1
|
Brovkina MV, Chapman MA, Holding ML, Clowney EJ. Emergence and influence of sequence bias in evolutionarily malleable, mammalian tandem arrays. BMC Biol 2023; 21:179. [PMID: 37612705 PMCID: PMC10463633 DOI: 10.1186/s12915-023-01673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The radiation of mammals at the extinction of the dinosaurs produced a plethora of new forms-as diverse as bats, dolphins, and elephants-in only 10-20 million years. Behind the scenes, adaptation to new niches is accompanied by extensive innovation in large families of genes that allow animals to contact the environment, including chemosensors, xenobiotic enzymes, and immune and barrier proteins. Genes in these "outward-looking" families are allelically diverse among humans and exhibit tissue-specific and sometimes stochastic expression. RESULTS Here, we show that these tandem arrays of outward-looking genes occupy AT-biased isochores and comprise the "tissue-specific" gene class that lack CpG islands in their promoters. Models of mammalian genome evolution have not incorporated the sharply different functions and transcriptional patterns of genes in AT- versus GC-biased regions. To examine the relationship between gene family expansion, sequence content, and allelic diversity, we use population genetic data and comparative analysis. First, we find that AT bias can emerge during evolutionary expansion of gene families in cis. Second, human genes in AT-biased isochores or with GC-poor promoters experience relatively low rates of de novo point mutation today but are enriched for non-synonymous variants. Finally, we find that isochores containing gene clusters exhibit low rates of recombination. CONCLUSIONS Our analyses suggest that tolerance of non-synonymous variation and low recombination are two forces that have produced the depletion of GC bases in outward-facing gene arrays. In turn, high AT content exerts a profound effect on their chromatin organization and transcriptional regulation.
Collapse
Affiliation(s)
- Margarita V Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Margaret A Chapman
- Neurosciences Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Corrales M, Rosado A, Cortini R, van Arensbergen J, van Steensel B, Filion GJ. Clustering of Drosophila housekeeping promoters facilitates their expression. Genome Res 2017; 27:1153-1161. [PMID: 28420691 PMCID: PMC5495067 DOI: 10.1101/gr.211433.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/12/2017] [Indexed: 11/25/2022]
Abstract
Housekeeping genes of animal genomes cluster in the same chromosomal regions. It has long been suggested that this organization contributes to their steady expression across all the tissues of the organism. Here, we show that the activity of Drosophila housekeeping gene promoters depends on the expression of their neighbors. By measuring the expression of ∼85,000 reporters integrated in Kc167 cells, we identified the best predictors of expression as chromosomal contacts with the promoters and terminators of active genes. Surprisingly, the chromatin composition at the insertion site and the contacts with enhancers were less informative. These results are substantiated by the existence of genomic “paradoxical” domains, rich in euchromatic features and enhancers, but where the reporters are expressed at low level, concomitant with a deficit of interactions with promoters and terminators. This indicates that the proper function of housekeeping genes relies not on contacts with long distance enhancers but on spatial clustering. Overall, our results suggest that spatial proximity between genes increases their expression and that the linear architecture of the Drosophila genome contributes to this effect.
Collapse
Affiliation(s)
- Marc Corrales
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aránzazu Rosado
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ruggero Cortini
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joris van Arensbergen
- Division of Gene Regulation, Netherlands Cancer Institute (NKI), 1066CX Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute (NKI), 1066CX Amsterdam, The Netherlands
| | - Guillaume J Filion
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
3
|
Vijayalakshmidevi SR, Muthukumar K. Improved biodegradation of textile dye effluent by coculture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:23-30. [PMID: 25594688 DOI: 10.1016/j.ecoenv.2014.09.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
The present study demonstrates the de-colorization and degradation of textile effluent by coculture consisting of three bacterial species isolated from textile effluent contaminated environment with an aim to reduce the treatment time. The isolates were identified as Ochrobactrum sp., Pseudomonas aeruginosa and Providencia vermicola by 16S rRNA analysis. Their secondary structure was predicted and GC content of the sequence was found to be 54.39, 52.10, and 52.53%. The co-culture showed a prominent increase in the degradation activity due to the action of oxidoreductase enzymatic mechanism of laccase, NADH-DCIP reductase and azoreductase activity. The biodegradability index of 0.75 was achieved with 95% chemical oxygen demand (COD) reduction in 16 h and 78 and 85% reduction in total organic carbon (TOC) and total solids was observed. Bioaccumulation of metals was identified by X-ray diffraction (XRD) analysis. The effective decolorization was confirmed from the results of UV-vis spectroscopy, high performance liquid chromatography and Fourier transformed infrared spectrometer analyzes. The possible degradation pathway was obtained from the analysis of liquid chromatography-mass spectroscopy analysis and the metabolites such as 2-amino naphthalene and N-phenyl-1.3,5 triazine were observed. The toxic nature of the effluent was analyzed using phyto-toxicity, cell-death assay and geno-toxicity tests.
Collapse
Affiliation(s)
- S R Vijayalakshmidevi
- Department of Chemical Engineering, Alagappa College of Technology Campus, Anna University, Chennai 600025, India
| | - Karuppan Muthukumar
- Department of Chemical Engineering, Alagappa College of Technology Campus, Anna University, Chennai 600025, India.
| |
Collapse
|
4
|
Chattopadhyay S, Sahoo S, Kanner WA, Chakrabarti J. Pressures in archaeal protein coding genes: a comparative study. Comp Funct Genomics 2010; 4:56-65. [PMID: 18629113 PMCID: PMC2447400 DOI: 10.1002/cfg.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Accepted: 11/25/2002] [Indexed: 11/06/2022] Open
Abstract
Our studies on the bases of codons from 11 completely sequenced archaeal genomes show that, as we move from GC-rich to AT-rich protein-coding gene-containing species, the differences between G and C and between A and T, the purine load (AG content), and also the overall persistence (i.e. the tendency of a base to be followed by the same base) within codons, all increase almost simultaneously, although the extent of increase is different over the three positions within codons. These findings suggest that the deviations from the second parity rule (through the increasing differences between complementary base contents) and the increasing purine load hinder the chance of formation of the intra-strand Watson-Crick base-paired secondary structures in mRNAs (synonymous with the protein-coding genes we dealt with), thereby increasing the translational efficiency. We hypothesize that the ATrich protein-coding gene-containing archaeal species might have better translational efficiency than their GC-rich counterparts.
Collapse
Affiliation(s)
- Sujay Chattopadhyay
- Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India.
| | | | | | | |
Collapse
|
5
|
Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 2009; 10:285-311. [PMID: 19630562 DOI: 10.1146/annurev-genom-082908-150001] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombination is typically thought of as a symmetrical process resulting in large-scale reciprocal genetic exchanges between homologous chromosomes. Recombination events, however, are also accompanied by short-scale, unidirectional exchanges known as gene conversion in the neighborhood of the initiating double-strand break. A large body of evidence suggests that gene conversion is GC-biased in many eukaryotes, including mammals and human. AT/GC heterozygotes produce more GC- than AT-gametes, thus conferring a population advantage to GC-alleles in high-recombining regions. This apparently unimportant feature of our molecular machinery has major evolutionary consequences. Structurally, GC-biased gene conversion explains the spatial distribution of GC-content in mammalian genomes-the so-called isochore structure. Functionally, GC-biased gene conversion promotes the segregation and fixation of deleterious AT --> GC mutations, thus increasing our genomic mutation load. Here we review the recent evidence for a GC-biased gene conversion process in mammals, and its consequences for genomic landscapes, molecular evolution, and human functional genomics.
Collapse
Affiliation(s)
- Laurent Duret
- Université de Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France.
| | | |
Collapse
|
6
|
Duret L, Arndt PF. The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 2008; 4:e1000071. [PMID: 18464896 PMCID: PMC2346554 DOI: 10.1371/journal.pgen.1000071] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 04/11/2008] [Indexed: 01/19/2023] Open
Abstract
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of crossovers (R2 = 47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots. We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations indicate that variations in population size or density in recombination hotspots can have a very strong impact on the evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of hotspot density between human and chimp. Mammalian genomes show a very strong heterogeneity of base composition along chromosomes (the so-called isochores). The functional significance of these peculiar genomic landscapes is highly debated: do isochores confer some selective advantage, or are they simply the by-product of neutral evolutionary processes? To resolve this issue, we analyzed the pattern of substitution in the human genome by comparison with chimpanzee and macaque. We show that the evolution of base composition (GC-content) is essentially determined by the rate of recombination. This effect appears to be much stronger in male than in female germline, which rules out selective explanations for the evolution of isochores. We show that this impact of recombination is most probably a consequence of the process of biased gene conversion (BGC). This neutral process mimics the action of selection and can induce strong substitution hotspots within recombination hotspots, sometimes leading to the fixation of deleterious mutations. BGC appears to be one of the major factors driving genome evolution. It is therefore essential to take this process into account if we want to be able to interpret genome sequences.
Collapse
Affiliation(s)
- Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
- * E-mail: (LD); (PFA)
| | - Peter F. Arndt
- Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (LD); (PFA)
| |
Collapse
|
7
|
Chekunova AI, Kulikov AM, Mikhailovskii SS, Lazebny OE, Lazebnaya IV, Mitrofanov VG. The relationships among the species of the Drosophila virilis group inferred from the gene Ras1 sequences. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408030071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Chargaff’s GC rule. Evol Bioinform Online 2006. [DOI: 10.1007/978-0-387-33419-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Lee SJ, Mortimer JR, Forsdyke DR. Genomic conflict settled in favour of the species rather than the gene at extreme GC percentage values. ACTA ACUST UNITED AC 2005; 3:219-28. [PMID: 15702952 DOI: 10.2165/00822942-200403040-00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Wada and colleagues have shown that, whether prokaryotic or eukaryotic, each gene has a "homostabilising propensity" to adopt a relatively uniform GC percentage (GC%). Accordingly, each gene can be viewed as a "microisochore" occupying a discrete GC% niche of relatively uniform base composition amongst its fellow genes. Although first, second and third codon positions usually differ in GC%, each position tends to maintain a uniform, gene-specific GC% value. Thus, within a genome, genic GC% values can cover a wide range. This is most evident at third codon positions, which are least constrained by amino acid encoding needs. In 1991, Wada and colleagues further noted that, within a phylogenetic group, genomic GC% values can also cover a wide range. This is again most evident at third codon positions. Thus, the dispersion of GC% values among genes within a genome matches the dispersion of GC% values among genomes within a phylogenetic group. Wada described the context-independence of plots of different codon position GC% values against total GC% as a "universal" characteristic. Several studies relate this to recombination. We have confirmed that third codon positions usually relate more to the genes that contain them than to the species. However, in genomes with extreme GC% values (low or high), third codon positions tend to maintain a constant GC%, thus relating more to the species than to the genes that contain them. Genes in an extreme-GC% genome collectively span a smaller GC% range, and mainly rely on first and second codon positions for differentiation as "microisochores". Our results are consistent with the view that differences in GC% serve to recombinationally isolate both genome sectors (facilitating gene duplication) and genomes (facilitating genome duplication, e.g. speciation). In intermediate-GC% genomes, conflict between the needs of the species and the needs of individual genes within that species is minimal. However, in extreme-GC% genomes there is a conflict, which is settled in favour of the species (i.e. group selection) rather than in favour of the gene (genic selection).
Collapse
Affiliation(s)
- Shang-Jung Lee
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
10
|
Barral P J, Cantini L, Hasmy A, Jiménez J, Marcano A. Correlation between strand asymmetry and phylogeny in mitochondrial DNA. J Theor Biol 2005; 236:422-6. [PMID: 15927203 DOI: 10.1016/j.jtbi.2005.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 03/17/2005] [Accepted: 03/17/2005] [Indexed: 11/25/2022]
Abstract
An evolutionary distance is introduced in order to propose an efficient and feasible procedure for phylogeny studies. Our analysis are based on the strand asymmetry property of mitochondrial DNA, but can be applied to other genomes. Comparison of our results with those reported in conventional phylogenetic trees, gives confidence about our approximation. Our findings support the hypotheses about the origin of the skew and its dependence upon evolutionary pressures, and improves previous efforts on using the strand asymmetry property of genomes for phylogeny inference. For the evolutionary distance introduced here, we observe that the more adequate technique for tree reconstructions correspond to an average link method which employs a sequential clustering algorithm.
Collapse
Affiliation(s)
- J Barral P
- Centro Nacional de Secuenciación y Análisis de Acidos Nucleicos CeSAAN, IVIC, Apartado Postal 21827, Caracas 1020A, Venezuela
| | | | | | | | | |
Collapse
|
11
|
Abstract
Of Chargaff's four rules on DNA base composition, only his first parity rule was incorporated into mainstream biology as the DNA double helix. Now, the cluster rule, the second parity rule, and the GC rule, reveal the multiple levels of information in our genomes and potential conflicts between them. In these terms we can understand how double-stranded RNA became an intracellular alarm signal, how potentially recombining nucleic acids can distinguish between 'self' and 'not-self' so leading to the origin of species, how isochores evolved to facilitate gene duplication, and how unlikely it is that any mutation can ever remain truly neutral.
Collapse
Affiliation(s)
- D R Forsdyke
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L3N6, Canada.
| | | |
Collapse
|
12
|
Frank AC, Lobry JR. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 1999; 238:65-77. [PMID: 10570985 DOI: 10.1016/s0378-1119(99)00297-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the absence of bias between the two DNA strands for mutation and selection, the base composition within each strand should be such that A = T and C = G (this state is called Parity Rule type 2, PR2). At a genome scale, i.e. when considering the base composition of a whole genome, PR2 is a good approximation, but there are local and systematic deviations. The question is whether these deviations are a consequence of an underlying bias in mutation or selection. We have tried to review published hypotheses to classify them within the mutational or selective group. This dichotomy is, however, too crude because there is at least one hypothesis based simultaneously upon mutation and selection.
Collapse
Affiliation(s)
- A C Frank
- CNRS UMR 5558, Biométrie, Biologie Evolutive, Université Claude Bernard, Villeurbanne, France
| | | |
Collapse
|
13
|
Rodríguez-Trelles F, Tarrío R, Ayala FJ. Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group. Genetics 1999; 153:339-50. [PMID: 10471717 PMCID: PMC1460741 DOI: 10.1093/genetics/153.1.339] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the nucleotide composition of five genes, Xdh, Adh, Sod, Per, and 28SrRNA, in nine species of Drosophila (subgenus Sophophora) and one of Scaptodrosophila. The six species of the Drosophila saltans group markedly differ from the others in GC content and codon use bias. The GC content in the third codon position, and to a lesser extent in the first position and the introns, is higher in the D. melanogaster and D. obscura groups than in the D. saltans group (in Scaptodrosophila it is intermediate but closer to the melanogaster and obscura species). Differences are greater for Xdh than for Adh, Sod, Per, and 28SrRNA, which are functionally more constrained. We infer that rapid evolution of GC content in the saltans lineage is largely due to a shift in mutation pressure, which may have been associated with diminished natural selection due to smaller effective population numbers rather than reduced recombination rates. The rate of GC content evolution impacts the rate of protein evolution and may distort phylogenetic inferences. Previous observations suggesting that GC content evolution is very limited in Drosophila may have been distorted due to the restricted number of genes and species (mostly D. melanogaster) investigated.
Collapse
Affiliation(s)
- F Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|
14
|
Mackiewicz P, Gierlik A, Kowalczuk M, Dudek MR, Cebrat S. How Does Replication-Associated Mutational Pressure Influence Amino Acid Composition of Proteins? Genome Res 1999. [DOI: 10.1101/gr.9.5.409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have performed detrended DNA walks on whole prokaryotic genomes, on noncoding sequences and, separately, on each position in codons of coding sequences. Our method enables us to distinguish between the mutational pressure associated with replication and the mutational pressure associated with transcription and other mechanisms that introduce asymmetry into prokaryotic chromosomes. In many prokaryotic genomes, each component of mutational pressure affects coding sequences not only in silent positions but also in positions in which changes cause amino acid substitutions in coded proteins. Asymmetry in the silent positions of codons differentiates the rate of translation of mRNA produced from leading and lagging strands. Asymmetry in the amino acid composition of proteins resulting from replication-associated mutational pressure also corresponds to leading and lagging roles of DNA strands, whereas asymmetry connected with transcription and coding function corresponds to the distance of genes from the origin or terminus of chromosome replication.
Collapse
|
15
|
Abstract
Analysis of 22 complete sequences of double-stranded DNA viruses reveals striking compositional asymmetries between leading and lagging, and between transcribed and non-transcribed strands. In all bi-directionally replicated genomes analyzed, the observed leading strand GC skew (measuring relative excess of guanines versus cytosines) is different from that in the lagging strand. In most of these genomes GC skew switches polarity close to replication origins. GC skew changes linearly across adenovirus linear genomes, which replicate from one end. In papillomavirus, GC skew is positive in one half of the genome where transcription and replication proceed in the same direction, and is close to zero in the other half with divergent transcription and replication. Possible contributions of these two processes (and associated repair mechanisms) as well as other potential sources of strand bias in the observed asymmetries are discussed. Use of cumulative skew plots for genome comparisons is demonstrated on the example of herpes simplex virus.
Collapse
Affiliation(s)
- A Grigoriev
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
16
|
Mouchiroud D, Robinson M, Gautier C. Impact of changes in GC content on the silent molecular clock in murids. Gene 1997; 205:317-22. [PMID: 9461406 DOI: 10.1016/s0378-1119(97)00480-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Murid nuclear genomes are more homogeneous in GC content than those of most mammals, which leads to the question of how such important compositional changes have accumulated. This paper reports on relationships between frequencies of synonymous differences and GC change, in the lineages leading to human and murids. For this, we used the four-species approach: GC changes between human and murids were compared to the frequencies of synonymous differences, measured between two independent species without GC change (bovine and pig), by using orthologous genes common to all four species. We report three conclusions: (1) Among genes with little GC change, 60% of the variability of synonymous substitution frequencies is explained by the gene-specific rate component. (2) GC changes in murid genomes are independent of the gene-specific rate component. Slowly evolving genes in pig bovine comparison can show strong GC change in murids. (3) By using a GC-independent estimate of the substitution rate, we show that GC changes in murid genomes increase synonymous substitution frequencies. The GC homogenization considerably weakens the gene-specific conservation of substitution rates in murids, and could explain part of the increase of evolutionary rates observed in this group. We present a mechanism that can account for the evolution of the GC homogenization in murids.
Collapse
Affiliation(s)
- D Mouchiroud
- Laboratoire de Biométrie, Génétique et Biologie des Populations, Université Claude Bernard-Lyon, I, UMR-CNRS 5558, Villeurbanne, France.
| | | | | |
Collapse
|
17
|
von Sternberg R. The role of constrained self-organization in genome structural evolution. Acta Biotheor 1996; 44:95-118. [PMID: 9028019 DOI: 10.1007/bf00048418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A hypothesis of genome structural evolution is explored. Rapid and cohesive alterations in genome organization are viewed as resulting from the dynamic and constrained interactions of chromosomal subsystem components. A combination of macromolecular boundary conditions and DNA element involvement in far-from-equilibrium reactions is proposed to increase the complexity of genomic subsystems via the channelling of genome turnover; interactions between subsystems create higher-order subsystems expanding the phase space for further genetic evolution. The operation of generic constraints on structuration in genome evolution is suggested by i) universal, homoplasic features of chromosome organization and ii) the metastable nature of genome structures where lower-level flux is constrained by higher-order structures. Phenomena such as 'genomic shock', bursts of transposable element activity, concerted evolution, etc., are hypothesized to result from constrained systemic responses to endogenous/exogenous, micro/macro perturbations. The constraints operating on genome turnover are expected to increase with chromosomal structural complexity, the number of interacting subsystems, and the degree to which interactions between genomic components are tightly ordered.
Collapse
Affiliation(s)
- R von Sternberg
- Center for Intelligent Systems, T.J. Watson School, State University of New York at Binghamton 13902, USA
| |
Collapse
|
18
|
Abstract
A correspondence between open reading frames in sense and antisense strands is expected from the hypothesis that the prototypic triplet code was of general form RNY, where R is a purine base, N is any base, and Y is a pyrimidine. A deficit of stop codons in the antisense strand (and thus long open reading frames) is predicted for organisms with high G + C percentages; however, two bacteria (Azotobacter vinelandii, Rhodobacter capsulatum) have larger average antisense strand open reading frames than predicted from (G + C)%. The similar codon frequencies found in sense and antisense strands can be attributed to the wide distribution of inverted repeats (stem-loop potential) in natural DNA sequences.
Collapse
Affiliation(s)
- D R Forsdyke
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Forsdyke DR. Relative roles of primary sequence and (G + C)% in determining the hierarchy of frequencies of complementary trinucleotide pairs in DNAs of different species. J Mol Evol 1995; 41:573-81. [PMID: 7490771 DOI: 10.1007/bf00175815] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To an approximation Chargaff's rule (%A = %T; %G = %C) applies to single-stranded DNA. In long sequences, not only complementary bases but also complementary oligonucleotides are present in approximately equal frequencies. This applies to all species studied. However, species usually differ in base composition. With the goal of understanding the evolutionary forces involved, I have compared the frequencies of trinucleotides in long sequences and their shuffled counterparts. Among the 32 complementary trinucleotide pairs there is a hierarchy of frequencies which is influenced both by base composition (not affected by shuffling the order of the bases) and by base order (affected by shuffling). The influence of base order is greatest in DNA of 50% G + C and seems to reflect a more fundamental hierarchy of dinucleotide frequencies. Thus if TpA is at low frequency, all eight TpA-containing trinucleotides are at low frequency. Mammals and their viruses share similar hierarchies, with intra- and intergenomic differences being mainly associated with differences in base composition (percentage G + C). E. coli and, to a lesser extent, Drosophila melanogaster hierarchies differ from mammalian hierarchies; this is associated with differences both in base composition and in base order. It is proposed that Chargaff's rule applies to single-stranded DNA because there has been an evolutionary selection pressure favoring mutations that generate complementary oligonucleotides in close proximity, thus creating a potential to form stem-loops. These are dispersed throughout genomes and are rate-limiting in recombination. Differences in (G + C)% between species would impair interspecies recombination by interfering with stem-loop interactions.
Collapse
Affiliation(s)
- D R Forsdyke
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
20
|
Sueoka N. Directional mutation pressure, mutator mutations, and dynamics of molecular evolution. J Mol Evol 1993; 37:137-53. [PMID: 8411203 DOI: 10.1007/bf02407349] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using a general form of the directional mutation theory, this paper analyzes the effect of mutations in mutator genes on the G+C content of DNA, the frequency of substitution mutations, and evolutionary changes (cumulative mutations) under various degrees of selective constraints. Directional mutation theory predicts that when the mutational bias between A/T and G/C nucleotide pairs is equilibrated with the base composition of a neutral set of DNA nucleotides, the mutation frequency per gene will be much lower than the frequency immediately after the mutator mutation takes place. This prediction explains the wide variation of the DNA G+C content among unicellular organisms and possibly also the wide intragenomic heterogeneity of third codon positions for the genes of multicellular eukaryotes. The present analyses lead to several predictions that are not consistent with a number of the frequently held assumptions in the field of molecular evolution, including belief in a constant rate of evolution, symmetric branching of phylogenetic trees, the generality of higher mutation frequency for neutral sets of nucleotides, the notion that mutator mutations are generally deleterious because of their high mutation rates, and teleological explanations of DNA base composition.
Collapse
Affiliation(s)
- N Sueoka
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| |
Collapse
|
21
|
Abstract
Several lines of evidence are presented which suggest that sequence G + C content and recombination frequency are related in mammals: (i) chromosome G + C content is positively correlated to chiasmata density; (ii) the non-pairing region of the Y chromosome has one of the lowest G + C contents of any chromosomal segment; (iii) a reduction in the rate of recombination at several loci is mirrored by a decrease in G + C content; and (iv) when compared with humans, mice have a lower variance in chiasmata density which is reflected in a lower variance in G + C content. The observed relation between recombination frequency and sequence G + C content provides an elegant explanation of why gene density is higher in G + C rich isochores than in other parts of the genome, and why long interspersed elements (LINES) are exclusive to G + C poor isochores. However, the cause of the relation is as yet unknown. Several possibilities are considered, including gene conversion.
Collapse
Affiliation(s)
- A Eyre-Walker
- Institute of Cell Animal and Population Biology, University of Edinburgh, U.K
| |
Collapse
|
22
|
Collins DW, Jukes TH. Relationship between G + C in silent sites of codons and amino acid composition of human proteins. J Mol Evol 1993; 36:201-13. [PMID: 8483158 DOI: 10.1007/bf00160475] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have investigated the relationship between the G + C content of silent (synonymous) sites in codons and the amino acid composition of encoded proteins for approximately 1,600 human genes. There are positive correlations between silent site G + C and the proportions of codons for Arg, Pro, Ala, Trp, His, Gln, and Leu and negative ones for Tyr, Phe, Asn, Ile, Lys, Asp, Thr, and Glu. The median proteins coded by groups of genes that differ in silent-site G + C content also differ in amino acid composition, as do some proteins coded by homologous genes. The pattern of compositional change can be largely explained by directional mutation pressure, the genetic code, and differences in the frequencies of accepted amino acid substitutions; the shifts in protein composition are likely to be selectively neutral.
Collapse
Affiliation(s)
- D W Collins
- Space Sciences Laboratory, University of California, Berkeley
| | | |
Collapse
|
23
|
Abstract
A diploid human genome contains approximately six billion nucleotides. This enormous amount of genetic information can be replicated with great accuracy in only a few hours. However, because DNA strands are oriented antiparallel while DNA polymerization only occurs in the 5'----3' direction, semi-conservative replication of double-stranded DNA is an asymmetric process, i.e., there is a leading and a lagging strand. This provides a considerable opportunity for non-random error rates, because the architecture of the two strands as well as the DNA polymerases that replicate them may be different. In addition, the proteins that start or finish chains may well be different from those that perform the bulk of chain elongation. Furthermore, while replication fidelity depends on the absolute and relative concentrations of the four deoxyribonucleotide precursors, these are not equal in vivo, not constant throughout the cell cycle, and not necessarily equivalent in all cell types. Finally, the fidelity of DNA synthesis is sequence-dependent and the eukaryotic nuclear genome is a heterogeneous substrate. It contains repetitive and non-repetitive sequences and can actually be considered as two subgenomes that differ in nucleotide composition and gene content and that replicate at different times. The effects that each of these asymmetries may have on error rates during replication of the eukaryotic genome are discussed.
Collapse
Affiliation(s)
- T A Kunkel
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|