1
|
Eichwald C, Kim J, Nibert ML. Dissection of mammalian orthoreovirus µ2 reveals a self-associative domain required for binding to microtubules but not to factory matrix protein µNS. PLoS One 2017; 12:e0184356. [PMID: 28880890 PMCID: PMC5589220 DOI: 10.1371/journal.pone.0184356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022] Open
Abstract
Mammalian orthoreovirus protein μ2 is a component of the viral core particle. Its activities include RNA binding and hydrolysis of the γ-phosphate from NTPs and RNA 5´-termini, suggesting roles as a cofactor for the viral RNA-dependent RNA polymerase, λ3, first enzyme in 5´-capping of viral plus-strand RNAs, and/or prohibitory of RNA-5´-triphosphate-activated antiviral signaling. Within infected cells, μ2 also contributes to viral factories, cytoplasmic structures in which genome replication and particle assembly occur. By associating with both microtubules (MTs) and viral factory matrix protein μNS, μ2 can anchor the factories to MTs, the full effects of which remain unknown. In this study, a protease-hypersensitive region allowed μ2 to be dissected into two large fragments corresponding to residues 1-282 and 283-736. Fusions with enhanced green fluorescent protein revealed that these amino- and carboxyl-terminal regions of μ2 associate in cells with either MTs or μNS, respectively. More exhaustive deletion analysis defined μ2 residues 1-325 as the minimal contiguous region that associates with MTs in the absence of the self-associating tag. A region involved in μ2 self-association was mapped to residues 283-325, and self-association involving this region was essential for MT-association as well. Likewise, we mapped that μNS-binding site in μ2 relates to residues 290-453 which is independent of μ2 self-association. These findings suggest that μ2 monomers or oligomers can bind to MTs and μNS, but that self-association involving μ2 residues 283-325 is specifically relevant for MT-association during viral factories formation.
Collapse
Affiliation(s)
- Catherine Eichwald
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Jonghwa Kim
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Gastroenterology, Samsung Medical Center, Seoul, Republic of Korea
| | - Max L. Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Lim MCY, Wang YF, Huang SW, Yang JY, Wang JR. High Incidence of Mammalian Orthoreovirus Identified by Environmental Surveillance in Taiwan. PLoS One 2015; 10:e0142745. [PMID: 26555962 PMCID: PMC4640864 DOI: 10.1371/journal.pone.0142745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/25/2015] [Indexed: 12/21/2022] Open
Abstract
Wild poliovirus (WPV) persists in diverse locales worldwide, spreading outward from endemic areas. In response to the international threat of WPV transmission and changes in the national vaccination policy, we established an environmental surveillance system to monitor the circulation of wild and vaccine-related poliovirus in Taiwan. From July 2012 to December 2013, we collected sewage specimens every month from 10 sewage treatment plants located throughout Taiwan. The specimens were concentrated by the two-phase separation method and then inoculated into L20B, RD, and A549 cells for virus isolation. Viral isolates were identified and serotyped by immunofluorescence assay or molecular analysis. A total of 300 sewage samples were collected, and the results showed 163 samples (54.3%) were positive for virus, and 268 isolates were identified. Among these, 75 samples (25%) were positive for enterovirus (EV), but no poliovirus was found. In addition, 92 isolates were identified as enteroviruses and the most common serotypes were coxsackievirus B4, coxsackievirus B3, and coxsackievirus B2. Interestingly, 102 (34%) and 82 (27.3%) specimens were positive for mammalian orthoreovirus (MRV) and adenovirus, respectively. This study confirmed that sewage surveillance can be a useful additional modality for monitoring the possible presence of wild-type or vaccine-derived poliovirus in wastewater, and can indicate the current types of viruses circulating in the population. Furthermore, since MRV was found in children with acute necrotizing encephalopathy and meningitis, the high incidence of MRV detected by environmental surveillance warrants further investigation.
Collapse
Affiliation(s)
- Matthew C. Y. Lim
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Sheng-Wen Huang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jyh-Yuan Yang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Kumar S, Dick EJ, Bommineni YR, Yang A, Mubiru J, Hubbard GB, Owston MA. Reovirus-associated meningoencephalomyelitis in baboons. Vet Pathol 2013; 51:641-50. [PMID: 23892376 DOI: 10.1177/0300985813497487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Baboon orthoreovirus (BRV) is associated with meningoencephalomyelitis (MEM) among captive baboons. Sporadic cases of suspected BRV-induced MEM have been observed at Southwest National Primate Research Center (SNPRC) for the past 20 years but could not be confirmed due to lack of diagnostic assays. An immunohistochemistry (IHC)-based assay using an antibody against BRV fusion-associated small transmembrane protein p15 and a conventional polymerase chain reaction (PCR)-based assay using primers specific for BRV were developed to detect BRV in archived tissues. Sixty-eight cases of suspected BRV-induced MEM from 1989 through 2010 were tested for BRV, alphavirus, and flavivirus by IHC. Fifty-nine of 68 cases (87%) were positive for BRV by immunohistochemistry; 1 tested positive for flavivirus (but was negative for West Nile virus and St Louis encephalitis virus by real-time PCR), and 1 virus isolation (VI) positive control tested negative for BRV. Sixteen cases (9 BRV-negative and 7 BRV-positive cases, by IHC), along with VI-positive and VI-negative controls, were tested by PCR for BRV. Three (of 9) IHC-negative cases tested positive, and 3 (of 7) IHC-positive cases tested negative by PCR for BRV. Both IHC and PCR assays tested 1 VI-positive control as negative (sensitivity: 75%). This study shows that most cases of viral MEM among baboons at SNPRC are associated with BRV infection, and the BRV should be considered a differential diagnosis for nonsuppurative MEM in baboons.
Collapse
Affiliation(s)
- S Kumar
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Gauvin L, Bennett S, Liu H, Hakimi M, Schlossmacher M, Majithia J, Brown EG. Respiratory infection of mice with mammalian reoviruses causes systemic infection with age and strain dependent pneumonia and encephalitis. Virol J 2013; 10:67. [PMID: 23453057 PMCID: PMC3605257 DOI: 10.1186/1743-422x-10-67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Because mammalian reoviruses are isolated from the respiratory tract we modeled the natural history of respiratory infection of adult and suckling mice with T1 Lang (T1L) and T3 Dearing (T3D) reoviruses. METHODS Adult and suckling Balb/c mice were infected by the intranasal route and were assessed for dose response of disease as well as viral replication in the lung and other organs. Viral antigen was assessed by immunofluorescence and HRP staining of tissue sections and histopathology was assessed on formalin fixed, H + E stained tissue sections. RESULTS Intranasal infection of adult mice resulted in fatal respiratory distress for high doses (10(7) pfu) of T1L but not T3D. In contrast both T1L and T3D killed suckling mice at moderate viral dosages (10(5) pfu) but differed in clinical symptoms where T1L induced respiratory failure and T3D caused encephalitis. Infections caused transient viremia that resulted in spread to peripheral tissues where disease correlated with virus replication, and pathology. Immunofluorescent staining of viral antigens in the lung showed reovirus infection was primarily associated with alveoli with lesser involvement of bronchiolar epithelium. Immunofluorescent and HRP staining of viral antigens in brain showed infection of neurons by T3D and glial cells by T1L. CONCLUSIONS These mouse models of reovirus respiratory infection demonstrated age and strain dependent disease that are expected to be relevant to understanding and modulating natural and therapeutic reovirus infections in humans.
Collapse
Affiliation(s)
- Lianne Gauvin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Finstad OW, Falk K, Løvoll M, Evensen O, Rimstad E. Immunohistochemical detection of piscine reovirus (PRV) in hearts of Atlantic salmon coincide with the course of heart and skeletal muscle inflammation (HSMI). Vet Res 2012; 43:27. [PMID: 22486941 PMCID: PMC3384478 DOI: 10.1186/1297-9716-43-27] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/09/2012] [Indexed: 11/10/2022] Open
Abstract
Aquaculture is the fastest growing food production sector in the world. However, the increased production has been accompanied by the emergence of infectious diseases. Heart and skeletal muscle inflammation (HSMI) is one example of an emerging disease in farmed Atlantic salmon (Salmo salar L). Since the first recognition as a disease entity in 1999 it has become a widespread and economically important disease in Norway. The disease was recently found to be associated with infection with a novel reovirus, piscine reovirus (PRV). The load of PRV, examined by RT-qPCR, correlated with severity of HSMI in naturally and experimentally infected salmon. The disease is characterized by epi-, endo- and myocarditis, myocardial necrosis, myositis and necrosis of the red skeletal muscle. The aim of this study was to investigate the presence of PRV antigens in heart tissue of Atlantic salmon and monitor the virus distribution in the heart during the disease development. This included target cell specificity, viral load and tissue location during an HSMI outbreak. Rabbit polyclonal antisera were raised against putative PRV capsid proteins μ1C and σ1 and used in immunohistochemical analysis of archived salmon heart tissue from an experimental infection. The results are consistent with the histopathological changes of HSMI and showed a sequential staining pattern with PRV antigens initially present in leukocyte-like cells and subsequently in cardiomyocytes in the heart ventricle. Our results confirm the association between PRV and HSMI, and strengthen the hypothesis of PRV being the causative agent of HSMI. Immunohistochemical detection of PRV antigens will be beneficial for the understanding of the pathogenesis of HSMI as well as for diagnostic purposes.
Collapse
Affiliation(s)
- Oystein Wessel Finstad
- Department of Food Safety & Infection Biology, Norwegian School of Veterinary Science, Postboks 8146 Dep, N-0033 OSLO Norwegian, Norway.
| | | | | | | | | |
Collapse
|
6
|
The reovirus sigma1s protein is a determinant of hematogenous but not neural virus dissemination in mice. J Virol 2011; 85:11781-90. [PMID: 21917967 DOI: 10.1128/jvi.02289-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonstructural protein σ1s is a critical determinant of hematogenous dissemination by type 1 reoviruses, which reach the central nervous system (CNS) by a strictly blood-borne route. However, it is not known whether σ1s contributes to neuropathogenesis of type 3 reoviruses, which disseminate by both vascular and neural pathways. Using isogenic type 3 viruses that vary only in σ1s expression, we observed that mice survived at a higher frequency following hind-limb inoculation with σ1s-null virus than when inoculated with wild-type virus. This finding suggests that σ1s is essential for reovirus virulence when inoculated at a site that requires systemic spread to cause disease. Wild-type and σ1s-null viruses produced comparable titers in the spinal cord, suggesting that σ1s is dispensable for invasion of the CNS. Although the two viruses ultimately achieved similar peak titers in the brain, loads of wild-type virus were substantially greater than those of the σ1s-null mutant at early times after inoculation. In contrast, wild-type virus produced substantially higher titers than the σ1s-null virus in peripheral organs to which reovirus spreads via the blood, including the heart, intestine, liver, and spleen. Concordantly, viral titers in the blood were higher following infection with wild-type virus than following infection with the σ1s-null mutant. These results suggest that differences in viral brain titers at early time points postinfection are due to limited virus delivery to the brain by hematogenous pathways. Transection of the sciatic nerve prior to hind-limb inoculation diminished viral spread to the spinal cord. However, wild-type virus retained the capacity to disseminate to the brain following sciatic nerve transection, indicating that wild-type reovirus can spread to the brain by the blood. Together, these results indicate that σ1s is not required for reovirus spread by neural mechanisms. Instead, σ1s mediates hematogenous dissemination within the infected host, which is required for full reovirus neurovirulence.
Collapse
|
7
|
Critical role for death-receptor mediated apoptotic signaling in viral myocarditis. J Card Fail 2011; 16:901-10. [PMID: 21055654 DOI: 10.1016/j.cardfail.2010.05.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/14/2010] [Accepted: 05/28/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Apoptosis of cardiac myocytes plays a key role in the pathogenesis of many cardiac diseases, including viral myocarditis. The apoptotic signaling pathways that are activated during viral myocarditis and the role that these pathways play in disease pathogenesis have not been clearly delineated. METHODS AND RESULTS We investigated the role of apoptotic signaling pathways after virus infection of primary cardiac myocytes. The death receptor-associated initiator caspase, caspase 8, and the effector caspase, caspase 3, were significantly activated after infection of primary cardiac myocytes with myocarditic, but not non-myocarditic, reovirus strains. Furthermore, reovirus-induced cardiac myocyte apoptosis was significantly inhibited by soluble death receptors. In contrast, the mitochondrial membrane potential remained unaltered and caspase 9, the initiator caspase associated with mitochondrial apoptotic signaling, was only weakly activated in cardiac myocytes after infection with myocarditic reovirus strains. Inhibition of mitochondrial apoptotic signaling had no effect on reovirus-induced cardiac myocyte apoptosis. In accordance with our in vitro data, caspase 8, but not caspase 9, was significantly activated in the hearts of reovirus-infected mice. CONCLUSIONS Death receptor, but not mitochondrial, apoptotic signaling plays a key role in apoptosis after infection of cardiac myocytes with myocarditic reovirus strains.
Collapse
|
8
|
Ooms LS, Kobayashi T, Dermody TS, Chappell JD. A post-entry step in the mammalian orthoreovirus replication cycle is a determinant of cell tropism. J Biol Chem 2010; 285:41604-13. [PMID: 20978124 DOI: 10.1074/jbc.m110.176255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian reoviruses replicate in a broad range of hosts, cells, and tissues. These viruses display strain-dependent variation in tropism for different types of cells in vivo and ex vivo. Early steps in the reovirus life cycle, attachment, entry, and disassembly, have been identified as pivotal points of virus-cell interaction that determine the fate of infection, either productive or abortive. However, in studies of the differential capacity of reovirus strains type 1 Lang and type 3 Dearing to replicate in Madin-Darby canine kidney (MDCK) cells, we found that replication efficiency is regulated at a late point in the viral life cycle following primary transcription and translation. Results of genetic studies using recombinant virus strains show that reovirus tropism for MDCK cells is primarily regulated by replication protein μ2 and further influenced by the viral RNA-dependent RNA polymerase protein, λ3, depending on the viral genetic background. Furthermore, μ2 residue 347 is a critical determinant of replication efficiency in MDCK cells. These findings indicate that components of the reovirus replication complex are mediators of cell-selective viral replication capacity at a post-entry step. Thus, reovirus cell tropism may be determined at early and late points in the viral replication program.
Collapse
Affiliation(s)
- Laura S Ooms
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
9
|
Miyamoto SD, Brown RD, Robinson BA, Tyler KL, Long CS, Debiasi RL. Cardiac cell-specific apoptotic and cytokine responses to reovirus infection: determinants of myocarditic phenotype. J Card Fail 2009; 15:529-39. [PMID: 19643365 DOI: 10.1016/j.cardfail.2009.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/30/2008] [Accepted: 01/20/2009] [Indexed: 12/17/2022]
Abstract
BACKGROUND The pathophysiologic mechanisms underlying viral myocarditis are not well defined. As a result, effective treatments do not exist and viral myocarditis remains a potentially lethal infection of the heart. METHODS AND RESULTS We used cultured rat cardiac myocytes and fibroblasts to investigate apoptosis and cytokine production in response to infection by myocarditic vs. non-myocarditic strains of reovirus. Myocarditic reovirus strain 8B and non-myocarditic strain DB188 replicate comparably in each cardiac cell type. However, strain 8B and related myocarditic reoviruses preferentially increase apoptosis of myocytes relative to fibroblasts, whereas DB188 and nonmyocarditic strains preferentially increase fibroblast apoptosis. Infection of cardiac fibroblasts with the nonmyocarditic strain DB188 elicits substantial increases in a panel of cytokines compared to fibroblasts infected with strain 8B or mock-infected controls. Analysis of culture supernatants using cytometric bead arrays revealed that DB188 enhanced release of interleukin (IL)-1beta, IL-4, IL-6, IL-10, IL-12(p70), GRO-KC, tumor necrosis factor-alpha, and MCP-1 relative to 8B or mock-infected controls (all P < .05). CONCLUSION We hypothesize that differential cytokine production and cell-specific apoptosis are important determinants of myocarditic potential of reoviral strains. Therapies that target the beneficial effects of cytokines in limiting cytopathic damage may offer an effective and novel treatment approach to viral myocarditis.
Collapse
Affiliation(s)
- Shelley D Miyamoto
- Department of Pediatrics, University of Colorado Denver Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Apoptosis is associated with virus-induced human diseases of the central nervous system, heart and liver, and causes substantial morbidity and mortality. Although virus-induced apoptosis is well characterized in individual cells in cell culture, virus-induced apoptosis in vivo and the role of apoptosis in virus-induced disease is not well established. This review focuses on animal models of virus-induced diseases of the central nervous system, heart and liver that provide insights into the role of apoptosis in pathogenesis, the pathways involved and the potential therapeutic implications.
Collapse
Affiliation(s)
- Penny Clarke
- Department of Neurology, University of Colorado, Denver Health Sciences Programs, Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
11
|
Beckham JD, Goody RJ, Clarke P, Bonny C, Tyler KL. Novel strategy for treatment of viral central nervous system infection by using a cell-permeating inhibitor of c-Jun N-terminal kinase. J Virol 2007; 81:6984-92. [PMID: 17475657 PMCID: PMC1933289 DOI: 10.1128/jvi.00467-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral encephalitis is a major cause of morbidity and mortality worldwide, yet there is no proven efficacious therapy for most viral infections of the central nervous system (CNS). Many of the viruses that cause encephalitis induce apoptosis and activate c-Jun N-terminal kinase (JNK) following infection. We have previously shown that reovirus infection of epithelial cell lines activates JNK-dependent apoptosis. We now show that reovirus infection resulted in activation of JNK and caspase-3 in the CNS. Treatment of reovirus-infected mice with a cell-permeating peptide that competitively inhibits JNK activity resulted in significantly prolonged survival of intracerebrally infected mice following an otherwise lethal challenge with T3D (100 x 50% lethal dose). Protection correlated with reduced CNS injury, reduced neuronal apoptosis, and reduced c-Jun activation without altering the viral titer or viral antigen distribution. Given the efficacy of the inhibitor in protecting mice from viral encephalitis, JNK inhibition represents a promising and novel treatment strategy for viral encephalitis.
Collapse
Affiliation(s)
- J David Beckham
- Department of Medicine, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
12
|
Clarke P, Debiasi RL, Goody R, Hoyt CC, Richardson-Burns S, Tyler KL. Mechanisms of reovirus-induced cell death and tissue injury: role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Viral Immunol 2005; 18:89-115. [PMID: 15802955 PMCID: PMC2366905 DOI: 10.1089/vim.2005.18.89] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reoviruses have provided insight into the roles played by specific viral genes and the proteins they encode in virus-induced cell death and tissue injury. Apoptosis is a major mechanism of cell death induced by reoviruses. Reovirus-induced apoptosis involves both death-receptor and mitochondrial cell death pathways. Reovirus infection is associated with selective activation of mitogen activated protein kinase (MAPK) cascades including JNK/SAPK. Infection also perturbs transcription factor signaling resulting in the activation of c-Jun and initial activation followed by strain-specific inhibition of NF-kappaB. Infection results in changes in the expression of genes encoding proteins involved in cell cycle regulation, apoptosis, and DNA damage and repair processes. Apoptosis is a major mechanism of reovirus-induced injury to key target organs including the CNS and heart. Inhibition of apoptosis through the use of caspase or calpain inhibitors, minocycline, or in caspase 3(-/-) mice all reduce virus-associated tissue injury and enhance survival of infected animals. Reoviruses induce apoptotic cell death (oncolysis) in a wide variety of cancer cells and tumors. The capacity of reoviruses to grow efficiently in transformed cells is enhanced by the presence of an activated Ras signaling pathway likely through mechanisms involving inhibition of antiviral PKR signaling and activation of Ras/RalGEF/p38 pathways. The potential of reovirus-induced oncolysis in therapy of human cancers is currently being investigated in phase I/II clinical trials.
Collapse
Affiliation(s)
- P Clarke
- Department of Neurology, University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
13
|
Clarke P, Debiasi RL, Meintzer SM, Robinson BA, Tyler KL. Inhibition of NF-kappa B activity and cFLIP expression contribute to viral-induced apoptosis. Apoptosis 2005; 10:513-24. [PMID: 15909114 PMCID: PMC2394667 DOI: 10.1007/s10495-005-1881-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Virus-induced activation of nuclear factor-kappa B (NF-kappaB) is required for Type 3 (T3) reovirus-induced apoptosis. We now show that NF-kappaB is also activated by the prototypic Type 1 reovirus strain Lang (T1L), which induces significantly less apoptosis than T3 viruses, indicating that NF-kappaB activation alone is not sufficient for apoptosis in reovirus-infected cells. A second phase of virus-induced NF-kappaB regulation, where NF-kappaB activation is inhibited at later times following infection with T3 Abney (T3A), is absent in T1L-infected cells. This suggests that inhibition of NF-kappaB activation at later times post infection also contributes to reovirus-induced apoptosis. Reovirus-induced inhibition of stimulus-induced activation of NF-kappaB is significantly associated with apoptosis following infection of HEK293 cells with reassortant reoviruses and is determined by the T3 S1 gene segment, which is also the primary determinant of reovirus-induced apoptosis. Inhibition of stimulus-induced activation of NF-kappaB also occurs following infection of primary cardiac myocytes with apoptotic (8B) but not non-apoptotic (T1L) reoviruses. Expression levels of the NF-kappaB-regulated cellular FLICE inhibitory protein (cFLIP) reflect NF-kappaB activation in reovirus-infected cells. Further, inhibition of NF-kappaB activity and cFLIP expression promote T1L-induced apoptosis. These results demonstrate that inhibition of stimulus-induced activation of NF-kappaB and the resulting decrease in cFLIP expression promote reovirus-induced apoptosis.
Collapse
Affiliation(s)
- P Clarke
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
14
|
Stewart MJ, Smoak K, Blum MA, Sherry B. Basal and reovirus-induced beta interferon (IFN-beta) and IFN-beta-stimulated gene expression are cell type specific in the cardiac protective response. J Virol 2005; 79:2979-87. [PMID: 15709018 PMCID: PMC548428 DOI: 10.1128/jvi.79.5.2979-2987.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral myocarditis is an important human disease, with a wide variety of viruses implicated. Cardiac myocytes are not replenished yet are critical for host survival and thus may have a unique response to infection. Previously, we determined that the extent of reovirus induction of beta interferon (IFN-beta) and IFN-beta-mediated protection in primary cardiac myocyte cultures was inversely correlated with the extent of reovirus-induced cardiac damage in a mouse model. Surprisingly, and in contrast, the IFN-beta response did not determine reovirus replication in skeletal muscle cells. Here we compared the IFN-beta response in cardiac myocytes to that in primary cardiac fibroblast cultures, a readily replenished cardiac cell type. We compared basal and reovirus-induced expression of IFN-beta, IRF-7 (an interferon-stimulated gene [ISG] that further induces IFN-beta), and another ISG (561) in the two cell types by using real-time reverse transcription-PCR. Basal IFN-beta, IRF-7, and 561 expression was higher in cardiac myocytes than in cardiac fibroblasts. Reovirus T3D induced greater expression of IFN-beta in cardiac myocytes than in cardiac fibroblasts but equivalent expression of IRF-7 and 561 in the two cell types (though fold induction for IRF-7 and 561 was higher in fibroblasts than in myocytes because of the differences in basal expression). Interestingly, while reovirus replicated to equivalent titers in cardiac myocytes and cardiac fibroblasts, removal of IFN-beta resulted in 10-fold-greater reovirus replication in the fibroblasts than in the myocytes. Together the data suggest that the IFN-beta response controls reovirus replication equivalently in the two cell types. In the absence of reovirus-induced IFN-beta, however, reovirus replicates to higher titers in cardiac fibroblasts than in cardiac myocytes, suggesting that the higher basal IFN-beta and ISG expression in myocytes may play an important protective role.
Collapse
Affiliation(s)
- Michael J Stewart
- Department of Molecular Biological Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | |
Collapse
|
15
|
Hoyt CC, Richardson-Burns SM, Goody RJ, Robinson BA, Debiasi RL, Tyler KL. Nonstructural protein sigma1s is a determinant of reovirus virulence and influences the kinetics and severity of apoptosis induction in the heart and central nervous system. J Virol 2005; 79:2743-53. [PMID: 15708993 PMCID: PMC548430 DOI: 10.1128/jvi.79.5.2743-2753.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 10/11/2004] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which viruses kill susceptible cells in target organs and ultimately produce disease in the infected host remain poorly understood. Dependent upon the site of inoculation and strain of virus, experimental infection of neonatal mice with reoviruses can induce fatal encephalitis or myocarditis. Reovirus-induced apoptosis is a major mechanism of tissue injury, leading to disease development in both the brain and heart. In cultured cells, differences in the capacity of reovirus strains to induce apoptosis are determined by the S1 gene segment, which also plays a major role as a determinant of viral pathogenesis in both the heart and the central nervous system (CNS) in vivo. The S1 gene is bicistronic, encoding both the viral attachment protein sigma-1 and the nonstructural protein sigma-1-small (sigma1s). Although sigma1s is dispensable for viral replication in vitro, we wished to investigate the expression of sigma1s in the infected heart and brain and its potential role in reovirus pathogenesis in vivo. Two-day-old mice were inoculated intramuscularly or intracerebrally with either sigma1s(-) or sigma1s(+) reovirus strains. While viral replication in target organs did not differ between sigma1s(-) and sigma1s(+) viral strains, virus-induced caspase-3 activation and resultant histological tissue injury in both the heart and brain were significantly reduced in sigma1s(-) reovirus-infected animals. These results demonstrate that sigma1s is a determinant of the magnitude and extent of reovirus-induced apoptosis in both the heart and CNS and thereby contributes to reovirus pathogenesis and virulence.
Collapse
Affiliation(s)
- Cristen C Hoyt
- Department of Neurology (B-182), University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
16
|
Montufar-Solis D, Klein JR. Experimental intestinal reovirus infection of mice: what we know, what we need to know. Immunol Res 2005; 33:257-65. [PMID: 16462002 PMCID: PMC2745836 DOI: 10.1385/ir:33:3:257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reovirus, a member of the Reoviridae family, is a ubiquitous virus in vertebrate hosts. Although disease caused by reovirus infection is for the most part mild, studies of reovirus have particularly been valuable as a model for understanding the local host response to replicating foreign antigen in intestinal and respiratory sites. In this article, a brief overview is presented of the basic features of reovirus infection, as will the host's humoral and cellular immune response during the infectious cycle. New information regarding the interactions and involvement of immune response molecules during reovirus infection will be presented based on multiple analyte array studies from our laboratory.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic Sciences, Dental Branch, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
17
|
DeBiasi RL, Robinson BA, Sherry B, Bouchard R, Brown RD, Rizeq M, Long C, Tyler KL. Caspase inhibition protects against reovirus-induced myocardial injury in vitro and in vivo. J Virol 2004; 78:11040-50. [PMID: 15452224 PMCID: PMC521817 DOI: 10.1128/jvi.78.20.11040-11050.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Viral myocarditis is a disease with a high morbidity and mortality. The pathogenesis of this disease remains poorly characterized, with components of both direct virus-mediated and secondary inflammatory and immune responses contributing to disease. Apoptosis has increasingly been viewed as an important mechanism of myocardial injury in noninfectious models of cardiac disease, including ischemia and failure. Using a reovirus murine model of viral myocarditis, we characterized and targeted apoptosis as a key mechanism of virus-associated myocardial injury in vitro and in vivo. We demonstrated caspase-3 activation, in conjunction with terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and annexin binding, in cardiac myocytes after myocarditic viral infection in vitro. We also demonstrated a tight temporal and geographical correlation between caspase-3 activation, histologic injury, and viral load in cardiac tissue after myocarditic viral infection in vivo. Two pharmacologic agents that broadly inhibit caspase activity, Q-VD-OPH and Z-VAD(OMe)-FMK, effectively inhibited virus-induced cellular death in vitro. The inhibition of caspase activity in vivo by the use of pharmacologic agents as well as genetic manipulation reduced virus-induced myocardial injury by 40 to 60% and dramatically improved survival in infected caspase-3-deficient animals. This study indicates that apoptosis plays a critical role in mediating cardiac injury in the setting of viral myocarditis and is the first demonstration that caspase inhibition may serve as a novel therapeutic strategy for this devastating disease.
Collapse
Affiliation(s)
- Roberta L DeBiasi
- Pediatrics (Infectious Diseases), University of Colorado Health Sciences Center, 4200 East 9th Avenue, Box B055, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Terheggen F, Benedikz E, Frissen PHJ, Brinkman K. Myocarditis associated with reovirus infection. Eur J Clin Microbiol Infect Dis 2003; 22:197-8. [PMID: 12649721 DOI: 10.1007/s10096-003-0884-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F Terheggen
- Department of Internal Medicine, Onze Lieve Vrouwe Gasthuis, P.O. Box 95500, 1090 HM, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Spinner ML, Di Giovanni GD. Detection and identification of mammalian reoviruses in surface water by combined cell culture and reverse transcription-PCR. Appl Environ Microbiol 2001; 67:3016-20. [PMID: 11425715 PMCID: PMC92974 DOI: 10.1128/aem.67.7.3016-3020.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reoviruses are a common class of enteric viruses capable of infecting a broad range of mammalian species, typically with low pathogenicity. Previous studies have shown that reoviruses are common in raw water sources and are often found along with other animal viruses. This suggests that in addition to the commonly monitored enteroviruses, reoviruses might serve as an informative target for monitoring fecal contamination of drinking water sources. Mammalian reoviruses were detected and identified by a combined cell culture-reverse transcription-PCR (RT-PCR) assay with novel primers targeting the L3 gene that encodes the lambda3 major core protein. Five of 26 (19.2%) cytopathic effect-positive cell culture lysates inoculated with surface water were positive for reoviruses by RT-PCR. DNA sequence analysis of RT-PCR products revealed significant sequence diversity among isolates, which is consistent with the sequence diversity among previously characterized mammalian reoviruses. Sequence analysis revealed persistence of a reovirus genotype at a single sampling site, while a sample from another site contained two different reovirus genotypes.
Collapse
Affiliation(s)
- M L Spinner
- American Water Works Service Co., Inc., Belleville, Illinois 62220, USA.
| | | |
Collapse
|
20
|
DeBiasi RL, Edelstein CL, Sherry B, Tyler KL. Calpain inhibition protects against virus-induced apoptotic myocardial injury. J Virol 2001; 75:351-61. [PMID: 11119604 PMCID: PMC113928 DOI: 10.1128/jvi.75.1.351-361.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Accepted: 09/14/2000] [Indexed: 12/13/2022] Open
Abstract
Viral myocarditis is an important cause of human morbidity and mortality for which reliable and effective therapy is lacking. Using reovirus strain 8B infection of neonatal mice, a well-characterized experimental model of direct virus-induced myocarditis, we now demonstrate that myocardial injury results from apoptosis. Proteases play a critical role as effectors of apoptosis. The activity of the cysteine protease calpain increases in reovirus-infected myocardiocytes and can be inhibited by the dipeptide alpha-ketoamide calpain inhibitor Z-Leu-aminobutyric acid-CONH(CH(2))3-morpholine (CX295). Treatment of reovirus-infected neonatal mice with CX295 protects them against reovirus myocarditis as documented by (i) a dramatic reduction in histopathologic evidence of myocardial injury, (ii) complete inhibition of apoptotic myocardial cell death as identified by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, (iii) a reduction in serum creatine phosphokinase, and (iv) improved weight gain. These findings are the first evidence for the importance of a calpain-associated pathway of apoptotic cell death in viral disease. Inhibition of apoptotic signaling pathways may be an effective strategy for the treatment of viral disease in general and viral myocarditis in particular.
Collapse
Affiliation(s)
- R L DeBiasi
- Departments of Pediatric Infectious Diseases, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|