviruses and other cardiotropic viruses have been associated with the development of late severe adverse cardiac events in infants receiving heart transplants. However, the source and the chronology of cardiac allograft infection by an enterovirus in patients receiving heart transplants remain unknown. Using RT-PCR and immunohistochemistry assays, endomyocardial tissue samples of 30 adult patients were tested to detect the presence of specific enterovirus 5' non-coding (5'NC) sequences and of VP1 capsid protein, and this at the time of cardiac transplantation and at the 12-month biopsy for graft rejection control. Moreover, the endomyocardial detection of genomic sequences of enteroviruses, Epstein-Barr virus, herpes simplex virus, cytomegalovirus (CMV), varicella-zoster virus, adenoviruses, and parvovirus B19 was carried out by RT-PCR and polymerase chain reaction (PCR) assays at the time of late severe cardiac events. Enterovirus RNA and VP1 antigen were both detected in 4 (13%) of 30 patients at the time of the 12-month biopsy for graft rejection control, whereas no enterovirus component was detected in the explanted and implanted heart tissues taken from these 4 patients at the time of transplantation. At the time when severe cardiac events were developed, within 3 months after the positive enterovirus cardiac detection, these four patients demonstrated the presence of endomyocardial enterovirus RNA sequences whereas they were tested negative for the endomyocardial detection of genomic sequences from DNA viruses (except for CMV in two cases), and for a significant level of pp65 CMV antigenemia. Taken together, these findings indicate that enteroviruses could be acquired as a new endomyocardial infection within 12 months after transplantation in adults receiving heart transplants, and suggest that this infection might be an etiological cause for unexplained late severe adverse cardiac events in the heart-transplantated adults.
Collapse
|
42
|
Myers SE, Brewer L, Shaw DP, Greene WH, Love BC, Hering B, Spiller OB, Njenga MK. Prevalent human coxsackie B-5 virus infects porcine islet cells primarily using the coxsackie-adenovirus receptor. Xenotransplantation 2004; 11:536-46. [PMID: 15479464 DOI: 10.1111/j.1399-3089.2004.00183.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have previously demonstrated that transplanting porcine encephalomyocarditis virus (EMCV)-infected porcine islet cells (PICs) results in transmission of the virus to recipient mice, which is manifested by acute fatal infection within 5 to 8 days. Here, we determined PIC susceptibility to a related and highly prevalent human picornavirus, coxsackie B-5 virus (CVB-5). METHODS PICs were inoculated with CVB-5 in vitro for up to 96 hours and infectivity, level of virus replication, and cellular function determined. Subsequently, monoclonal and polyclonal antibody blocking experiments were used to investigate the receptor CVB-5 uses to enter PICs, and the ability of CVB-5-infected islets to reverse diabetes analyzed in mice. RESULTS Adult pig islets inoculated with CVB-5 in vitro showed a typical picornaviral replication cycle with a 2-h lag phase followed by a 4-h exponential phase during which the virus titer increased by 4 logs. However, CVB-5 was less cytolytic to PICs than EMCV, resulting in a persistent productive infection lasting for up to 96 h, with minimal evidence of cell lysis. Double immunostaining confirmed the presence of CVB-5 antigens in insulin-producing islets. Infection of PICs in the presence of antibodies against human coxsackie-adenovirus receptor (CAR) resulted in near complete blockage in production of infectious virus particles whereas blocking with anti-porcine decay-accelerating factor (DAF, also called CD55) or anti-porcine membrane cofactor protein (MCP, also called CD46) only slightly decreased the number of infectious CVB-5 particles produced. Immunofluoresence staining showed CAR and MCP expression on the islet surface, but not DAF. Transplanting CVB-5-infected PICs into diabetic C57BL/6 mice resulted in reversal of diabetes. CONCLUSION Although PICs are susceptible to human CVB-5, the infection does not appear to affect xenograft function in vitro or in vivo in the short term.
Collapse
Affiliation(s)
- Suzanne E Myers
- Pathobiology Graduate Program, Veterinary Science Department, Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Badorff C, Knowlton KU. Dystrophin disruption in enterovirus-induced myocarditis and dilated cardiomyopathy: from bench to bedside. Med Microbiol Immunol 2004; 193:121-6. [PMID: 12920582 DOI: 10.1007/s00430-003-0189-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Indexed: 10/26/2022]
Abstract
Genetic defects of the dystrophin-glycoprotein complex (DGC) cause hereditary dilated cardiomyopathy. Enteroviruses can also cause cardiomyopathy and we have previously described a mechanism involved in enterovirus-induced dilated cardiomyopathy: The enteroviral protease 2A directly cleaves dystrophin in the hinge 3 region, leading to functional dystrophin impairment. During infection of mice with coxsackievirus B3, the DGC in the heart is disrupted and the sarcolemmal integrity is lost in virus-infected cardiomyocytes. Additionally, dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy in vivo, suggesting a pathogenetic role of the dystrophin cleavage in enterovirus-induced cardiomyopathy. Here, we extend these experimental findings to a patient with dilated cardiomyopathy due to a coxsackievirus B2 myocarditis. Endomyocardial biopsy specimens showed an inflammatory infiltrate and myocytolysis. Immunostaining for the enteroviral capsid antigen VP1 revealed virus-infected cardiomyocytes. Focal areas of cardiomyocytes displayed a loss of the sarcolemmal staining pattern for dystrophin and beta-sarcoglycan identical to previous findings in virus-infected mouse hearts. In vitro, coxsackievirus B2 protease 2A cleaved human dystrophin. These findings demonstrate that in human coxsackievirus B myocarditis a focal disruption of the DGC can principally occur and may contribute to the pathogenesis of human enterovirus-induced dilated cardiomyopathy.
Collapse
Affiliation(s)
- Cornel Badorff
- Department of Medicine, University of California, San Diego, USA.
| | | |
Collapse
|
44
|
Padalko E, Nuyens D, De Palma A, Verbeken E, Aerts JL, De Clercq E, Carmeliet P, Neyts J. The interferon inducer ampligen [poly(I)-poly(C12U)] markedly protects mice against coxsackie B3 virus-induced myocarditis. Antimicrob Agents Chemother 2004; 48:267-74. [PMID: 14693549 PMCID: PMC310159 DOI: 10.1128/aac.48.1.267-274.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral replication, as well as an immunopathological component, is assumed to be involved in coxsackie B virus-induced myocarditis. We evaluated the efficacy of the interferon inducer Ampligen on coxsackie B3 virus-induced myocarditis in C3H/HeNHsd mice. The efficacy of Ampligen was compared with that of the interferon inducer poly(inosinic acid)-poly(cytidylic acid) [poly(IC)], alpha interferon 2b (INTRON A), and pegylated alpha interferon 2b (PEG-INTRON-alpha-2b). Ampligen at 20 mg/kg of body weight/day was able to reduce the severity of virus-induced myocarditis, as assessed by morphometric analysis, by 98% (P = 3.0 x 10(-8)). When poly(IC) was administered at 15 mg/kg/day, it reduced the severity of virus-induced myocarditis by 93% (P = 5.6 x 10(-5)). Alpha interferon 2b (1 x 10(5) U/day) and pegylated alpha interferon 2b (5 x 10(5) U/day) were less effective and reduced the severity of virus-induced myocarditis by 66% (P = 0.0009) and 78% (P = 0.0002), respectively. The observed efficacies of Ampligen and poly(IC) were corroborated by the observation that the drugs also markedly reduced the virus titers in the heart, as detected by (i) quantitative real-time reverse transcription-PCR and (ii) titration for infectious virus content. Whereas the electrocardiograms for untreated mice with myocarditis were severely disturbed, the electrocardiographic parameters were normalized in Ampligen- and poly(IC)-treated mice. Even when start of treatment with Ampligen was delayed until day 2 postinfection, a time at which lesions had already appeared in untreated control animals, a marked protective effect on the development of viral myocarditis (as assessed at day 6 postinfection) was still noted.
Collapse
Affiliation(s)
- Elizaveta Padalko
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Padalko E, Verbeken E, Matthys P, Aerts JL, De Clercq E, Neyts J. Mycophenolate mofetil inhibits the development of Coxsackie B3-virus-induced myocarditis in mice. BMC Microbiol 2003; 3:25. [PMID: 14687413 PMCID: PMC317291 DOI: 10.1186/1471-2180-3-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 12/21/2003] [Indexed: 11/28/2022] Open
Abstract
Background Viral replication as well as an immunopathological component are assumed to be involved in the development of coxsackie B virus (CBV)-induced myocarditis. We observed that mycophenolic acid (MPA), the active metabolite of the immunosuppressive agent mycophenolate mofetil (MMF), inhibits coxsackie B3 virus (CBV3) replication in primary Human myocardial fibroblasts. We therefore studied whether MMF, which is thus endowed with a direct antiviral as well as immunosuppressive effect, may prevent CBV-induced myocarditis in a murine model. Results Four week old C3H-mice were infected with CBV3 and received twice daily, for 7 consecutive days (from one day before to 5 days post-virus inoculation) treatment with MMF via oral gavage. Treatment with MMF resulted in a significant reduction in the development of CBV-induced myocarditis as assessed by morphometric analysis, i.e. 78% reduction when MMF was administered at 300 mg/kg/day (p < 0.001), 65% reduction at 200 mg/kg/day (p < 0.001), and 52% reduction at 100 mg/kg/day (p = 0.001). The beneficial effect could not be ascribed to inhibition of viral replication since titers of infectious virus and viral RNA in heart tissue were increased in MMF-treated animals as compared to untreated animals. Conclusion The immunosuppressive agent MMF results in an important reduction of CBV3-induced myocarditis in a murine model.
Collapse
Affiliation(s)
- Elizaveta Padalko
- Laboratory of Chemotherapy, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik Verbeken
- Division of Morphology and Molecular Pathology, University Hospitals, Minderbroedersstraat 12, B-3000 Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, Katholieke Universiteit, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Joeri L Aerts
- Experimental Laboratory Medicine, University Hospitals, Herestaat 49, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Chemotherapy, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Johan Neyts
- Laboratory of Chemotherapy, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
46
|
Chen CJ, Chen MC, Yip HK, Chang HW, Cheng CI, Chen YH, Chai HT, Pan HF, Hsieh CC, Shih SC. Seasonal distribution of pacemaker implantation for symptomatic bradycardia. JAPANESE HEART JOURNAL 2003; 44:379-84. [PMID: 12825805 DOI: 10.1536/jhj.44.379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Permanent cardiac-pacemaker therapy is widely recognized as beneficial in the treatment of various types of symptomatic bradycardia. However, the seasonal distribution of pacemaker implantation has never been discussed. The purpose of this study was to investigate the seasonal distribution of pacemaker implantation in a large population of patients with symptomatic bradycardia. The study population consisted of 904 patients who underwent implantation of a new permanent pacemaker between January 1999 and December 2001 and were registered in the database of CPI Company in Taiwan. The number of pacemaker implantations in each month was analyzed to investigate the seasonal distribution of pacemaker implantations in a year. The number of patients who underwent pacemaker implantation between October and December was significantly higher than that of other seasons (P < 0.007). The results indicate that there is a tendency for bradyarrhythmic patients to have symptoms between October and December.
Collapse
Affiliation(s)
- Chien-Jen Chen
- Division of Cardiology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yasukawa H, Yajima T, Duplain H, Iwatate M, Kido M, Hoshijima M, Weitzman MD, Nakamura T, Woodard S, Xiong D, Yoshimura A, Chien KR, Knowlton KU. The suppressor of cytokine signaling-1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J Clin Invest 2003; 111:469-78. [PMID: 12588885 PMCID: PMC151924 DOI: 10.1172/jci16491] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enteroviral infections of the heart are among the most commonly identified causes of acute myocarditis in children and adults and have been implicated in dilated cardiomyopathy. Although there is considerable information regarding the cellular immune response in myocarditis, little is known about innate signaling mechanisms within the infected cardiac myocyte that contribute to the host defense against viral infection. Here we show the essential role of Janus kinase (JAK) signaling in cardiac myocyte antiviral defense and a negative role of an intrinsic JAK inhibitor, the suppressor of cytokine signaling (SOCS), in the early disease process. Cardiac myocyte-specific transgenic expression of SOCS1 inhibited enterovirus-induced signaling of JAK and the signal transducers and activators of transcription (STAT), with accompanying increases in viral replication, cardiomyopathy, and mortality in coxsackievirus-infected mice. Furthermore, the inhibition of SOCS in the cardiac myocyte through adeno-associated virus-mediated (AAV-mediated) expression of a dominant-negative SOCS1 increased the myocyte resistance to the acute cardiac injury caused by enteroviral infection. These results indicate that strategies directed at inhibition of SOCS in the heart and perhaps other organs can augment the host-cell antiviral system, thus preventing viral-mediated end-organ damage during the early stages of infection.
Collapse
Affiliation(s)
- Hideo Yasukawa
- Institute of Molecular Medicine, Department of Medicine, and. Division of Cardiothoracic Surgery, University of California at San Diego, La Jolla, California 92093-0613, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Padalko E, Verbeken E, De Clercq E, Neyts J. Inhibition of coxsackie B3 virus induced myocarditis in mice by 2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile. J Med Virol 2003; 72:263-7. [PMID: 14695668 DOI: 10.1002/jmv.10570] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myocarditis is a common cause of dilated cardiomyopathy, one of the most important single causes of heart transplantation. Coxsackie B viruses (CBV) are considered to be the principal etiological agents of viral myocarditis and direct virus-induced damage to the heart tissue has been suggested to be the main mechanism underlying myocarditis in the murine model [Horwitz et al. 2000 Nat Med 6:693-697]. We demonstrate that 2-(3,4-dichloro-phenoxy)-5-nitrobenzonitrile (DNB), a compound that was earlier shown to exhibit broad-spectrum anti-picornavirus activity is also markedly active against CBV replication in primary human myocard fibroblast. To challenge the hypothesis of [Horwitz et al. 2000 Nat Med 6:693-697] we assessed whether DNB is able to prevent the development of CBV-induced myocarditis in a murine model. Subcutaneous (s.c.) administration of DNB at 250 mg/kg/day, at multiple injection sites (m.i.s.), for a period of seven consecutive days (starting at 1 day before infection) to 4-week old C3H-mice resulted in a (i) 62% reduction in the number of myocarditis foci as compared to the untreated control animals (p = 1.7 x 10(-10)) and (ii) a concomitant reduction in viral titers in the heart. These findings indicate that selective inhibition of the replication of CBV may have a beneficial effect on the development of viral myocarditis and confirms that direct viral induced damage is the main mechanism underlying CBV-induced myocarditis. Early diagnosis of virus-induced myocarditis will likely be mandatory for an antiviral drug treatment regimen to achieve its greatest clinical benefit.
Collapse
Affiliation(s)
- Elizaveta Padalko
- Rega Institute Laboratory of Virology, Katholieke Universiteit, Leuven, Belgium
| | | | | | | |
Collapse
|
49
|
Abstract
Myocarditis and its sequela, dilated cardiomyopathy (DCM), cause substantial morbidity and mortality, especially in children and young adults. Physicians should include myocarditis in the differential diagnosis of all patients who have new symptoms of heart failure, arrhythmia, or chest pain syndromes of unclear cause, and should strongly consider performing endomyocardial biopsy (EMB) to establish the diagnosis. It may be necessary to perform multiple or serial biopsies to increase sensitivity. Patients with myocarditis and symptomatic heart failure, chest pain, or arrhythmias need hospitalization for evaluation and treatment. Patients with symptomatic left ventricular dysfunction should be treated with conventional heart failure therapy, including angiotensin-converting enzyme (ACE) inhibitors, digitalis, diuretics, and beta-blockers. Patients with arrhythmias or syncope may require electrophysiologic evaluation. In addition to conventional therapy, physicians should consider a course of immunosuppressive therapy in selected patients. The clinical course, response to therapy, and left ventricular function need close monitoring. Patients with myocarditis and rapidly progressive heart failure or cardiogenic shock should be referred early to an advanced heart failure center for implantation of a ventricular assist device and consideration for cardiac transplantation.
Collapse
Affiliation(s)
- Elaine Winkel
- Mainline Heart Failure and Transplant Program, 556 Lankenau Medical Building East, 100 Lancaster Drive, Wynnewood, PA 19096, USA.
| | | |
Collapse
|
50
|
Ray PS, Das S. La autoantigen is required for the internal ribosome entry site-mediated translation of Coxsackievirus B3 RNA. Nucleic Acids Res 2002; 30:4500-8. [PMID: 12384597 PMCID: PMC137146 DOI: 10.1093/nar/gkf583] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 08/15/2002] [Accepted: 08/15/2002] [Indexed: 01/01/2023] Open
Abstract
Translation initiation in Coxsackievirus B3 (CVB3) occurs via ribosome binding to an internal ribosome entry site (IRES) located in the 5'-untranslated region (UTR) of the viral RNA. This unique mechanism of translation initiation requires various trans-acting factors from the host. We show that human La autoantigen (La) binds to the CVB3 5'-UTR and also demonstrate the dose-dependent effect of exogenously added La protein in stimulating CVB3 IRES-mediated translation. The requirement of La for CVB3 IRES mediated translation has been further demonstrated by inhibition of translation as a result of sequestering La and its restoration by exogenous addition of recombinant La protein. The abundance of La protein in various mouse tissue extracts has been probed using anti-La antibody. Pancreatic tissue, a target organ for CVB3 infection, was found to have a large abundance of La protein which was demonstrated to interact with the CVB3 5'-UTR. Furthermore, exogenous addition of pancreas extract to in vitro translation reactions resulted in a dose dependent stimulation of CVB3 IRES-mediated translation. These observations indicate the role of La in CVB3 IRES-mediated translation, and suggest its possible involvement in the efficient translation of the viral RNA in the pancreas.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|