1
|
Ganie SY, Javaid D, Hajam YA, Reshi MS. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol Res (Camb) 2024; 13:tfad111. [PMID: 38178998 PMCID: PMC10762673 DOI: 10.1093/toxres/tfad111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Background Arsenic is a naturally occurring element that poses a significant threat to human health due to its widespread presence in the environment, affecting millions worldwide. Sources of arsenic exposure are diverse, stemming from mining activities, manufacturing processes, and natural geological formations. Arsenic manifests in both organic and inorganic forms, with trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) being the most common inorganic forms. The trivalent state, in particular, holds toxicological significance due to its potent interactions with sulfur-containing proteins. Objective The primary objective of this review is to consolidate current knowledge on arsenic toxicity, addressing its sources, chemical forms, and the diverse pathways through which it affects human health. It also focuses on the impact of arsenic toxicity on various organs and systems, as well as potential molecular and cellular mechanisms involved in arsenic-induced pathogenesis. Methods A systematic literature review was conducted, encompassing studies from diverse fields such as environmental science, toxicology, and epidemiology. Key databases like PubMed, Scopus, Google Scholar, and Science Direct were searched using predetermined criteria to select relevant articles, with a focus on recent research and comprehensive reviews to unravel the toxicological manifestations of arsenic, employing various animal models to discern the underlying mechanisms of arsenic toxicity. Results The review outlines the multifaceted aspects of arsenic toxicity, including its association with chronic diseases such as cancer, cardiovascular disorders, and neurotoxicity. The emphasis is placed on elucidating the role of oxidative stress, genotoxicity, and epigenetic modifications in arsenic-induced cellular damage. Additionally, the impact of arsenic on vulnerable populations and potential interventions are discussed. Conclusions Arsenic toxicity represents a complex and pervasive public health issue with far-reaching implications. Understanding the diverse pathways through which arsenic exerts its toxic effects is crucial to developing effective mitigation strategies and interventions. Further research is needed to fill gaps in our understanding of arsenic toxicity and to inform public health policies aimed at minimising exposure.Arsenic toxicity is a crucial public health problem influencing millions of people around the world. The possible sources of arsenic toxicity includes mining, manufacturing processes and natural geological sources. Arsenic exists in organic as well as in inorganic forms. Trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) are two most common inorganic forms of arsenic. Trivalent oxidation state is toxicologically more potent due to its potential to interact with sulfur containing proteins. Humans are exposed to arsenic in many ways such as environment and consumption of arsenic containing foods. Drinking of arsenic-contaminated groundwater is an unavoidable source of poisoning, especially in India, Bangladesh, China, and some Central and South American countries. Plenty of research has been carried out on toxicological manifestation of arsenic in different animal models to identify the actual mechanism of aresenic toxicity. Therefore, we have made an effort to summarize the toxicology of arsenic, its pathophysiological impacts on various organs and its molecular mechanism of action.
Collapse
Affiliation(s)
- Shahid Yousuf Ganie
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
2
|
Shi Y, Hu H, Wu Z, Chen Z, Li P. Blood selenium level can alleviate the nephrotoxicity of lead and cadmium in the general population of the United States: a retrospective cross section analysis of population-based nationally representative data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27663-1. [PMID: 37191747 DOI: 10.1007/s11356-023-27663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
The current understanding of the interplay between blood selenium, cadmium and lead levels, and chronic kidney disease (CKD) is limited. Our objective was to investigate whether elevated blood selenium levels can mitigate the nephrotoxic effects of lead and cadmium. The exposure variables examined in this study include blood selenium, cadmium, and lead levels measured by ICP-MS. The outcome of interest was CKD, defined as an estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m2. In total, 10630 participants (mean (SD) age:48.9 ± 18.4; 48.3% male) were included in this analysis. The median (IQR) of blood selenium, cadmium, and lead levels was 191 (177-207) μg/L, 0.300 (0.180-0.540) μg/L, and 0.940 (0.570-1.510) μg/dL, respectively. We observed a significant positive association between cadmium and lead levels and CKD (OR; 1.86; 95%CI: 1.31- 2.64; OR:2.23; 95%CI:1.54-3.24). However, selenium had a negative association with CKD (OR:0.096; 95%CI:0.020-0.457). Based on a reference group with a selenium concentration of ≤ 191 μg/L and cadmium level of > 0.300 μg/L, a significant protective factor in the CKD was seen in subjects with high plasma selenium and lower cadmium concentrations (OR:0.685; 95%CI:0.515-0.912). Then selenium concentration of ≤ 191 μg/L and lead level of > 0.940 μg/dL were set as a reference group, and the OR for CKD decreased among the other group (OR:0.564; 95%CI;0.417- 0.762). The subgroup analysis indicated that there were no effect modifiers. Blood selenium has the potential to mitigate the nephrotoxic effects of lead and cadmium in the general population of the United States.
Collapse
Affiliation(s)
- Yumeng Shi
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Huan Hu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zuxiang Wu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zhiqiang Chen
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ping Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
3
|
Zhang Y, Liu Z, He Q, Wu F, Xiao Y, Chen W, Jin Y, Yu D, Wang Q. Construction of Mode of Action for Cadmium-Induced Renal Tubular Dysfunction Based on a Toxicity Pathway-Oriented Approach. Front Genet 2021; 12:696892. [PMID: 34367254 PMCID: PMC8343180 DOI: 10.3389/fgene.2021.696892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Although it is recognized that cadmium (Cd) causes renal tubular dysfunction, the mechanism of Cd-induced nephrotoxicity is not yet fully understood. Mode of action (MOA) is a developing tool for chemical risk assessment. To establish the mechanistic MOA of Cd-induced renal tubular dysfunction, the Comparative Toxicogenomics Database (CTD) was used to obtain genomics data of Cd-induced nephrotoxicity, and Ingenuity® Pathway Analysis (IPA) software was applied for bioinformatics analysis. Based on the perturbed toxicity pathways during the process of Cd-induced nephrotoxicity, we established the MOA of Cd-induced renal tubular dysfunction and assessed its confidence with the tailored Bradford Hill criteria. Bioinformatics analysis showed that oxidative stress, DNA damage, cell cycle arrest, and cell death were the probable key events (KEs). Assessment of the overall MOA of Cd-induced renal tubular dysfunction indicated a moderate confidence, and there are still some evidence gaps to be filled by rational experimental designs.
Collapse
Affiliation(s)
- Yangchun Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qianmei He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Wu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Yeh H, Chiang CC, Yen TH. Hepatocellular carcinoma in patients with renal dysfunction: Pathophysiology, prognosis, and treatment challenges. World J Gastroenterol 2021; 27:4104-4142. [PMID: 34326614 PMCID: PMC8311541 DOI: 10.3748/wjg.v27.i26.4104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The population of patients with hepatocellular carcinoma (HCC) overlaps to a high degree with those for chronic kidney disease (CKD) and end-stage renal disease (ESRD). The degrees of renal dysfunction vary, from the various stages of CKD to dialysis-dependent ESRD, which often affects the prognosis and treatment choice of patients with HCC. In addition, renal dysfunction makes treatment more difficult and may negatively affect treatment outcomes. This study summarized the possible causes of the high comorbidity of HCC and renal dysfunction. The possible mechanisms of CKD causing HCC involve uremia itself, long-term dialysis status, immunosuppressive agents for postrenal transplant status, and miscellaneous factors such as hormone alterations and dysbiosis. The possible mechanisms of HCC affecting renal function include direct tumor invasion and hepatorenal syndrome. Finally, we categorized the risk factors that could lead to both HCC and CKD into four categories: Environmental toxins, viral hepatitis, metabolic syndrome, and vasoactive factors. Both CKD and ESRD have been reported to negatively affect HCC prognosis, but more research is warranted to confirm this. Furthermore, ESRD status itself ought not to prevent patients receiving aggressive treatments. This study then adopted the well-known Barcelona Clinic Liver Cancer guidelines as a framework to discuss the indicators for each stage of HCC treatment, treatment-related adverse renal effects, and concerns that are specific to patients with pre-existing renal dysfunction when undergoing aggressive treatments against CKD and ESRD. Such aggressive treatments include liver resection, simultaneous liver kidney transplantation, radiofrequency ablation, and transarterial chemoembolization. Finally, focusing on patients unable to receive active treatment, this study compiled information on the latest systemic pharmacological therapies, including targeted and immunotherapeutic drugs. Based on available clinical studies and Food and Drug Administration labels, this study details the drug indications, side effects, and dose adjustments for patients with renal dysfunction. It also provides a comprehensive review of information on HCC patients with renal dysfunction from disease onset to treatment.
Collapse
Affiliation(s)
- Hsuan Yeh
- Department of Nephrology, Chang Gung Memorial Hospital and Chang Gung University, Taipei 105, Taiwan
| | - Chun-Cheng Chiang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital and Chang Gung University, Taipei 105, Taiwan
| |
Collapse
|
5
|
In Vitro Nephrotoxicity Induced by Herb-Herb Interaction between Radix Glycyrrhizae and Radix Euphorbiae Pekinensis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6894751. [PMID: 32411332 PMCID: PMC7204103 DOI: 10.1155/2020/6894751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022]
Abstract
Radix Glycyrrhizae (RG)-Radix Euphorbiae Pekinensis (REP) is a representative incompatible herbal pair of Eighteen Incompatible Medicaments (EIM) and has been disputed in clinical application for a long time. The present study was performed with the Madin-Darby canine kidney (MDCK) cell line using cell cytotoxicity assay, apoptosis detection, cell cycle measurement, reactive oxygen species (ROS) determination, and high content analysis (HCA) in combination with high-performance liquid chromatography (HPLC) fingerprint comparison to clarify whether RG and REP can be concomitantly used from the perspective of cytotoxicity, investigate the major correlated compounds, and elucidate the underlying mechanisms. The results showed that the toxicity of REP could be significantly enhanced through its concomitant use with RG in the ratio of 1 : 1, and this increased toxicity could be weakened with the further increased proportion of RG. 3,3′-di-O-methylellagic acid-4′-O-β-D-xylopyranoside (DEAX) and 3,3′-di-O-methylellagic acid (DEA) were shown to be mainly responsible for the toxicity induced by concomitant use of REP and RG. Both RG-REP decoctions and the above two compounds boosted cell apoptosis, cellular morphological change, ROS accumulation, and mitochondrial membrane potential (MMP) disruption. In conclusion, the incompatible use of RG and REP is conditionally established because of the bidirectional regulatory effect of RG, and the major compounds responsible for RG-REP incompatibility are DEAX and DEA, which result in toxicity through activation of mitochondria-dependent apoptosis induced by increased ROS production. This study provided a basis for understanding the incompatible use of RG and REP and the EIM theory.
Collapse
|
6
|
Jahangirnejad R, Goudarzi M, Kalantari H, Najafzadeh H, Rezaei M. Subcellular Organelle Toxicity Caused by Arsenic Nanoparticles in Isolated Rat Hepatocytes. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2020; 11:41-52. [PMID: 31905194 PMCID: PMC7024596 DOI: 10.15171/ijoem.2020.1614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/24/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Arsenic, an environmental pollutant, is a carcinogenic metalloid and also an anticancer agent. OBJECTIVE To evaluate the toxicity of arsenic nanoparticles in rat hepatocytes. METHODS Freshly isolated rat hepatocytes were exposed to 0, 20, 40, and 100 μM of arsenic nanoparticles and its bulk counterpart. Their viability, reactive oxygen species level, glutathione depletion, mitochondrial and lysosomal damage, and apoptosis were evaluated. RESULTS By all concentrations, lysosomal damage and apoptosis were clearly evident in hepatocytes exposed to arsenic nanoparticles. Evaluation of mitochondria and lysosomes revealed that lysosomes were highly damaged. CONCLUSION Exposure to arsenic nanoparticles causes apoptosis and organelle impairment. The nanoparticles have potentially higher toxicity than the bulk arsenic. Lysosomes are highly affected. It seems that, instead of mitochondria, lysosomes are the first target organelles involved in the toxicity induced by arsenic nanoparticles.
Collapse
Affiliation(s)
- Rashid Jahangirnejad
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Najafzadeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Mohsen Rezaei
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Fagbenro OS, Alimba CG, Bakare AA. Experimental modeling of the acute toxicity and cytogenotoxic fate of composite mixtures of chromate, copper and arsenate oxides associated with CCA preservative using Clarias gariepinus (Burchell 1822). Environ Anal Health Toxicol 2019; 34:e2019010. [PMID: 31771319 PMCID: PMC7014949 DOI: 10.5620/eaht.e2019010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/19/2019] [Indexed: 01/04/2023] Open
Abstract
Concurrent occurrence of chromium (Cr), copper (Cu) and arsenic (As) from chromated copper arsenate (CCA) wood preservative in aquatic ecosystems demands that their joint-actions in eliciting toxic effects be assessed for adequate understanding of the health risk they may pose to biota. Clarias gariepinus was exposed to As2O3 , CrO3 and CuO and their composite mixtures (1:1 and 1:1:1) at various concentrations (0 – 600 mg/L) for 96-h to determine the acute toxicity using OECD (1992) protocol. C. gariepinus was then exposed to sub-lethal concentrations corresponding to 6.25, 12.5, 25.0, 50.0 and 100% of the 96-h LC50 for 7 days to assess the cytogenotoxic effects using piscine micronucleus (MN) test. The 96-h LC50 showed that the metals/metalloid demonstrated differential interactions in a concentration dependent pattern. The 96-h LC50 showed that Cr was the most toxic while Cu and As:Cu were indeterminate (Cr > Cr:Cu > As:Cr > As > As:Cr:Cu > Cu = As:Cu indeterminate). Isobologram and synergistic ratio (SR) models predicted antagonistic interaction between Cu:Cr and As:Cr and synergism between As:Cu in the causation of morbidity and mortality of C. gariepinus. Interaction factor model predicted antagonism as common interactive mechanism among the metal/metalloid mixtures in the induction of MN and abnormal nuclear erythrocytes in C. gariepinus. Predicted interactions among the three metals/ metalloid were largely antagonism and synergism towards the induction of acute toxicity and cytogenotoxicity. The models employed herein may be useful in establishing environmental safe limits for mixtures of metals/metalloids against the induction of acute toxicity and DNA damage in lower aquatic vertebrates.
Collapse
Affiliation(s)
- Olukunle S Fagbenro
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria, Germany
| | - Chibuisi G Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria, Germany.,Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139 Dortmund, Germany
| | - Adekunle A Bakare
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria, Germany
| |
Collapse
|
8
|
Park SJ, Lee JR, Jo MJ, Park SM, Ku SK, Kim SC. Protective effects of Korean red ginseng extract on cadmium-induced hepatic toxicity in rats. J Ginseng Res 2013; 37:37-44. [PMID: 23717155 PMCID: PMC3659623 DOI: 10.5142/jgr.2013.37.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/11/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Korean red ginseng is known to regulate the immune system and help the body struggle infection and disease. Cadmium is widely distributed in the environment due to its use in industry. Exposure to cadmium is problematic causing organ dysfunction. This study was conducted to evaluate the protective effect of Korean red ginseng extract (RGE) against cadmium-induced hepatotoxicity in rats. In experiments, animals were orally administrated with RGE (25, 50 mg/kg) for 7 d and then intravenously injected with cadmium (CdCl2, 4 mg/kg) to induce acute hepatotoxicity. Cadmium caused the elevated levels of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase in serum. In contrast, pretreatment with RGE significantly reduced those serum indexes related with liver damage. In histopathological analysis, RGE decreased the centrilobular necrosis around central veins and the peripheral hemorrhage around portal triads. Moreover, RGE restored the deficit in hepatic glutathione level resulting from cadmium treatment. RGE also inhibited the increase in the expression of Bad, a representative apoptosis marker protein, induced by cadmium treatment. Collectively, these results demonstrate that RGE can reduce the cadmium-induced hepatic toxicity, partly via anti-oxidative and anti-apoptotic process.
Collapse
Affiliation(s)
- Sook Jahr Park
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Korea ; Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan 712-715, Korea
| | | | | | | | | | | |
Collapse
|
9
|
The protection of selenium against cadmium-induced cytotoxicity via the heat shock protein pathway in chicken splenic lymphocytes. Molecules 2012; 17:14565-72. [PMID: 23222903 PMCID: PMC6268861 DOI: 10.3390/molecules171214565] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd) is a heavy metal that poses a hazard to animal health due to its toxicity. Selenium (Se) is an important nutritional trace element. However, the potential protective effects of Se against Cd-induced toxicity remain to be elucidated. To investigate the cytotoxicity of Cd on bird immunocytes in vitro and the protective effects of Se against exposure to Cd, chicken splenic lymphocytes received Cd (10−6 mol/L), Se (10−7 mol/L), and the mixture of 10−7 mol/L Se and 10−6 mol/L Cd and were incubated for 12 h, 24 h, 36 h, 48 h, respectively. The transcription of heat shock protein (HSP) 27, HSP40, HSP60, HSP70 and HSP90 mRNA was tested by fluorescence quantitative PCR. The results showed that the mRNA expression of HSPs exposed to 10−6 mol/L Cd showed a sustained decrease at 12–48 h exposure. A statistically significant increase in the mRNA expression of HSPs in the case of Se group was observed, as compared to the control group of chicken splenic lymphocytes. Concomitantly, treatment of chicken splenic lymphocytes with Se in combination with Cd enhanced the mRNA expression of HSPs which were reduced by Cd treatment. This indicated that the protective effect of Se against the toxicity of Cd might, at least partially, be attributed to stimulation of the level of HSPs.
Collapse
|
10
|
Galluzzi L, Vitale I, Senovilla L, Eisenberg T, Carmona-Gutierrez D, Vacchelli E, Robert T, Ripoche H, Jägemann N, Paccard C, Servant N, Hupé P, Lazar V, Dessen P, Barillot E, Zischka H, Madeo F, Kroemer G. Independent transcriptional reprogramming and apoptosis induction by cisplatin. Cell Cycle 2012; 11:3472-80. [PMID: 22918244 PMCID: PMC3466557 DOI: 10.4161/cc.21789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neither the molecular mechanisms whereby cancer cells intrinsically are or become resistant to the DNA-damaging agent cisplatin nor the signaling pathways that account for cisplatin cytotoxicity have thus far been characterized in detail. In an attempt to gain further insights into the molecular cascades elicited by cisplatin (leading to resistance or underpinning its antineoplastic properties), we comparatively investigated the ability of cisplatin, C2-ceramide and cadmium dichloride, alone or in the presence of an array of mitochondrion-protective agents, to trigger the permeabilization of purified mitochondria. In addition, we compared the transcriptional response triggered by cisplatin, C2-ceramide and cadmium dichloride in non-small cell lung carcinoma A549 cells. Finally, we assessed the capacity of cisplatin, C2-ceramide and cadmium dichloride to reduce the clonogenic potential of a battery of yeast strains lacking proteins involved in the regulation of cell death, DNA damage signaling and stress management. This multipronged experimental approach revealed that cisplatin elicits signaling pathways that are for the most part "private," i.e., that manifest limited overlap with the molecular cascades ignited by other inducers of mitochondrial apoptosis, and triggers apoptosis mainly in a transcription-independent fashion. Indeed, bona fide cisplatin-response modifiers that we have recently identified by a functional genome-wide siRNA screen are either not transcriptionally regulated during cisplatin-induced cell death or their transcriptional modulation reflects the activation of an adaptive response promoting cisplatin resistance.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Institut Gustave Roussy; Villejuif, France
| | - Ilio Vitale
- Institut Gustave Roussy; Villejuif, France
- INSERM; U848; Villejuif, France
- Université ParisSud/Paris XI; Villejuif, France
| | - Laura Senovilla
- Institut Gustave Roussy; Villejuif, France
- INSERM; U848; Villejuif, France
- Université ParisSud/Paris XI; Villejuif, France
| | - Tobias Eisenberg
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | | | - Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France
- INSERM; U848; Villejuif, France
- Université ParisSud/Paris XI; Villejuif, France
| | - Thomas Robert
- Institut Gustave Roussy; Villejuif, France
- Unité de Génomique Fonctionnelle et Bioinformatique; Institut Gustave Roussy; Villejuif, France
| | - Hugues Ripoche
- Institut Gustave Roussy; Villejuif, France
- CNRS; UMR8200; Villejuif, France
| | - Nora Jägemann
- Institute of Toxicology; Helmholtz Center Munich; German Research Center for Environmental Health; Neuherberg, Germany
| | - Caroline Paccard
- Institut Curie; Paris, France
- INSERM; U900; Paris, France
- Mines ParisTech; Fontainebleau, France
| | - Nicolas Servant
- Institut Curie; Paris, France
- INSERM; U900; Paris, France
- Mines ParisTech; Fontainebleau, France
| | - Philippe Hupé
- Institut Curie; Paris, France
- INSERM; U900; Paris, France
- Mines ParisTech; Fontainebleau, France
- CNRS; UMR144; Paris, France
| | - Vladimir Lazar
- Institut Gustave Roussy; Villejuif, France
- Unité de Génomique Fonctionnelle et Bioinformatique; Institut Gustave Roussy; Villejuif, France
| | - Philippe Dessen
- Institut Gustave Roussy; Villejuif, France
- Unité de Génomique Fonctionnelle et Bioinformatique; Institut Gustave Roussy; Villejuif, France
- INSERM; U985; Villejuif, France
| | - Emmanuel Barillot
- Institut Curie; Paris, France
- INSERM; U900; Paris, France
- Mines ParisTech; Fontainebleau, France
| | - Hans Zischka
- Institute of Toxicology; Helmholtz Center Munich; German Research Center for Environmental Health; Neuherberg, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Guido Kroemer
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM; U848; Villejuif, France
- Metabolomics Platform; Institut Gustave Roussy; Villejuif, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
11
|
Wang DH, Hu JR, Wang LY, Hu YJ, Tan FQ, Zhou H, Shao JZ, Yang WX. The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis. PLoS One 2012; 7:e39920. [PMID: 22768170 PMCID: PMC3386923 DOI: 10.1371/journal.pone.0039920] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/29/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spontaneous and stress-induced germ cell apoptosis during spermatogenesis of multicellular organisms have been investigated broadly in mammals. Spermatogenetic process in urodele amphibians was essentially like that in mammals in spite of morphological differences; however, the mechanism of germ cell apoptosis in urodele amphibians remains unknown. The Chinese fire-belly newt, Cynops orientalis, was an excellent organism for studying germ cell apoptosis due to its sensitiveness to temperature, strong endurance of starvation, and sensitive skin to heavy metal exposure. METHODOLOGY/PRINCIPAL FINDINGS TUNEL result showed that spontaneous germ cell apoptosis took place in normal newt, and severe stress-induced apoptosis occurred to spermatids and sperm in response to heat shock (40°C 2 h), cold exposure (4°C 12 h), cadmium exposure (Cd 36 h), and starvation stress. Quantitative reverse transcription polymerase chain reactions (qRT-PCR) showed that gene expression of Caspase3 or Caspase7 was obviously elevated after stress treatment. Apaf1 was not altered at its gene expression level, and p53 was significantly decreased after various stress treatment. Caspase assay demonstrated that Caspase-3, -8, -9 enzyme activities in newt testis were significantly elevated after heat shock (40°C 2 h), cold exposure (4°C 12 h), and cadmium exposure (Cd 36 h), while Caspase3 and Caspase8 activities were increased with Caspase9 significantly decreased after starvation treatment. CONCLUSIONS/SIGNIFICANCE Severe germ cell apoptosis triggered by heat shock, cold exposure, and cadmium exposure was Caspase3 dependent, which probably involved both extrinsic and intrinsic pathways. Apaf1 may be involved in this process without elevating its gene expression. But starvation-induced germ cell apoptosis was likely mainly through extrinsic pathway. p53 was probably not responsible for stress-induced germ cell apoptosis in newt testis. The intriguing high occurrence of spermatid and sperm apoptosis probably resulted from the sperm morphology and unique reproduction policy of Chinese fire-belly newt, Cynops orientalis.
Collapse
Affiliation(s)
- Da-Hui Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Rao Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Li-Ya Wang
- Department of Reproductive Endocrinology, The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan-Jun Hu
- Department of Reproductive Endocrinology, The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Zhou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Zhong Shao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Selim ME, Rashed EHA, Aleisa NA, Daghestani MH. The protection role of heat shock protein 70 (HSP-70) in the testes of cadmium-exposed rats. Bioinformation 2012; 8:58-64. [PMID: 22359436 PMCID: PMC3282277 DOI: 10.6026/97320630008058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 02/08/2023] Open
Abstract
Cadmium (Cd) is an environmental carcinogenic pollutant known to inactivate several proteins involved in DNA repair systems while at the same time creating an oxidative stress that can result in additional DNA lesions. The testis and the lung are the target organs for cadmium carcinogenesis. Increased production of oxidants in vivo can cause damage to intracellular macromolecules such as DNA, proteins and lipids, which in turn lead to oxidative injury. So, this investigation aimed to evaluate the protective role of L-Carnitine through up regulation of HSPs against DNA damage induced by cadmium chloride. The current study was carried out on forty adult male rats, each with average weight 220-250g., were divided into 4 equal groups. 1(st) group was received saline solution (0.5 ml/100 g body weight) and kept as control. 2(nd) group was received 500mg / kg body weight L-Carnitine intraperitoneally (IP). 3(rd) group was administered 1.2 mg cadmium chloride IP. 4(th) group was received both cadmium chloride and L-Carnitine simultaneously. The comet assay parameters showed significantly increased HSP70 and DNA damage in testis cells after 10 and 56 days in the third group. Meanwhile, HSP70 showed significantly decreased levels after 10 days and 56 days in the fourth group after L-Carnitine treatment simultaneously with cadmium chloride. The results of the present study demonstrate a damaging effect of cadmium chloride on DNA of the testis cells (with low stress response). This damaging effect increases the synthesis of HSP70 that upregulated by L-Carnitine treatment and showed ameliorative effect of the cells for recovery.
Collapse
Affiliation(s)
- Manar E Selim
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA
- Zoology Department, Ain Shams University, Cairo, Egypt
| | - El Hamidi A Rashed
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA
| | - Nadia A Aleisa
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA
| | - Maha H Daghestani
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh-11451, KSA
| |
Collapse
|
13
|
Fang X, Huang T, Zhu Y, Yan Q, Chi Y, Jiang JX, Wang P, Matsue H, Kitamura M, Yao J. Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxid Redox Signal 2011; 14:2427-39. [PMID: 21235398 PMCID: PMC3096519 DOI: 10.1089/ars.2010.3150] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the potential involvement of connexin hemichannels in cadmium ions (Cd(2+))-elicited cell injury. Transfection of LLC-PK1 cells with a wild-type connexin43 (Cx43) sensitized them to Cd(2+)-elicited cell injury. The cell susceptibility to Cd(2+) was increased by depletion of glutathione (GSH) with DL-buthionine-[S,R]-sulfoximine, and decreased by N-acetyl-cysteine or glutathione reduced ethyl ester. Fibroblasts derived from Cx43 wild-type (Cx43+/+) and knockout (Cx43-/-) fetal littermates displayed different susceptibility to Cd(2+). Cd(2+) induced a higher concentration of reactive oxygen species, a stronger activation c-Jun N-terminal kinase, and significantly more severe cell injury in Cx43+/+ fibroblasts, as compared with Cx43-/- fibroblasts. Cd(2+) caused a reduction in intracellular GSH, whereas it elevated extracellular GSH. This effect of Cd(2+) was more dramatic in Cx43+/+ than Cx43-/- fibroblasts. Treatment of Cx43+/+ fibroblasts with Cd(2+) caused a Cx43 hemichannel-dependent influx of Lucifer Yellow and efflux of ATP. Collectively, our study demonstrates that Cx43 sensitizes cells to Cd(2+)-initiated cytotoxicity, possibly through hemichannel-mediated effects on intracellular oxidative status.
Collapse
Affiliation(s)
- Xin Fang
- Department of Molecular Signaling, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Waldeck W, Mueller G, Wiessler M, Tóth K, Braun K. Positioning effects of KillerRed inside of cells correlate with DNA strand breaks after activation with visible light. Int J Med Sci 2011; 8:97-105. [PMID: 21278894 PMCID: PMC3030142 DOI: 10.7150/ijms.8.97] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/20/2011] [Indexed: 01/30/2023] Open
Abstract
Fluorescent proteins (FPs) are established tools for new applications, not-restricted to the cell biological research. They could also be ideal in surgery enhancing the precision to differentiate between the target tissue and the surrounding healthy tissue. FPs like the KillerRed (KRED), used here, can be activated by excitation with visible day-light for emitting active electrons which produce reactive oxygen species (ROS) resulting in photokilling processes. It is a given that the extent of the KRED's cell toxicity depends on its subcellular localization. Evidences are documented that the nuclear lamina as well as especially the chromatin are critical targets for KRED-mediated ROS-based DNA damaging. Here we investigated the damaging effects of the KRED protein fused to the nuclear lamina and to the histone H2A DNA-binding protein. We detected a frequency of DNA strand breaks, dependent first on the illumination time, and second on the spatial distance between the localization at the chromatin and the site of ROS production. As a consequence we could identify defined DNA bands with 200, 400 and (600) bps as most prominent degradation products, presumably representing an internucleosomal DNA cleavage induced by KRED. These findings are not restricted to the detection of programmed cell death processes in the therapeutic field like PDT, but they can also contribute to a better understanding of the structure-function relations in the epigenomic world.
Collapse
Affiliation(s)
- Waldemar Waldeck
- German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
15
|
Walker AM, Stevens JJ, Ndebele K, Tchounwou PB. Arsenic trioxide modulates DNA synthesis and apoptosis in lung carcinoma cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1996-2007. [PMID: 20632473 PMCID: PMC2864039 DOI: 10.3390/ijerph7051996] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic trioxide, the trade name Trisenox, is a drug used to treat acute promyleocytic leukemia (APL). Studies have demonstrated that arsenic trioxide slows cancer cells growth. Although arsenic influences numerous signal-transduction pathways, cell-cycle progression, and/or apoptosis, its apoptotic mechanisms are complex and not entirely delineated. The primary objective of this research was to evaluate the effects of arsenic trioxide on DNA synthesis and to determine whether arsenic-induced apoptosis is mediated via caspase activation, p38 mitogen-activated protein kinase (MAPK), and cell cycle arrest. To achieve this goal, lung cancer cells (A549) were exposed to various concentrations (0, 2, 4, 6, 8, and 10 microg/mL) of arsenic trioxide for 48 h. The effect of arsenic trioxide on DNA synthesis was determined by the [3H]thymidine incorporation assay. Apoptosis was determined by the caspase-3 fluorescein isothiocyanate (FITC) assay, p38 MAP kinase activity was determined by an immunoblot assay, and cell-cycle analysis was evaluated by the propidium iodide assay. The [3H]thymidine-incorporation assay revealed a dose-related cytotoxic response at high levels of exposure. Furthermore, arsenic trioxide modulated caspase 3 activity and induced p38 MAP kinase activation in A549 cells. However, cell-cycle studies showed no statistically significant differences in DNA content at subG1 check point between control and arsenic trioxide treated cells.
Collapse
Affiliation(s)
- Alice M. Walker
- Molecular Toxicology Research Laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 JR Lynch Street, Box 18540, Jackson, MS 39217, USA; E-Mail:
- Molecular and Cellular Biology Research Laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 JR Lynch Street, Box 18540, Jackson, MS 39217, USA; E-Mail:
| | - Jacqueline J. Stevens
- Molecular and Cellular Biology Research Laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 JR Lynch Street, Box 18540, Jackson, MS 39217, USA; E-Mail:
| | - Kenneth Ndebele
- Laboratory of Cancer Immunology: Target Identification and Validation, College of Science, Engineering and Technology, Jackson State University, 1400 JR Lynch Street, Box 18540, Jackson, MS 39217, USA; E-Mail:
| | - Paul B. Tchounwou
- Molecular Toxicology Research Laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 JR Lynch Street, Box 18540, Jackson, MS 39217, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +1-601-979-0777; Fax: +1-601-979-0570
| |
Collapse
|
16
|
Grygoryev D, Moskalenko O, Zimbrick JD. Non-linear effects in the formation of DNA damage in medaka fish fibroblast cells caused by combined action of cadmium and ionizing radiation. Dose Response 2007; 6:283-98. [PMID: 19020653 PMCID: PMC2564760 DOI: 10.2203/dose-response.07-012.grygoryev] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ionizing radiation-induced formation of genomic DNA damage can be modulated by nearby chemical species such as heavy metal ions, which can lead to non-linear dose response. To investigate this phenomenon, we studied cell survival and formation of 8-hydroxyguanine (8-OHG) base modifications and double strand breaks (DSB) caused by combined action of cadmium (Cd) and gamma radiation in cultured medaka fish (Oryzias latipes) fibroblast cells. Our data show that the introduction of Cd leads to a significant decrease in the fraction of surviving cells and to increased sensitivity of cells to ionizing radiation (IR). Cd also appears to cause non-linear increases in radiation-induced yields of 8-OHG and DSB as dose-yield plots of these lesions exhibit non-linear S-shaped curves with a sharp increase in the yields of lesions in the 10-20 microM range of Cd concentrations. The combined action of ionizing radiation and Cd leads to increased DNA damage formation compared to the effects of the individual stressors. These results are consistent with a hypothesis that the presence of Cd modulates the efficiency of DNA repair systems thus causing increases in radiation-induced DNA damage formation and decreases in cell survival.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Oleksandr Moskalenko
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - John D. Zimbrick
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| |
Collapse
|