1
|
Kittipornkul P, Treesubsuntorn C, Kobthong S, Yingchutrakul Y, Julpanwattana P, Thiravetyan P. The potential of proline as a key metabolite to design real-time plant water deficit and low-light stress detector in ornamental plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36152-36162. [PMID: 37284956 DOI: 10.1007/s11356-023-27990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Nowadays, people are interested to use plants, especially air-purifying plants, in residential and other indoor settings to purify indoor air and increase the green area in the building. In this study, we investigated the effect of water deficit and low light intensity on the physiology and biochemistry of popular ornamental plants, including Sansevieria trifasciata, Episcia cupreata and Epipremnum aureum. Plants were grown under low light intensity in the range of 10-15 μmol quantum m-2 s-1 and 3 days of water deficit. The results showed that these three ornamental plants responded to water deficit with different pathways. Metabolomic analysis indicated that water deficit affected Episcia cupreata and Epipremnum aureum by inducing a 1.5- to 3-fold increase of proline and a 1.1- to 1.6-fold increase in abscisic acid compared to well-watered conditions, which led to hydrogen peroxide accumulation. This resulted in a reduction of stomatal conductance, photosynthesis rate and transpiration. Sansevieria trifasciata responded to water deficit by significantly increasing gibberellin by around 2.8-fold compared to well-watered plants and proline contents by around 4-fold, while stomatal conductance, photosynthesis rate and transpiration were maintained. Notably, proline accumulation under water deficit stress could be attributed to both gibberellic acid and abscisic acid, depending on plant species. Therefore, the enhancement of proline accumulation in ornamental plants under water deficit could be detected early from day 3 after water deficit conditions, and this compound can be used as a key compound for real-time biosensor development in detecting plant stress under water deficit in a future study.
Collapse
Affiliation(s)
- Piyatida Kittipornkul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bangkuntien), 49 Soi Tientalay 25, Bangkuntien, Bangkok, 10150, Thailand.
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Sucheewin Kobthong
- Centre of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| |
Collapse
|
2
|
Kong W, Yoo MJ, Zhu D, Noble JD, Kelley TM, Li J, Kirst M, Assmann SM, Chen S. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C 3 to CAM transition. PLANT MOLECULAR BIOLOGY 2020; 103:653-667. [PMID: 32468353 DOI: 10.1007/s11103-020-01016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/17/2020] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE: The timing and transcriptomic changes during the C3 to CAM transition of common ice plant support the notion that guard cells themselves can shift from C3 to CAM. Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis: stomata close during the day, enhancing water conservation, and open at night, allowing CO2 uptake. Mesembryanthemum crystallinum (common ice plant) is a facultative CAM species that can shift from C3 photosynthesis to CAM under salt or drought stresses. However, the molecular mechanisms underlying the stress induced transition from C3 to CAM remain unknown. Here we determined the transition time from C3 to CAM in M. crystallinum under salt stress. In parallel, single-cell-type transcriptomic profiling by 3'-mRNA sequencing was conducted in isolated stomatal guard cells to determine the molecular changes in this key cell type during the transition. In total, 495 transcripts showed differential expression between control and salt-treated samples during the transition, including 285 known guard cell genes, seven CAM-related genes, 18 transcription factors, and 185 other genes previously not found to be expressed in guard cells. PEPC1 and PPCK1, which encode key enzymes of CAM photosynthesis, were up-regulated in guard cells after seven days of salt treatment, indicating that guard cells themselves can shift from C3 to CAM. This study provides important information towards introducing CAM stomatal behavior into C3 crops to enhance water use efficiency.
Collapse
Affiliation(s)
- Wenwen Kong
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Mi-Jeong Yoo
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
| | - Dan Zhu
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Jerald D Noble
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Theresa M Kelley
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA.
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA.
| |
Collapse
|
3
|
A Rapid and Reliable Method for Total Protein Extraction from Succulent Plants for Proteomic Analysis. Protein J 2017; 36:308-321. [PMID: 28497409 DOI: 10.1007/s10930-017-9720-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Crassulacean acid metabolism plants have some morphological features, such as succulent and reduced leaves, thick cuticles, and sunken stomata that help them prevent excessive water loss and irradiation. As molecular constituents of these morphological adaptations to xeric environments, succulent plants produce a set of specific compounds such as complex polysaccharides, pigments, waxes, and terpenoids, to name a few, in addition to uncharacterized proteases. Since all these compounds interfere with the analysis of proteins by electrophoretic techniques, preparation of high quality samples from these sources represents a real challenge. The absence of adequate protocols for protein extraction has restrained the study of this class of plants at the molecular level. Here, we present a rapid and reliable protocol that could be accomplished in 1 h and applied to a broad range of plants with reproducible results. We were able to obtain well-resolved SDS/PAGE protein patterns in extracts from different members of the subfamilies Agavoideae (Agave, Yucca, Manfreda, and Furcraea), Nolinoideae (Dasylirion and Beucarnea), and the Cactaceae family. This method is based on the differential solubility of contaminants and proteins in the presence of acetone and pH-altered solutions. We speculate about the role of saponins and high molecular weight carbohydrates to produce electrophoretic-compatible samples. A modification of the basic protocol allowed the analysis of samples by bidimensional electrophoresis (2DE) for proteomic analysis. Furostanol glycoside 26-O-β-glucosidase (an enzyme involved in steroid saponin synthesis) was successfully identified by mass spectrometry analysis and de novo sequencing of a 2DE spot from an Agave attenuata sample.
Collapse
|
4
|
Borland AM, Wullschleger SD, Weston DJ, Hartwell J, Tuskan GA, Yang X, Cushman JC. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. PLANT, CELL & ENVIRONMENT 2015; 38:1833-49. [PMID: 25366937 DOI: 10.1111/pce.12479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 05/20/2023]
Abstract
Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.
Collapse
Affiliation(s)
- Anne M Borland
- School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - Stan D Wullschleger
- Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| | - David J Weston
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - James Hartwell
- Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gerald A Tuskan
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - Xiaohan Yang
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA
| |
Collapse
|
5
|
Cushman JC, Davis SC, Yang X, Borland AM. Development and use of bioenergy feedstocks for semi-arid and arid lands. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4177-93. [PMID: 25873672 DOI: 10.1093/jxb/erv087] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.
Collapse
Affiliation(s)
- John C Cushman
- Department of Biochemistry & Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Sarah C Davis
- Voinovich School of Leadership and Public Affairs and Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6407, USA
| | - Anne M Borland
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6407, USA School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
6
|
Campos H, Trejo C, Peña-Valdivia CB, García-Nava R, Conde-Martínez FV, Cruz-Ortega MDR. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I. PHOTOSYNTHESIS RESEARCH 2014; 122:23-39. [PMID: 24798124 DOI: 10.1007/s11120-014-0008-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/14/2014] [Indexed: 05/08/2023]
Abstract
Agave salmiana Otto ex Salm-Dyck, a crassulacean acid metabolism plant that is adapted to water-limited environments, has great potential for bioenergy production. However, drought stress decreases the requirement for light energy, and if the amount of incident light exceeds energy consumption, the photosynthetic apparatus can be injured, thereby limiting plant growth. The objective of this study was to evaluate the effects of drought and re-watering on the photosynthetic efficiency of A. salmiana seedlings. The leaf relative water content and leaf water potential decreased to 39.6 % and -1.1 MPa, respectively, over 115 days of water withholding and recovered after re-watering. Drought caused a direct effect on photosystem II (PSII) photochemistry in light-acclimated leaves, as indicated by a decrease in the photosynthetic electron transport rate. Additionally, down-regulation of photochemical activity occurred mainly through the inactivation of PSII reaction centres and an increased thermal dissipation capacity of the leaves. Prompt fluorescence kinetics also showed a larger pool of terminal electron acceptors in photosystem I (PSI) as well as an increase in some JIP-test parameters compared to controls, reflecting an enhanced efficiency and specific fluxes for electron transport from the plastoquinone pool to the PSI terminal acceptors. All the above parameters showed similar levels after re-watering. These results suggest that the thermal dissipation of excess energy and the increased energy conservation from photons absorbed by PSII to the reduction of PSI end acceptors may be an important acclimation mechanism to protect the photosynthetic apparatus from over-excitation in Agave plants.
Collapse
Affiliation(s)
- Huitziméngari Campos
- Posgrado en Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo, 56230, México, México,
| | | | | | | | | | | |
Collapse
|
7
|
Yamori W, Hikosaka K, Way DA. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. PHOTOSYNTHESIS RESEARCH 2014; 119:101-17. [PMID: 23801171 DOI: 10.1007/s11120-013-9874-6] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/12/2013] [Indexed: 05/18/2023]
Abstract
Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that would experience a rise in growing season temperatures over their lifespan. Interestingly, across growth temperatures, the extent of temperature homeostasis of photosynthesis was maintained irrespective of the extent of the change in the optimum temperature for photosynthesis (T opt), indicating that some plants achieve greater photosynthesis at the growth temperature by shifting T opt, whereas others can also achieve greater photosynthesis at the growth temperature by changing the shape of the photosynthesis-temperature curve without shifting T opt. It is considered that these differences in the inherent stability of temperature acclimation of photosynthesis would be reflected by differences in the limiting steps of photosynthetic rate.
Collapse
Affiliation(s)
- Wataru Yamori
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa-no-ha 6-2-1, Kashiwa, Chiba, 277-0882, Japan,
| | | | | |
Collapse
|
8
|
Borland AM, Barrera Zambrano VA, Ceusters J, Shorrock K. The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. THE NEW PHYTOLOGIST 2011; 191:619-633. [PMID: 21679188 DOI: 10.1111/j.1469-8137.2011.03781.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The photosynthetic specialization of crassulacean acid metabolism (CAM) has evolved many times in response to selective pressures imposed by water limitation. Integration of circadian and metabolite control over nocturnal C₄ and daytime C₃ carboxylation processes in CAM plants provides plasticity for optimizing carbon gain and water use by extending or curtailing the period of net CO₂ uptake over any 24-h period. Photosynthetic plasticity underpins the ecological diversity of CAM species and contributes to the potential for high biomass production in water-limited habitats. Perceived evolutionary constraints on the dynamic range of CO₂ acquisition strategies in CAM species can be reconciled with functional anatomical requirements and the metabolic costs of maintaining the enzymatic machinery required for C₃ and C₄ carboxylation processes. Succulence is highlighted as a key trait for maximizing biomass productivity in water-limited habitats by serving to buffer water availability, by maximizing the magnitude of nocturnal CO₂ uptake and by extending the duration of C₄ carboxylation beyond the night period. Examples are discussed where an understanding of the diverse metabolic and ecological manifestations of CAM can be exploited for the sustainable productivity of economically and ecologically important species.
Collapse
Affiliation(s)
- Anne M Borland
- School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | | | - Johan Ceusters
- School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Department of Biosystems, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Willem De Croylaan 42, B-3001 Heverlee, Belgium
| | - Katherine Shorrock
- School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| |
Collapse
|
9
|
|
10
|
Lüttge U. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments. AOB PLANTS 2010; 2010:plq005. [PMID: 22476063 PMCID: PMC3000696 DOI: 10.1093/aobpla/plq005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/16/2010] [Accepted: 05/10/2010] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Single stressors such as scarcity of water and extreme temperatures dominate the struggle for life in severely dry desert ecosystems or cold polar regions and at high elevations. In contrast, stress in the tropics typically arises from a dynamic network of interacting stressors, such as availability of water, CO(2), light and nutrients, temperature and salinity. This requires more plastic spatio-temporal responsiveness and versatility in the acquisition and defence of ecological niches. CRASSULACEAN ACID METABOLISM The mode of photosynthesis of crassulacean acid metabolism (CAM) is described and its flexible expression endows plants with powerful strategies for both acclimation and adaptation. Thus, CAM plants are able to inhabit many diverse habitats in the tropics and are not, as commonly thought, successful predominantly in dry, high-insolation habitats. TROPICAL CAM HABITATS Typical tropical CAM habitats or ecosystems include exposed lava fields, rock outcrops of inselbergs, salinas, savannas, restingas, high-altitude páramos, dry forests and moist forests. MORPHOTYPICAL AND PHYSIOTYPICAL PLASTICITY OF CAM Morphotypical and physiotypical plasticity of CAM phenotypes allow a wide ecophysiological amplitude of niche occupation in the tropics. Physiological and biochemical plasticity appear more responsive by having more readily reversible variations in performance than do morphological adaptations. This makes CAM plants particularly fit for the multi-factor stressor networks of tropical forests. Thus, while the physiognomy of semi-deserts outside the tropics is often determined by tall succulent CAM plants, tropical forests house many more CAM plants in terms of quantity (biomass) and quality (species diversity).
Collapse
Affiliation(s)
- Ulrich Lüttge
- Institute of Botany, Technical University of Darmstadt, Schnittspahnstrasse 3-5, D-64287 Darmstadt, Germany
| |
Collapse
|
11
|
Ceusters J, Borland AM, De Proft MP. Drought adaptation in plants with crassulacean acid metabolism involves the flexible use of different storage carbohydrate pools. PLANT SIGNALING & BEHAVIOR 2009; 4:212-4. [PMID: 19721752 PMCID: PMC2652531 DOI: 10.4161/psb.4.3.7813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 05/09/2023]
Abstract
Nocturnal CO2 uptake in CAM plants is sustained by the degradation of storage carbohydrate which provides the acceptor (PEP) for the nocturnal carboxylase (PEPC). The investment of resources into a transient storage carbohydrate pool unavoidably places restriction on other metabolic activities including dark respiration, growth and acclimation to abiotic stress. In our recent report the flexible use of different storage carbohydrate pools is shown to be involved in the acclimation process to drought and recovery from dehydration. While starch breakdown stoichiometrically accounts for nocturnal CO2 uptake under well-watered conditions, the sucrose pool is maintained in preference to starch during progressing drought and sucrose becomes the major source of carbon fuelling the dark reactions after 45 days of water deprivation. Re-watering plants results in a recovery to the original situation, with starch constituting the main carbohydrate reserve for nocturnal provision of PEP. However, substantial amounts of starch are also retained in the leaves of re-watered plants by restricting export/respiration and thus provides a potential buffer capacity against a return to water deprivation. This significant conservation of starch suggests the ability to perceive, remember and anticipate the formerly encountered drought stress in some way, with the adaptation of the equilibrium of carbohydrate balance as a central factor underpinning the physiological homeostasis of CAM plants.
Collapse
Affiliation(s)
- Johan Ceusters
- Faculty of Bioscience Engineering, Department of Biosystems, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
12
|
Ceusters J, Borland AM, Londers E, Verdoodt V, Godts C, De Proft MP. Differential usage of storage carbohydrates in the CAM bromeliad Aechmea 'Maya' during acclimation to drought and recovery from dehydration. PHYSIOLOGIA PLANTARUM 2009; 135:174-84. [PMID: 19077141 DOI: 10.1111/j.1399-3054.2008.01186.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CAM requires a substantial investment of resources into storage carbohydrates to account for nocturnal CO(2) uptake, thereby restricting carbohydrate partitioning to other metabolic activities, including dark respiration, growth and acclimation to abiotic stress. Flexible modulation of carbon flow to the different competing sinks under changing environmental conditions is considered a key determinant for the growth, productivity and ecological success of the CAM pathway. The aim of the present study was to examine how shifts in carbohydrate partitioning could assure maintenance of photosynthetic integrity and a positive carbon balance under conditions of increasing water deprivation in CAM species. Measurements of gas exchange, leaf water relations, malate, starch and soluble sugar (glucose, fructose and sucrose) contents were made in leaves of the CAM bromeliad Aechmea 'Maya' over a 6-month period of drought and subsequently over a 2-month period of recovery from drought. Results indicated that short-term influences of water stress were minimized by elevating the level of respiratory recycling, and carbohydrate pools were maintained at the expense of export for growth while providing a comparable nocturnal carbon gain to that in well-watered control plants. Longer term drought resulted in a disproportionate depletion of key carbohydrate reserves. Sucrose, which was of minor importance for providing substrate for the dark reactions under well-watered conditions, became the major source of carbohydrate for nocturnal carboxylation as drought progressed. Flexibility in terms of the major carbohydrate source used to sustain dark CO(2) uptake is therefore considered a crucial factor in meeting the carbon and energy demands under limiting environmental conditions. Recovery from CAM-idling was found to be dependent on the restoration of the starch pool, which was used predominantly for provision of substrate for nocturnal carboxylation, while net carbon export was limited. The conservation of starch for the nocturnal reactions might be adaptive with regard to responding efficiently to a return of water stress.
Collapse
Affiliation(s)
- Johan Ceusters
- Faculty of Bioscience Engineering, Department of Biosystems, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Willem De Croylaan 42, Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
13
|
Antony E, Borland AM. The Role and Regulation of Sugar Transporters in Plants with Crassulacean Acid Metabolism. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-68421-3_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Skillman JB, Garcia M, Virgo A, Winter K. Growth irradiance effects on photosynthesis and growth in two co-occurring shade-tolerant neotropical perennials of contrasting photosynthetic pathways. AMERICAN JOURNAL OF BOTANY 2005; 92:1811-1819. [PMID: 21646098 DOI: 10.3732/ajb.92.11.1811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Dieffenbachia longispatha (C3) and Aechmea magdalenae (Crassulacean acid metabolism, CAM) are syntopic, neotropical forest perennials in central Panama that are restricted to shaded habitats. This is of particular interest for A. magdalenae because, like other understory CAM bromeliad species, it appears functionally and structurally to be better suited to life in full sun. Growth irradiance (GI) effects on photosynthesis and growth in both species were explored in the context of sun/shade trade-off concepts largely derived from studies of C3 plants. Potted plants were grown outdoors in 1, 55, and 100% full sun for 5 mo under well-watered conditions. While both species grew faster in high compared to low light, maximum relative growth rates (RGR) in full sun were still extremely slow with A. magdalenae showing a RGR approximately half that of D. longispatha. Photosynthetic capacity increased with GI in D. longispatha but not in A. magdalenae. Aechmea magdalenae responded to GI with shifts in the activity of the different CAM phases. Both species were photoinhibited in full sun, but more so in A. magdalenae. Despite possessing many traits considered adaptive in high light, these results suggest that A. magdalenae is unlikely to attain sufficient growth rates to thrive in productive, high-light habitats.
Collapse
Affiliation(s)
- John B Skillman
- Department of Biology, California State University, San Bernardino, California 92407 USA
| | | | | | | |
Collapse
|
15
|
Abstract
A circadian clock optimizes many aspects of plant biology relative to the light/dark cycle. One example is the circadian control of primary metabolism and CO2 fixation in plants that carry out a metabolic adaptation of photosynthesis called CAM (crassulacean acid metabolism). These plants perform primary CO2 fixation at night using the enzyme phosphoenolpyruvate carboxylase and exhibit a robust rhythm of CO2 fixation under constant conditions. Transcriptomic analysis has revealed that many genes encoding enzymes in primary metabolic pathways such as glycolysis and starch metabolism are under the control of the circadian clock in CAM plants. These transcript changes are accompanied by changes in metabolite levels associated with flux through these pathways. The molecular basis for the circadian control of CAM remains to be elucidated. Current research is focusing on the identity of the CAM central oscillator and the output pathway that links the central oscillator to the control of plant metabolism.
Collapse
|
16
|
|