1
|
Zhan S, Jiang R, An Z, Zhang Y, Zhong T, Wang L, Guo J, Cao J, Li L, Zhang H. CircRNA profiling of skeletal muscle satellite cells in goats reveals circTGFβ2 promotes myoblast differentiation. BMC Genomics 2024; 25:1075. [PMID: 39533172 PMCID: PMC11555921 DOI: 10.1186/s12864-024-11008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) function as essential regulatory elements with pivotal roles in various biological processes. However, their expression profiles and functional regulation during the differentiation of goat myoblasts have not been thoroughly explored. This study conducts an analysis of circRNA expression profiles during the proliferation phase (cultured in growth medium, GM) and differentiation phase (cultured in differentiation medium, DM1/DM5) of skeletal muscle satellite cells (MuSCs) in goats. RESULTS A total of 2,094 circRNAs were identified, among which 84 were differentially expressed as determined by pairwise comparisons across three distinct groups. Validation of the expression levels of six randomly selected circRNAs was performed using reverse transcription PCR (RT-PCR) and quantitative RT-PCR (qRT-PCR), with confirmation of their back-splicing junction sites. Enrichment analysis of the host genes associated with differentially expressed circRNAs (DEcircRNAs) indicated significant involvement in biological processes such as muscle contraction, muscle hypertrophy, and muscle tissue development. Additionally, these host genes were implicated in key signaling pathways, including Hippo, TGF-beta, and MAPK pathways. Subsequently, employing Cytoscape, we developed a circRNA-miRNA interaction network to elucidate the complex regulatory mechanisms underlying goat muscle development, encompassing 21 circRNAs and 47 miRNAs. Functional assays demonstrated that circTGFβ2 enhances myogenic differentiation in goats, potentially through a miRNA sponge mechanism. CONCLUSION In conclusion, we identified the genome-wide expression profiles of circRNAs in goat MuSCs during both proliferation and differentiation phases, and established that circTGFβ2 plays a role in the regulation of myogenesis. This study offers a significant resource for the advanced exploration of the biological functions and mechanisms of circRNAs in the myogenesis of goats.
Collapse
Affiliation(s)
- Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Rui Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Zongqi An
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Yang Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China.
| |
Collapse
|
2
|
Fu X, Li S, Jia M, Xu B, Yang L, Ma R, Cheng H, Yang W, Hu P. Myogenesis controlled by a long non-coding RNA 1700113A16RIK and post-transcriptional regulation. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:13. [PMID: 35366685 PMCID: PMC8977255 DOI: 10.1186/s13619-022-00114-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/22/2022] [Indexed: 01/05/2023]
Abstract
Long non-coding (lnc) RNA plays important roles in many cellular processes. The function of the vast majority of lncRNAs remains unknown. Here we identified that lncRNA-1700113A16RIK existed in skeletal muscle stem cells (MuSCs) and was significantly elevated during MuSC differentiation. Knockdown of 1700113A16RIK inhibits the differentiation of muscle stem cells. In contrast, overexpression of 1700113A16RIK promotes the differentiation of muscle stem cells. Further study shows the muscle specific transcription factor Myogenin (MyoG) positively regulates the expression of 1700113A16RIK by binding to the promoter region of 1700113A16RIK. Mechanistically, 1700113A16RIK may regulate the expression of myogenic genes by directly binding to 3'UTR of an important myogenic transcription factor MEF2D, which in turn promotes the translation of MEF2D. Taken together, our results defined 1700113A16RIK as a positive regulator of MuSC differentiation and elucidated a mechanism as to how 1700113A16RIK regulated MuSC differentiation.
Collapse
Affiliation(s)
- Xin Fu
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Sheng Li
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Minzhi Jia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bo Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lele Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruimiao Ma
- Guangzhou Laboratory, Guangzhou, 510700, Guangdong, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenjun Yang
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China.
| | - Ping Hu
- Spine Center, Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China. .,Guangzhou Laboratory, Guangzhou, 510700, Guangdong, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Cai S, Duo T, Wang X, Tong X, Luo C, Chen Y, Li J, Mo D. A Comparative Analysis of Metabolic Profiles of Embryonic Skeletal Muscle from Lantang and Landrace Pigs. Animals (Basel) 2022; 12:ani12040420. [PMID: 35203128 PMCID: PMC8868109 DOI: 10.3390/ani12040420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The pig is one of the most important domesticated meat animals. Some studies have revealed that pigs with low meat production show more intense myogenesis at the early stage of embryonic muscle development than pigs with high meat production. Here, by gas chromatography–mass spectrometry GC–MS based metabolomics, we concluded that the nucleotide metabolism and energy metabolism of the longissimuslumborum (LL) were increased in Lantang pigs compared with Landrace pigs, indicating rapid synthesis of nucleic acids and ATP to meet the material and energy requirements of rapid cell proliferation and differentiation in Lantang pigs. Abstract Elucidation of the complex regulation of porcine muscle development is key to increasing pork output and improving pork quality. However, the molecular mechanisms involved in early porcine embryonic muscle development in different pig breeds remain largely unknown. Here, GC–MS based metabolomics and metabolomic profiling was used to examine the longissimus lumborum (LL) of the Lantang (LT) and the Landrace (LR) pig at embryonic day 35 (E35). Metabolites showed clear separation between LT and LR, with 40 metabolites having higher abundances in LT and 14 metabolites having lower abundances in LT compared with LR. In addition, these metabolic changes were mainly associated with nucleotide metabolism and energy metabolism, such as purine metabolism, pyrimidine metabolism, the pentose phosphate pathway, and the TCA cycle. More interestingly, the contents of DNA, RNA, and ATP per unit mass of LL tissues were higher in LT, indicating rapid synthesis of nucleic acids and ATP, to meet both the material and energy requirements of rapid cell proliferation and differentiation. Furthermore, enzyme activity associated with the TCA cycle and pentose phosphate pathway, including α-ketoglutaric dehydrogenase (KGDH), malate dehydrogenase (MDH), pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and glucose-6-phosphate dehydrogenase (G6PDH), were higher in LT. Based on these results, we conclude that there are significant differences in nucleotide metabolism and energy metabolism of LL between LT and LR, and we speculate that the enhanced nucleic acid metabolism and energy metabolism in LT can meet the material and energy requirements of rapid cell proliferation and differentiation, making myogenesis more intense in LT compared to LR which might be the metabolic mechanism underlying the distinct skeletal muscle development in the two breeds.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
- Correspondence: (J.L.); (D.M.); Tel.: +86-020-38765361 (J.L.); +86-020-39332991 (D.M.)
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
- Correspondence: (J.L.); (D.M.); Tel.: +86-020-38765361 (J.L.); +86-020-39332991 (D.M.)
| |
Collapse
|
4
|
Bhattacharya A, Champramary S, Tripathi T, Thakur D, Ioshikhes I, Singh SK, Nandi S. Identification of the conserved long non-coding RNAs in myogenesis. BMC Genomics 2021; 22:336. [PMID: 33971818 PMCID: PMC8112034 DOI: 10.1186/s12864-021-07615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Our understanding of genome regulation is ever-evolving with the continuous discovery of new modes of gene regulation, and transcriptomic studies of mammalian genomes have revealed the presence of a considerable population of non-coding RNA molecules among the transcripts expressed. One such non-coding RNA molecule is long non-coding RNA (lncRNA). However, the function of lncRNAs in gene regulation is not well understood; moreover, finding conserved lncRNA across species is a challenging task. Therefore, we propose a novel approach to identify conserved lncRNAs and functionally annotate these molecules. RESULTS In this study, we exploited existing myogenic transcriptome data and identified conserved lncRNAs in mice and humans. We identified the lncRNAs expressing differentially between the early and later stages of muscle development. Differential expression of these lncRNAs was confirmed experimentally in cultured mouse muscle C2C12 cells. We utilized the three-dimensional architecture of the genome and identified topologically associated domains for these lncRNAs. Additionally, we correlated the expression of genes in domains for functional annotation of these trans-lncRNAs in myogenesis. Using this approach, we identified conserved lncRNAs in myogenesis and functionally annotated them. CONCLUSIONS With this novel approach, we identified the conserved lncRNAs in myogenesis in humans and mice and functionally annotated them. The method identified a large number of lncRNAs are involved in myogenesis. Further studies are required to investigate the reason for the conservation of the lncRNAs in human and mouse while their sequences are dissimilar. Our approach can be used to identify novel lncRNAs conserved in different species and functionally annotated them.
Collapse
Affiliation(s)
- Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, India
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Simang Champramary
- University of Szeged Faculty of Science and Informatics, Szeged, 6720, Hungary
- Functional Genomics and Bionformatics, University of Sopron, Sopron, Hungary
| | - Tanya Tripathi
- Stem Cell & Cell Culture Lab, Centre For Advanced Research (CFAR), King George's Medical University, Lucknow, UP, India
| | - Debajit Thakur
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, India
| | - Ilya Ioshikhes
- Ottawa Institute of Computational Biology and Bioinformatics (OICBB), Ottawa Institute of Systems Biology (OISB), Department of Biochemistry, Microbiology and Immunology (BMI),Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Satyendra Kumar Singh
- Stem Cell & Cell Culture Lab, Centre For Advanced Research (CFAR), King George's Medical University, Lucknow, UP, India
| | - Soumyadeep Nandi
- Data Sciences and Computational Biology Centre, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, Manesar, 122413, Haryana, India.
| |
Collapse
|
5
|
Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases. Cells 2019; 8:cells8090988. [PMID: 31461973 PMCID: PMC6769629 DOI: 10.3390/cells8090988] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle myogenesis and injury-induced muscle regeneration contribute to muscle formation and maintenance. As myogenic stem cells, skeletal muscle satellite cells have the ability to proliferate, differentiate and self-renew, and are involved in muscle formation and muscle injury repair. Accumulating evidence suggests that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are widely involved in the regulation of gene expression during skeletal muscle myogenesis, and their abnormal expression is associated with a variety of muscle diseases. From the perspective of the molecular mechanism and mode of action of ncRNAs in myogenesis, this review aims to summarize the role of ncRNAs in skeletal muscle satellite cells’ myogenic differentiation and in muscle disease, and systematically analyze the mechanism of ncRNAs in skeletal muscle development. This work will systematically summarize the role of ncRNAs in myogenesis and provide reference targets for the treatment of various muscle diseases, such as muscle dystrophy, atrophy and aberrant hypertrophy.
Collapse
|
6
|
Mir BA, Islam R, Kalanon M, Russell AP, Foletta VC. MicroRNA suppression of stress-responsive NDRG2 during dexamethasone treatment in skeletal muscle cells. BMC Mol Cell Biol 2019; 20:12. [PMID: 31138100 PMCID: PMC6537443 DOI: 10.1186/s12860-019-0194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background MicroRNAs (miRNAs) are increasingly being identified as modulatory molecules for physiological and pathological processes in muscle. Here, we investigated whether miRNAs influenced the expression of the stress-responsive gene N-myc downstream-regulated gene 2 (Ndrg2) in skeletal muscle cells through the targeted degradation or translation inhibition of NDRG2 mRNA transcripts during basal or catabolic stress conditions. Results Three miRNAs, mmu-miR-23a-3p (miR-23a), mmu-miR-23b-3p (miR-23b) and mmu-miR-28-5p (miR-28), were identified using an in silico approach and confirmed to target the 3′ untranslated region of the mouse Ndrg2 gene through luciferase reporter assays. However, miR-23a, -23b or -28 overexpression had no influence on NDRG2 mRNA or protein levels up to 48 h post treatment in mouse C2C12 myotubes under basal conditions. Interestingly, a compensatory decrease in the endogenous levels of the miRNAs in response to each other’s overexpression was measured. Furthermore, dexamethasone, a catabolic stress agent that induces NDRG2 expression, decreased miR-23a and miR-23b endogenous levels at 24 h post treatment suggesting an interplay between these miRNAs and NDRG2 regulation under similar stress conditions. Accordingly, when overexpressed simultaneously, miR-23a, -23b and -28 attenuated the dexamethasone-induced increase of NDRG2 protein translation but did not affect Ndrg2 gene expression. Conclusion These findings highlight modulatory and co-regulatory roles for miR-23a, -23b and -28 and their novel regulation of NDRG2 during stress conditions in muscle. Electronic supplementary material The online version of this article (10.1186/s12860-019-0194-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bilal A Mir
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Rabia Islam
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Ming Kalanon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia
| | - Victoria C Foletta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin University, Geelong, VIC, 3222, Australia.
| |
Collapse
|
7
|
Peng S, Song C, Li H, Cao X, Ma Y, Wang X, Huang Y, Lan X, Lei C, Chaogetu B, Chen H. Circular RNA SNX29 Sponges miR-744 to Regulate Proliferation and Differentiation of Myoblasts by Activating the Wnt5a/Ca 2+ Signaling Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:481-493. [PMID: 31051333 PMCID: PMC6495097 DOI: 10.1016/j.omtn.2019.03.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
Myogenesis is a complex and precisely orchestrated process that is highly regulated by several non-coding RNAs and signal pathways. Circular RNAs (circRNAs) represent a novel subclass of endogenous non-coding RNAs that have been identified in multiple species and tissues and play a vital role in post-transcriptional regulation in eukaryotes, but the precise molecular mechanism of action remains largely unknown. Here, we screened a candidate circRNA derived from the SNX29 gene, termed circSNX29 from our previous circRNAs sequencing data of bovine skeletal muscle, and further characterized its regulation and function during muscle development. The overexpression of circSNX29 facilitated myoblasts differentiation and inhibited cell proliferation. Computational analysis using RNAhybrid showed the potential for circSNX29 to sponge to miR-744 with nine potential binding sites. We tested this via a luciferase screening assay and found that circSNX29 directly interacted with miR-744 and downregulation of miR-744 efficiently reversed the suppression of Wnt5a and CaMKIIδ. Importantly, through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis, Fluo-4, AM, cell permeant-calcium ion fluorescent probing, and western blotting assays, we found that overexpression of Wnt5a and circSNX29 activated the non-canonical Wnt5a/Ca2+ pathway. Overall, the evidence generated by our study elucidates the regulatory mechanisms of circSNX29 to function as a sponge for miRNA-744 in bovine primary myoblasts.
Collapse
Affiliation(s)
- Shujun Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yilei Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaogang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Buren Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha 817000, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Nagai T, Trakanant S, Kawasaki M, Kawasaki K, Yamada Y, Watanabe M, Blackburn J, Otsuka-Tanaka Y, Hishinuma M, Kitatmura A, Meguro F, Yamada A, Kodama Y, Maeda T, Zhou Q, Saijo Y, Yasue A, Sharpe PT, Hindges R, Takagi R, Ohazama A. MicroRNAs control eyelid development through regulating Wnt signaling. Dev Dyn 2019; 248:201-210. [PMID: 30653268 DOI: 10.1002/dvdy.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The timing, location, and level of gene expression are crucial for normal organ development, because morphogenesis requires strict genetic control. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating gene expression level. Although miRNAs are known to be involved in many biological events, the role of miRNAs in organogenesis is not fully understood. Mammalian eyelids fuse and separate during development and growth. In mice, failure of this process results in the eye-open at birth (EOB) phenotype. RESULTS It has been shown that conditional deletion of mesenchymal Dicer (an essential protein for miRNA processing; Dicer fl/fl ;Wnt1Cre) leads to the EOB phenotype with full penetrance. Here, we identified that the up-regulation of Wnt signaling resulted in the EOB phenotype in Dicer mutants. Down-regulation of Fgf signaling observed in Dicer mutants was caused by an inverse relationship between Fgf and Wnt signaling. Shh and Bmp signaling were down-regulated as the secondary effects in Dicer fl/fl ;Wnt1Cre mice. Wnt, Shh, and Fgf signaling were also found to mediate the epithelial-mesenchymal interactions in eyelid development. CONCLUSIONS miRNAs control eyelid development through Wnt. Developmental Dynamics 248:201-210, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takahiro Nagai
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Supaluk Trakanant
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom.,Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yurie Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Momoko Watanabe
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - James Blackburn
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Yoko Otsuka-Tanaka
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom.,Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Mitsue Hishinuma
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Atsushi Kitatmura
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasumitsu Kodama
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeyasu Maeda
- Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Qiliang Zhou
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Saijo
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima, Japan
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London, United Kingdom
| |
Collapse
|
9
|
Chodkowska KA, Ciecierska A, Majchrzak K, Ostaszewski P, Sadkowski T. Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide. GENES AND NUTRITION 2018; 13:10. [PMID: 29662554 PMCID: PMC5892041 DOI: 10.1186/s12263-018-0598-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Background Skeletal muscle injury activates satellite cells to initiate processes of proliferation, differentiation, and hypertrophy in order to regenerate muscle fibers. The number of microRNAs and their target genes are engaged in satellite cell activation. β-Hydroxy-β-methylbutyrate (HMB) is known to prevent exercise-induced muscle damage. The purpose of this study was to evaluate the effect of HMB on miRNA and relevant target gene expression in differentiating equine satellite cells exposed to H2O2. We hypothesized that HMB may regulate satellite cell activity, proliferation, and differentiation, hence attenuate the pathological processes induced during an in vitro model of H2O2-related injury by changing the expression of miRNAs. Methods Equine satellite cells (ESC) were isolated from the samples of skeletal muscle collected from young horses. ESC were treated with HMB (24 h) and then exposed to H2O2 (1 h). For the microRNA and gene expression assessment microarrays, technique was used. Identified miRNAs and genes were validated using real-time qPCR. Cell viability, oxidative stress, and cell damage were measured using colorimetric method and flow cytometry. Results Analysis of miRNA and gene profile in differentiating ESC pre-incubated with HMB and then exposed to H2O2 revealed difference in the expression of 27 miRNAs and 4740 genes, of which 344 were potential target genes for identified miRNAs. Special attention was focused on differentially expressed miRNAs and their target genes involved in processes related to skeletal muscle injury. Western blot analysis showed protein protection in HMB-pre-treated group compared to control. The viability test confirmed that HMB enhanced cell survival after the hydrogen peroxide exposition. Conclusions Our results suggest that ESC pre-incubated with HMB and exposed to H2O2 could affect expression on miRNA levels responsible for skeletal muscle development, cell proliferation and differentiation, and activation of tissue repair after injury. Enrichment analyses for targeted genes revealed that a large group of genes was associated with the regulation of signaling pathways crucial for muscle tissue development, protein metabolism, muscle injury, and regeneration, as well as with oxidative stress response.
Collapse
Affiliation(s)
- Karolina A Chodkowska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
10
|
Ropka-Molik K, Pawlina-Tyszko K, Żukowski K, Piórkowska K, Żak G, Gurgul A, Derebecka N, Wesoły J. Examining the Genetic Background of Porcine Muscle Growth and Development Based on Transcriptome and miRNAome Data. Int J Mol Sci 2018; 19:ijms19041208. [PMID: 29659518 PMCID: PMC5979540 DOI: 10.3390/ijms19041208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Recently, selection in pigs has been focused on improving the lean meat content in carcasses; this focus has been most evident in breeds constituting a paternal component in breeding. Such sire-breeds are used to improve the meat quantity of cross-breed pig lines. However, even in one breed, a significant variation in the meatiness level can be observed. In the present study, the comprehensive analysis of genes and microRNA expression profiles in porcine muscle tissue was applied to identify the genetic background of meat content. The comparison was performed between whole gene expression and miRNA profiles of muscle tissue collected from two sire-line pig breeds (Pietrain, Hampshire). The RNA-seq approach allowed the identification of 627 and 416 differentially expressed genes (DEGs) between pig groups differing in terms of loin weight between Pietrain and Hampshire breeds, respectively. The comparison of miRNA profiles showed differential expression of 57 microRNAs for Hampshire and 34 miRNAs for Pietrain pigs. Next, 43 genes and 18 miRNAs were selected as differentially expressed in both breeds and potentially related to muscle development. According to Gene Ontology analysis, identified DEGs and microRNAs were involved in the regulation of the cell cycle, fatty acid biosynthesis and regulation of the actin cytoskeleton. The most deregulated pathways dependent on muscle mass were the Hippo signalling pathway connected with the TGF-β signalling pathway and controlling organ size via the regulation of ubiquitin-mediated proteolysis, cell proliferation and apoptosis. The identified target genes were also involved in pathways such as the FoxO signalling pathway, signalling pathways regulating pluripotency of stem cells and the PI3K-Akt signalling pathway. The obtained results indicate molecular mechanisms controlling porcine muscle growth and development. Identified genes (SOX2, SIRT1, KLF4, PAX6 and genes belonging to the transforming growth factor beta superfamily) could be considered candidate genes for determining muscle mass in pigs.
Collapse
Affiliation(s)
- Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Grzegorz Żak
- Department of Cattle Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Artur Gurgul
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - Joanna Wesoły
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
11
|
Mok GF, Lozano-Velasco E, Münsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol 2017; 72:67-76. [PMID: 29102719 DOI: 10.1016/j.semcdb.2017.10.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
A fundamental process during both embryo development and stem cell differentiation is the control of cell lineage determination. In developing skeletal muscle, many of the diffusible signaling molecules, transcription factors and more recently non-coding RNAs that contribute to this process have been identified. This has facilitated advances in our understanding of the molecular mechanisms underlying the control of cell fate choice. Here we will review the role of non-coding RNAs, in particular microRNAs (miRNAs), in embryonic muscle development and differentiation, and in satellite cells of adult muscle, which are essential for muscle growth and regeneration. Some of these short post-transcriptional regulators of gene expression are restricted to skeletal muscle, but their expression can also be more widespread. In addition, we discuss a few examples of long non-coding RNAs, which are numerous but much less well understood.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
12
|
Xie S, Chen L, Zhang X, Liu X, Chen Y, Mo D. An integrated analysis revealed different microRNA-mRNA profiles during skeletal muscle development between Landrace and Lantang pigs. Sci Rep 2017; 7:2516. [PMID: 28566753 PMCID: PMC5451474 DOI: 10.1038/s41598-017-02558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/13/2017] [Indexed: 11/12/2022] Open
Abstract
Pigs supply vital dietary proteins for human consumption, and their economic value depends largely on muscle production. MicroRNAs are known to play important roles in skeletal muscle development. However, their relationship to distinct muscle production between pig breeds remains unknown. Here, we performed an integrated analysis of microRNA-mRNA expression profiles for Landrace (LR, lean) pigs and the Chinese indigenous Lantang pig (LT, lard-type) during 8 stages of skeletal muscle developmental, including at 35, 49, 63, 77 dpc (days post coitum) and 2, 28, 90, 180 dpn (days postnatal). As differentially expressed-miRNA expression profiles can be well classified into two clusters by PCA analysis, we grouped the embryonic stages as G1 and the postnatal stages as G2. A total of 203 genes were predicted miRNA targets, and a STEM analysis showed distinct expression patterns between G1 and G2 in both breeds based on their transcriptomic data. Furthermore, a STRING analysis predicted interactions between 22 genes and 35 miRNAs, including some crucial myogenic factors and myofibrillar genes. Thus, it can be reasonably speculated that myogenic miRNAs may regulate myofibrillar genes in myofiber formation during embryonic stages and muscle hypertrophy during postnatal stages, leading to distinct differences in muscle production between breeds.
Collapse
Affiliation(s)
- Shuihua Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
- General Station of Animal Husbandry Technology Extension, Department of Agriculture of Guangdong Province, Guangzhou, 510500, Guangdong, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
13
|
Pingel J, Bartels EM, Nielsen JB. New perspectives on the development of muscle contractures following central motor lesions. J Physiol 2017; 595:1027-1038. [PMID: 27779750 PMCID: PMC5309377 DOI: 10.1113/jp272767] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/18/2016] [Indexed: 01/03/2023] Open
Abstract
Muscle contractures are common in patients with central motor lesions, but the mechanisms responsible for the development of contractures are still unclear. Increased or decreased neural activation, protracted placement of a joint with the muscle in a short position and muscle atrophy have been suggested to be involved, but none of these mechanisms are sufficient to explain the development of muscle contractures alone. Here we propose that changes in tissue homeostasis in the neuromuscular-tendon-connective tissue complex is at the heart of the development of contractures, and that an integrated physiological understanding of the interaction between neural, mechanical and metabolic factors, as well as genetic and epigenetic factors, is necessary in order to unravel the mechanisms that result in muscle contractures. We hope thereby to contribute to a reconsideration of how and why muscle contractures develop in a way which will open a window towards new insight in this area in the future.
Collapse
Affiliation(s)
- J. Pingel
- Department of ExerciseNutrition and SportsUniversity of CopenhagenDenmark
| | - E. M. Bartels
- The Biochemistry and Physiology LaboratoryThe Parker InstituteCopenhagen University HospitalBispebjerg and FrederiksbergDenmark
| | - J. B. Nielsen
- Department of ExerciseNutrition and SportsUniversity of CopenhagenDenmark
| |
Collapse
|
14
|
Kong B, Wu PC, Chen L, Yang T, Yuan YQ, Kuang YQ, Cheng L, Zhou HT, Gu JW. microRNA-7 Protects Against 1-Methyl-4-Phenylpyridinium Iodide-Induced Cell Apoptosis in SH-SY5Y Cells by Directly Targeting Krüpple-Like Factor 4. DNA Cell Biol 2016; 35:217-25. [PMID: 27003614 DOI: 10.1089/dna.2015.3097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study intended to investigate the role and underling mechanism of microRNA-7 (miR-7) on neuronal death in Parkinson's disease (PD). Human neuroblastoma cell line SH-SY5Y was employed and 1-methyl-4-phenylpyridinium iodide [MPP(+)] was used to generate PD model in vitro. Furthermore, an upregulation of miR-7 was performed in SH-SY5Y by transfection with miR-7 mimics. Cell viability and cell apoptosis were determined. Moreover, the target and the mechanism of miR-7 in MPP(+)-induced cell death were also investigated. The upregulation of miR-7 promoted cell viability and suppressed cell apoptosis in MPP(+)-treated SH-SY5Y cells. Furthermore, miR-7 could directly bind to the 3'-untranslated region of Krüppel-like factor 4 (KLF4, positions 574-580). Moreover, knockdown of KLF4 by the specific siRNA inhibited SH-SY5Y apoptosis under MPP(+) treatment. In addition, KLF4 overexpression apparently attenuated the protective effect of miR-7 in MPP(+)-induced SH-SY5Y apoptosis. This study indicated that miR-7 protects from MPP(+)-induced cell apoptosis in SH-SY5Y by directly targeting KLF4.
Collapse
Affiliation(s)
- Bin Kong
- 1 Department of Neurosurgery, The Third People's Hospital of Chengdu , Chengdu, China
| | - Peng-Chang Wu
- 2 Department of Neurosurgery, Xianyang Central Hospital , Xianyang, China
| | - Lin Chen
- 3 Department of Neurology, Chengdu Military General Hospital , Chengdu, China
| | - Tao Yang
- 3 Department of Neurology, Chengdu Military General Hospital , Chengdu, China
| | - Yu-Qing Yuan
- 1 Department of Neurosurgery, The Third People's Hospital of Chengdu , Chengdu, China
| | - Yong-Qin Kuang
- 3 Department of Neurology, Chengdu Military General Hospital , Chengdu, China
| | - Lin Cheng
- 3 Department of Neurology, Chengdu Military General Hospital , Chengdu, China
| | - Hu-Tian Zhou
- 3 Department of Neurology, Chengdu Military General Hospital , Chengdu, China
| | | |
Collapse
|
15
|
Zhou Y, Gu P, Shi W, Li J, Hao Q, Cao X, Lu Q, Zeng Y. MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells. Int J Mol Med 2016; 37:931-8. [PMID: 26936652 PMCID: PMC4790643 DOI: 10.3892/ijmm.2016.2499] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 02/10/2016] [Indexed: 12/03/2022] Open
Abstract
Intrauterine growth retardation (IUGR) induces metabolic syndrome, which is often characterized by insulin resistance (IR), in adults. Previous research has shown that microRNAs (miRNAs or miRs) play a role in the target genes involved in this process, but the mechanisms remain unclear. In the present study, we examined miRNA profiles using samples of skeletal muscles from both IUGR and control rat offspring whose mothers were fed either a protein-restricted diet or a diet which involved normal amounts of protein during pregnancy, respectively. miR-29a was found to be upregulated in the skeletal muscles of IUGR offspring. The luciferase reporter assay confirmed the direct interaction between miR-29a and peroxisome proliferator-activated receptor δ (PPARδ). Overexpression of miR-29a in the skeletal muscle cell line C2C12 suppressed the expression of its target gene PPARδ, which, in turn, influenced the expression of its coactivator, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thus, PPARδ/PGC-1α-dependent signals together reduced insulin-dependent glucose uptake and adenosine triphosphate (ATP) production. Overexpression of miR-29a also caused a decrease in levels of glucose transporter 4 (GLUT4), the most important glucose transporter in skeletal muscle, which partially induced a decrease insulin-dependent glucose uptake. These findings provide evidence for a novel micro-RNA-mediated mechanism of PPARδ regulation, and we also noted the IR-promoting actions of miR-29a in skeletal muscles of IUGR.
Collapse
Affiliation(s)
- Yuehua Zhou
- Department of Obstetrics and Gynecology of Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200036, P.R. China
| | - Pingqing Gu
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weijie Shi
- Department of Obstetrics and Gynecology of Xinghua People's Hospital, Xinghua, Jiangsu 225700, P.R. China
| | - Jingyun Li
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qun Hao
- Department of Obstetrics and Gynecology, Nanjing General Hospital of PLA, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaomei Cao
- Duman High School, Singapore 436895, Republic of Singapore
| | - Qin Lu
- Department of Obstetrics and Gynecology of Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200036, P.R. China
| | - Yu Zeng
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|