1
|
Meijboom FS, Hasch A, Ruiz de Azua I, Cologna CT, Loopmans S, Lutz B, Müller MB, Ghesquière B, van der Kooij MA. Adaptations in hepatic glucose metabolism after chronic social defeat stress in mice. Sci Rep 2024; 14:25511. [PMID: 39462137 PMCID: PMC11513145 DOI: 10.1038/s41598-024-76310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic stress has been shown to induce hyperglycemia in both peripheral blood and the brain, yet the detailed mechanisms of glucose metabolism under stress remain unclear. Utilizing 13C6-labeled glucose to trace metabolic pathways, our study investigated the impact of stress by chronic social defeat (CSD) on glucose metabolites in the liver and brain one week post-stress. We observed a reduction in 13C6-enrichment of glucose metabolites in the liver, contrasting with unchanged levels in the brain. Notably, hepatic glycogen levels were reduced while lactate concentrations were elevated, suggesting lactate as an alternative energy source during stress. Long-term effects were also examined, revealing normalized blood glucose levels and restored glycogen stores in the liver three weeks post-CSD, despite sustained increases in food intake. This normalization is hypothesized to result from diminished glucagon levels leading to reduced glycogen phosphorylase activity. Our findings highlight a temporal shift in glucose metabolism, with hyperglycemia and glycogen depletion in the liver early after CSD, followed by a later phase of metabolic stabilization. These results underscore the liver's critical role in adapting to CSD and provide insights into the metabolic adjustments that maintain glucose homeostasis under prolonged stress conditions.
Collapse
Affiliation(s)
- Fabiënne S Meijboom
- Department for Developmental Origins of Disease (DDOD), Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Annika Hasch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Camila Takeno Cologna
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Shauni Loopmans
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Beat Lutz
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, Translational Psychiatry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Michael A van der Kooij
- Department for Developmental Origins of Disease (DDOD), Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
2
|
Batista EK, de Lima LMA, Gomes DA, Crans DC, Silva WE, Belian MF, Lira EC. Dexamethasone-Induced Insulin Resistance Attenuation by Oral Sulfur-Oxidovanadium(IV) Complex Treatment in Mice. Pharmaceuticals (Basel) 2024; 17:760. [PMID: 38931427 PMCID: PMC11206843 DOI: 10.3390/ph17060760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Vanadium compounds are known to exert insulin-enhancing activity, normalize elevated blood glucose levels in diabetic subjects, and show significant activity in models of insulin resistance (IR). Faced with insulin resistance, the present work investigates the antidiabetic performance of a known oxidovanadium(IV)-based coordination compound-[VIVO(octd)]-and effects associated with glucocorticoid-induced insulin resistance in mice. The effects of [VIVO(octd)] were evaluated in a female Swiss mice model of insulin resistance induced by seven days of dexamethasone treatment in comparison with groups receiving metformin treatment. Biological assays such as hematological, TyG index, hepatic lipids, glycogen, oxidative stress in the liver, and oral glucose tolerance tests were evaluated. [VIVO(octd)] was characterized with 51V NMR, infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR), electronic absorption spectroscopy, and mass spectrometry (ESI-FT-MS). The [VIVO(octd)] oral treatment (50 mg/kg) had an antioxidant effect, reducing 50% of fast blood glucose (p < 0.05) and 25% of the TyG index, which is used to estimate insulin resistance (p < 0.05), compared with the non-treated group. The oxidovanadium-sulfur compound is a promising antihyperglycemic therapeutic, including in cases aggravated by insulin resistance induced by glucocorticoid treatment.
Collapse
Affiliation(s)
- Eucilene K. Batista
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| | - Lidiane M. A. de Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Dayane A. Gomes
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80513, USA
| | - Wagner E. Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Mônica F. Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Eduardo C. Lira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| |
Collapse
|
3
|
Sex-Dimorphic Glucocorticoid Receptor Regulation of Hypothalamic Primary Astrocyte Glycogen Metabolism: Interaction with Norepinephrine. NEUROGLIA (BASEL, SWITZERLAND) 2022; 3:144-157. [PMID: 36685006 PMCID: PMC9850496 DOI: 10.3390/neuroglia3040010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Astrocyte glycogen is a critical metabolic variable that impacts hypothalamic control of glucostasis. Glucocorticoid hormones regulate peripheral glycogen, but their effects on hypothalamic glycogen are not known. A hypothalamic astrocyte primary culture model was used to investigate the premise that glucocorticoids impose sex-dimorphic independent and interactive control of glycogen metabolic enzyme protein expression and glycogen accumulation. The glucocorticoid receptor (GR) agonist dexamethasone (DEX) down-regulated glycogen synthase (GS), glycogen phosphorylase (GP)-brain type (GPbb), and GP-muscle type (GPmm) proteins in glucose-supplied male astrocytes, but enhanced these profiles in female. The catecholamine neurotransmitter norepinephrine (NE) did not alter these proteins, but amplified DEX inhibition of GS and GPbb in male or abolished GR stimulation of GPmm in female. In both sexes, DEX and NE individually increased glycogen content, but DEX attenuated the magnitude of noradrenergic stimulation. Glucoprivation suppressed GS, GPbb, and GPmm in male, but not female astrocytes, and elevated or diminished glycogen in these sexes, respectively. Glucose-deprived astrocytes exhibit GR-dependent induced glycogen accumulation in both sexes, and corresponding loss (male) or attenuation (female) of noradrenergic-dependent glycogen build-up. Current evidence for GR augmentation of hypothalamic astrocyte glycogen content in each sex, yet divergent effects on glycogen enzyme proteins infers that glucocorticoids may elicit opposite adjustments in glycogen turnover in each sex. Results document GR modulation of NE stimulation of glycogen accumulation in the presence (male and female) or absence (female) of glucose. Outcomes provide novel proof that astrocyte energy status influences the magnitude of GR and NE signal effects on glycogen mass.
Collapse
|
4
|
Chen S, Sbuh N, Veedu RN. Antisense Oligonucleotides as Potential Therapeutics for Type 2 Diabetes. Nucleic Acid Ther 2020; 31:39-57. [PMID: 33026966 DOI: 10.1089/nat.2020.0891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from inefficient signaling and insufficient production of insulin. Conventional management of T2D has largely relied on small molecule-based oral hypoglycemic medicines, which do not halt the progression of the disease due to limited efficacy and induce adverse effects as well. To this end, antisense oligonucleotide has attracted immense attention in developing antidiabetic agents because of their ability to downregulate the expression of disease-causing genes at the RNA and protein level. To date, seven antisense agents have been approved by the United States Food and Drug Administration for therapies of a variety of human maladies, including genetic disorders. Herein, we provide a comprehensive review of antisense molecules developed for suppressing the causative genes believed to be responsible for insulin resistance and hyperglycemia toward preventing and treating T2D.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Nabayet Sbuh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
5
|
van der Kooij MA. The impact of chronic stress on energy metabolism. Mol Cell Neurosci 2020; 107:103525. [PMID: 32629109 DOI: 10.1016/j.mcn.2020.103525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 01/21/2023] Open
Abstract
The brain is exceptionally demanding in terms of energy metabolism. Approximately 20% of the calories consumed are devoted to our cerebral faculties, with the lion's share provided in the form of glucose. The brain's stringent energy dependency requires a high degree of harmonization between the elements responsible for supplying- and metabolizing energetic substrates. However, chronic stress may jeopardize this homeostatic energy balance by disruption of critical metabolic processes. In agreement, stress-related mental disorders have been linked with perturbations in energy metabolism. Prominent stress-induced metabolic alterations include the actions of hormones, glucose uptake and mitochondrial adjustments. Importantly, fundamental stress-responsive metabolic adjustments in humans and animal models bear a striking resemblance. Here, an overview is provided of key findings, demonstrating the pervasive impact of chronic stress on energy metabolism. Furthermore, I argue that medications, aimed primarily at restoring metabolic homeostasis, may constitute a novel approach to treat mental disorders.
Collapse
|
6
|
Toval A, Vicente-Conesa F, Martínez-Ortega P, Kutsenko Y, Morales-Delgado N, Garrigos D, Alonso A, Ribeiro Do Couto B, Popović M, Ferran JL. Hypothalamic Crh/ Avp, Plasmatic Glucose and Lactate Remain Unchanged During Habituation to Forced Exercise. Front Physiol 2020; 11:410. [PMID: 32499715 PMCID: PMC7243680 DOI: 10.3389/fphys.2020.00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
It has been demonstrated that physical activity contributes to a healthier life. However, there is a knowledge gap regarding the neural mechanisms producing these effects. One of the keystones to deal with this problem is to use training programs with equal loads of physical activity. However, irregular motor and stress responses have been found in murine exercise models. Habituation to forced exercise facilitates a complete response to a training program in all rodents, reaching the same load of physical activity among animals. Here, it was evaluated if glucose and lactate - which are stress biomarkers - are increased during the habituation to exercise. Sprague-Dawley rats received an 8-days habituation protocol with progressive increments of time and speed of running. Then, experimental and control (non-habituated) rats were subjected to an incremental test. Blood samples were obtained to determine plasmatic glucose and lactate levels before, immediately after and 30 min after each session of training. Crh and Avp mRNA expression was determined by two-step qPCR. Our results revealed that glucose and lactate levels are not increased during the habituation period and tend to decrease toward the end of the protocol. Also, Crh and Avp were not chronically activated by the habituation program. Lactate and glucose, determined after the incremental test, were higher in control rats without previous contact with the wheel, compared with habituated and wheel control rats. These results suggest that the implementation of an adaptive phase prior to forced exercise programs might avoid non-specific stress responses.
Collapse
Affiliation(s)
- Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Francisco Vicente-Conesa
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Paloma Martínez-Ortega
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Department of Histology and Anatomy, Faculty of Medicine, University of Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Nikolaou N, Arvaniti A, Appanna N, Sharp A, Hughes BA, Digweed D, Whitaker MJ, Ross R, Arlt W, Penning TM, Morris K, George S, Keevil BG, Hodson L, Gathercole LL, Tomlinson JW. Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo. J Endocrinol 2020; 245:207-218. [PMID: 32106090 PMCID: PMC7182088 DOI: 10.1530/joe-19-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical
Sciences, Oxford Brookes University, Oxford,
UK
| | - Nathan Appanna
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Anna Sharp
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Beverly A Hughes
- Institute of Metabolism and Systems
Research, University of Birmingham, Edgbaston, Birmingham,
UK
| | | | | | - Richard Ross
- Department of Oncology and
Metabolism, Faculty of Medicine, Dentistry and Health,
University of Sheffield, Sheffield, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems
Research, University of Birmingham, Edgbaston, Birmingham,
UK
- NIHR Birmingham Biomedical Research
Centre, University Hospitals Birmingham NHS Foundation Trust
and University of Birmingham, Birmingham, UK
| | - Trevor M Penning
- Department of Systems Pharmacology &
Translational Therapeutics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karen Morris
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Sherly George
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Brian G Keevil
- Biochemistry Department,
Manchester University NHS Trust, Manchester, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
| | - Laura L Gathercole
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Department of Biological and Medical
Sciences, Oxford Brookes University, Oxford,
UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes,
Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre,
University of Oxford, Churchill Hospital, Oxford, UK
- Correspondence should be addressed to J W Tomlinson:
| |
Collapse
|
8
|
Regulation of Glucose Homeostasis by Glucocorticoids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215992 DOI: 10.1007/978-1-4939-2895-8_5] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are steroid hormones that regulate multiple aspects of glucose homeostasis. Glucocorticoids promote gluconeogenesis in liver, whereas in skeletal muscle and white adipose tissue they decrease glucose uptake and utilization by antagonizing insulin response. Therefore, excess glucocorticoid exposure causes hyperglycemia and insulin resistance. Glucocorticoids also regulate glycogen metabolism. In liver, glucocorticoids increase glycogen storage, whereas in skeletal muscle they play a permissive role for catecholamine-induced glycogenolysis and/or inhibit insulin-stimulated glycogen synthesis. Moreover, glucocorticoids modulate the function of pancreatic α and β cells to regulate the secretion of glucagon and insulin, two hormones that play a pivotal role in the regulation of blood glucose levels. Overall, the major glucocorticoid effect on glucose homeostasis is to preserve plasma glucose for brain during stress, as transiently raising blood glucose is important to promote maximal brain function. In this chapter we will discuss the current understanding of the mechanisms underlying different aspects of glucocorticoid-regulated mammalian glucose homeostasis.
Collapse
|
9
|
German JP, Thaler JP, Wisse BE, Oh-I S, Sarruf DA, Matsen ME, Fischer JD, Taborsky GJ, Schwartz MW, Morton GJ. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 2011; 152:394-404. [PMID: 21159853 PMCID: PMC3037161 DOI: 10.1210/en.2010-0890] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain has emerged as a target for the insulin-sensitizing effects of several hormonal and nutrient-related signals. The current studies were undertaken to investigate mechanisms whereby leptin lowers circulating blood glucose levels independently of insulin. After extending previous evidence that leptin infusion directly into the lateral cerebral ventricle ameliorates hyperglycemia in rats with streptozotocin-induced uncontrolled diabetes mellitus, we showed that the underlying mechanism is independent of changes of food intake, urinary glucose excretion, or recovery of pancreatic β-cells. Instead, leptin action in the brain potently suppresses hepatic glucose production while increasing tissue glucose uptake despite persistent, severe insulin deficiency. This leptin action is distinct from its previously reported effect to increase insulin sensitivity in the liver and offers compelling evidence that the brain has the capacity to normalize diabetic hyperglycemia in the presence of sufficient amounts of central nervous system leptin.
Collapse
Affiliation(s)
- Jonathan P German
- Department of Medicine, University of Washington at South Lake Union, 815 Mercer Street, N334, PO Box 358055, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zheng XF, Liu L, Zhou J, Miao MY, Zhou JR, Zhu D, Xia ZF, Jiang CL. Biphasic effects of dexamethasone on glycogen metabolism in primary cultured rat hepatocytes. J Endocrinol Invest 2009; 32:756-8. [PMID: 20009502 DOI: 10.1007/bf03346532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucocorticoids (GC), the basic function of which is modulating carbohydrates metabolism, play a critical role in stress response by enhancing the organism's resistance. It is widely believed that they could promote glycogen synthesis. However, it is doubtful whether GC can still stimulate glycogen deposition in stress response, as it is known that glucose is imperatively needed at that time. Here, we used primary cultured rat hepatocytes to investigate the effects of GC on glycogen metabolism in vitro to exclude other influences in stress. The results showed that dexamethasone (Dex) played biphasic effects on hepatocytes glycogen metabolism depending on its dosage and the duration of stimulation. Dex could decrease glycogen content of hepatocytes in the higher concentration within a relatively shorter period of time, which could not be blocked by cycloheximide. Therefore, dual roles in hepatic glycogen metabolism played by GC were demonstrated, and a non-genomic mechanism might be involved in the glycogenolytic action of GC. We postulated that the biphasic effects of GC on hepatic glycogen metabolism might be of important significance in stress response.
Collapse
Affiliation(s)
- X-F Zheng
- Laboratory of Stress Medicine, Department of Nautical Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Complex interactions exist amongst the various components of the neuroendocrine system in order to maintain homeostasis, energy balance and reproductive function. These components include the hypothalamus-pituitary- adrenal and -gonadal axes, the renin-angiotensin-aldosterone system, the sympathetic nervous system and the pancreatic islets. These hormones, peptides and neurotransmitters act in concert to regulate the functions of many organs, notably the liver, muscles, kidneys, thyroid, bone, adrenal glands, adipocytes, vasculature, intestinal tract and gonads, through many intermediary pathways. Endocrine and metabolic disorders can arise from imbalance amongst numerous hormonal factors. These disturbances may be due to endogenous processes, such as increased secretion of hormones from a tumour, as well as exogenous drug administration. Drugs can cause endocrine abnormalities via different mechanisms, including direct alteration of hormone production, changes in the regulation of the hormonal axis, effects on hormonal transport, binding, and signalling, as well as similar changes to counter-regulatory hormone systems. Furthermore, drugs can affect the evaluation of endocrine parameters by causing interference with diagnostic tests. Common drug-induced endocrine and metabolic disorders include disorders of carbohydrate metabolism, electrolyte and calcium abnormalities, as well as drug-induced thyroid and gonadal disorders. An understanding of the proposed mechanisms of these drug effects and their evaluation and differential diagnosis may allow for more critical interpretation of the clinical observations associated with such disorders, better prediction of drug-induced adverse effects and better choices of and rationales for treatment.
Collapse
Affiliation(s)
- Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | | | | | | | | |
Collapse
|
12
|
De Martino MU, Alesci S, Chrousos GP, Kino T. Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism. Ann N Y Acad Sci 2004; 1024:72-85. [PMID: 15265774 DOI: 10.1196/annals.1321.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glucocorticoids exert their extremely diverse effects on numerous biologic activities of humans via only one protein module, the glucocorticoid receptor (GR). The GR binds to the glucocorticoid response elements located in the promoter region of target genes and regulates their transcriptional activity. In addition, GR associates with other transcription factors through direct protein-protein interactions and mutually represses or stimulates each other's transcriptional activities. The latter activity of GR may be more important than the former one, granted that mice harboring a mutant GR, which is active in terms of protein-protein interactions but inactive in terms of transactivation via DNA, survive and procreate, in contrast to mice with a deletion of the entire GR gene that die immediately after birth. We recently found that GR physically interacts with the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), which plays a critical role in the metabolism of glucose, cholesterol, and xenobiotics, as well as in the development of the central nervous system in fetus. GR stimulates COUP-TFII-induced transactivation by attracting cofactors via its activation function-1, while COUP-TFII represses the GR-governed transcriptional activity by tethering corepressors, such as the silencing mediator for retinoid and thyroid hormone receptors (SMRT) and the nuclear receptor corepressors (NCoRs) via its C-terminal domain. Their mutual interaction may play an important role in gluconeogenesis, lipoprotein metabolism, and enzymatic clearance of clinically important compounds and bioactive chemicals, by regulating their rate-limiting enzymes and molecules, including the phosphoenolpyruvate carboxykinase (PEPCK), the cytochrome P450 CYP3A and CYP7A, and several apolipoproteins. It appears that glucocorticoids exert their intermediary effects partly via physical interaction with COUP-TFII.
Collapse
Affiliation(s)
- Massimo U De Martino
- Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1583, USA
| | | | | | | |
Collapse
|
13
|
Gosby AK, Maloney CA, Phuyal JL, Denyer GS, Bryson JM, Caterson ID. Maternal protein restriction increases hepatic glycogen storage in young rats. Pediatr Res 2003; 54:413-8. [PMID: 12788979 DOI: 10.1203/01.pdr.0000077470.63060.9b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study aimed to determine whether maternal protein restriction alters hepatic glycogen metabolism. Mated female rats were fed diets containing 20% protein throughout pregnancy and lactation (CONT), 8% protein throughout pregnancy and lactation (LP), or 8% protein during the last week of pregnancy only and lactation (LLP). Weights and lengths were reduced in the LLP and LP offspring compared with the CONT offspring. The LLP and LP offspring demonstrated reduced insulin concentrations at both 10 and 26 d and also failed to show the increase in insulin seen with time in the CONT offspring. Serum glucose and leptin levels increased with time but were not different among the groups; however, in relation to adiposity leptin levels were greater in the LLP and LP offspring at 26 d. The LLP and LP offspring had increased hepatic glycogen at day 10 (CONT, 75.1 +/- 9.8; LLP, 103.4 +/- 11.0; LP, 116.0 +/- 18.4 glucose residues/g tissue) and d 26 (CONT, 183.1 +/- 38.9; LLP, 395.3 +/- 16.8; LP, 396.6 +/- 15.1 glucose residues/g tissue). Glycogen synthase expression was increased in the LLP and LP offspring at 10 d but not 26 d; glucose transporter 2 and glycogen phosphorylase expressions were not different at either time. At 26 d glycogen synthase activity was not different; however, glycogen phosphorylase a activity was reduced. The enhanced capacity to store glycogen despite reductions in insulin secretion suggests increased insulin sensitivity possibly acting with an alternative non-insulin-dependent glycogen storage mechanism.
Collapse
Affiliation(s)
- Alison K Gosby
- Human Nutrition Unit, School of Molecular and Microbial Biosciences, University of Sydney, Sydney NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
The hypothalamic-pituitary-adrenal (HPA) axis: A major mediator of the adaptive responses to stress. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1567-7443(03)80055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Abstract
Although the general pathways of glycogen synthesis and glycogenolysis are identical in all tissues, the enzymes involved are uniquely adapted to the specific role of glycogen in different cell types. In liver, where glycogen is stored as a reserve of glucose for extrahepatic tissues, the glycogen-metabolizing enzymes have properties that enable the liver to act as a sensor of blood glucose and to store or mobilize glycogen according to the peripheral needs. The prime effector of hepatic glycogen deposition is glucose, which blocks glycogenolysis and promotes glycogen synthesis in various ways. Other glycogenic stimuli for the liver are insulin, glucocorticoids, parasympathetic (vagus) nerve impulses and gluconeogenic precursors such as fructose and amino acids. The phosphorolysis of glycogen is mainly mediated by glucagon and by the orthosympathetic neurotransmitters noradrenaline and ATP. Many glycogenolytic stimuli, e.g. adenosine, nucleotides and NO, also act indirectly, via secretion of eicosanoids from non-parenchymal cells. Effectors often initiate glycogenolysis cooperatively through different mechanisms.
Collapse
Affiliation(s)
- M Bollen
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
16
|
Schneiter P, Tappy L. Kinetics of dexamethasone-induced alterations of glucose metabolism in healthy humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E806-13. [PMID: 9815000 DOI: 10.1152/ajpendo.1998.275.5.e806] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Six healthy human subjects were studied during three 75-g oral, [13C]glucose tolerance tests to assess the kinetics of dexamethasone-induced impairment of glucose tolerance. On one occasion, they received dexamethasone (4 x 0.5 mg/day) during the previous 2 days. On another occasion, they received a single dose (0. 5 mg) of dexamethasone 150 min before ingestion of the glucose load. On the third occasion, they received a placebo. Postload plasma glucose was significantly increased after both 2 days dexamethasone and single dose dexamethasone compared with control (P < 0.05). This corresponded to a 20-23% decrease in the metabolic clearance rate of glucose, whereas total glucose turnover ([6,6-2H]glucose), total (indirect calorimetry) and exogenous glucose oxidation (13CO2 production), and suppression of endogenous glucose production were unaffected by dexamethasone. Plasma insulin concentrations were increased after 2 days of dexamethasone but not after a single dose of dexamethasone. In a second set of experiments, the effect of a single dose of dexamethasone on insulin sensitivity was assessed in six healthy humans during a 2-h euglycemic hyperinsulinemic clamp. Dexamethasone did not significantly alter insulin sensitivity. It is concluded that acute administration of dexamethasone impairs oral glucose tolerance without significantly decreasing insulin sensitivity.
Collapse
Affiliation(s)
- P Schneiter
- Faculty of Medicine, Institute of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | | |
Collapse
|
17
|
Doherty MJ, Cadefau J, Stalmans W, Bollen M, Cohen PT. Loss of the hepatic glycogen-binding subunit (GL) of protein phosphatase 1 underlies deficient glycogen synthesis in insulin-dependent diabetic rats and in adrenalectomized starved rats. Biochem J 1998; 333 ( Pt 2):253-7. [PMID: 9657963 PMCID: PMC1219580 DOI: 10.1042/bj3330253] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatic glycogen synthesis is impaired in insulin-dependent diabetic rats and in adrenalectomized starved rats, and although this is known to be due to defective activation of glycogen synthase by glycogen synthase phosphatase, the underlying molecular mechanism has not been delineated. Glycogen synthase phosphatase comprises the catalytic subunit of protein phosphatase 1 (PP1) complexed with the hepatic glycogen-binding subunit, termed GL. In liver extracts of insulin-dependent diabetic and adrenalectomized starved rats, the level of GL was shown by immunoblotting to be substantially reduced compared with that in control extracts, whereas the level of PP1 catalytic subunit was not affected by these treatments. Insulin administration to diabetic rats restored the level of GL and prolonged administration raised it above the control levels, whereas re-feeding partially restored the GL level in adrenalectomized starved rats. The regulation of GL protein levels by insulin and starvation/feeding was shown to correlate with changes in the level of the GL mRNA, indicating that the long-term regulation of the hepatic glycogen-associated form of PP1 by insulin, and hence the activity of hepatic glycogen synthase, is predominantly mediated through changes in the level of the GL mRNA.
Collapse
Affiliation(s)
- M J Doherty
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland, U.K
| | | | | | | | | |
Collapse
|
18
|
Lopez MP, Gomez-Lechon MJ, Castell JV. Glycogen synthesis in serum-free cultured hepatocytes in response to insulin and dexamethasone. IN VITRO 1984; 20:923-31. [PMID: 6397420 DOI: 10.1007/bf02619665] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Liver parenchymal cells cultured in serum-free medium may retain their ability to synthesize glycogen in response to insulin. Specific hormone requirements are needed by hepatocytes to retain the biochemical pattern of mature cells. Insulin supplementation of culture medium seems to be essential to maintain the glycogen synthesis rate of cultured hepatocytes. The continuous presence of dexamethasone amplified the insulin-induced glycogen synthesis. Cytophotometric analysis showed differences in the way that individual cells accumulate glycogen in response to insulin stimulus, which indicates that liver parenchymal cells in culture are functionally heterogeneous.
Collapse
|
19
|
Abstract
Glucocorticoid treatment in dogs is known to cause hepatocellular swelling due to accumulation of cytoplasmic compounds which variably have been identified histochemically as fat, glycogen, or water. In the present study changes in dog liver, after treatment for 15 days with two different doses of oral or intramuscular prednisone, were examined using histological, histochemical, and ultrastructural techniques as well as quantitative chemical analysis. Thirty mongrel dogs were divided into two control groups and three treatment groups of six dogs each. Dogs which received prednisone orally at 1.2 mg/kg body weight/day, or 4 mg/kg body weight/day, respectively, or received intramuscular prednisone injections of 4 mg/kg body weight/day had hepatomegaly due primarily to hepatocellular accumulation of glycogen. Compared to controls, no changes in the hepatic water concentration were observed, whereas the relative amounts of liver fat were decreased slightly and those of protein were decreased markedly. Hepatocellular glycogen could be demonstrated histochemically in tissues fixed in absolute alcohol, but not in tissues treated with aqueous fixative, such as 10% buffered formalin or Bouin's solution. Glycogen deposition occurred predominantly in the midzone of hepatic acini. Affected hepatocytes varied in size and shape. The most severely affected cells were enlarged five to ten fold with glycogen occupying most of the cytoplasmic space restricting the mitochondria, endoplasmic reticulum, and other organelles to a narrow zone around the cell periphery and the nucleus. It was concluded that treatment with prednisone causes hepatomegaly due to glycogenosis in the dog.
Collapse
|
20
|
Laloux M, Stalmans W, Hers HG. On the mechanism by which glucocorticoids cause the activation of glycogen synthase in mouse and rat livers. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 136:175-81. [PMID: 6413207 DOI: 10.1111/j.1432-1033.1983.tb07723.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The administration of glucocorticoids to mice caused within 3 h an inactivation of glycogen phosphorylase and activation of glycogen synthase in their livers. In a Sephadex filtrate of liver extract, as well as in a purified glycogen fraction obtained from treated mice, but not in the same preparations obtained from control mice, glycogen synthase was activated without previous inactivation of phosphorylase. The initial rate of synthase activation in a Sephadex filtrate was proportional to the rate of glycogen synthesis in vivo in the same animal. When the glycogen fraction was isolated in the presence of soluble starch, it could be separated from phosphorylase, phosphorylase phosphatase and synthase phosphatase. When added to a control Sephadex filtrate, this purified glycogen fraction obtained from prednisolone-treated mice relieved synthase phosphatase from inhibition by phosphorylase a, indicating that it contained a transferable 'deinhibiting factor'. This deinhibiting factor appears to be a protein and was further purified by alkyl-Sepharose or DEAE-cellulose chromatography. Another modification introduced by treatment with prednisolone was that phosphorylase phosphatase was 1.5-2-fold more active than in the liver of control mice. This property however did not correlate with the rate of glycogen synthesis in vivo. Administration of actinomycin D prevented the expression of the glucocorticoid effects on the rate of glycogen synthesis in vivo and on the protein phosphatases in vitro. The deinhibition of synthase phosphatase was also observed in isolated rat hepatocytes incubated in the presence of glucocorticoids, but in these preparations synthase was not activated.
Collapse
|
21
|
Probst I, Jungermann K. Short-term regulation of glycolysis by insulin and dexamethasone in cultured rat hepatocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 135:151-6. [PMID: 6349996 DOI: 10.1111/j.1432-1033.1983.tb07630.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evidence for a direct metabolic effect of insulin in isolated liver preparations is scarce. The stimulation of glycolysis by insulin previously demonstrated in monolayer cultures of adult rat hepatocytes [(1982) Eur. J. Biochem. 126, 271-278] was further investigated. The degree of stimulation varied with the age of the culture and amounted to 250%, 200%, 500% and 200% of the control value using cells at the culture age of 2 h, 24 h, 48 h, and 72 h, respectively. Half-maximal dose of insulin was 0.1 nM. Maximal stimulation was reached within 5 min and lasted for at least 4 h. Dexamethasone acted both as a long-term and short-term modulator. Long-term pretreatment of the cells with dexamethasone proved necessary to permit insulin action. In addition to this permissive action, pretreatment with dexamethasone reduced the insulin-independent basal glycolytic rate. In short-term experiments dexamethasone decreased the basal glycolytic flux, however, it did not affect the absolute increase in glycolysis brought about by insulin. The half-maximal dose of dexamethasone was 10 nM. The stimulatory effects of insulin may in part be attributed to the activation of pyruvate kinase. Insulin produced a left-shift of the substrate saturation curve, decreasing the K0.5 value for phosphoenolpyruvate.
Collapse
|
22
|
Phelps DS, Litwack G. An electrophoretic characterization of the glucocorticoid response of the Fu5-5 rat hepatoma cell line. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 126:407-15. [PMID: 7128596 DOI: 10.1111/j.1432-1033.1982.tb06795.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study we have further characterized the response of liver-derived cells to glucocorticoid treatment using the rat hepatoma, Fu5-5. Using two-dimensional electrophoresis we have examined changes in the synthetic rates of cytosol proteins following glucocorticoid administration by using [35S]methionine. We have also demonstrated changes in the incorporation of 32P by several cytosol proteins after hormone treatment. One of these changes occurs within 1 h of hormone treatment. We were unable to detect any changes in the nuclear protein content of Fu5-5 cells after glucocorticoid treatment. We then compared the glucocorticoid-regulated changes in cytosol protein synthesis in Fu5-5 cells with those of the H35 rat hepatoma, monolayer cultures of rat hepatocytes and the response of rat liver in vivo. This examination revealed that although nearly all of the eighteen hormonally responsive proteins appeared to be present in all of the cells types, only three were responsive to glucocorticoid in more than one system. Moreover, the response patterns were often reversed in different cell types, the same protein being induced in one cell type and repressed in another.
Collapse
|