1
|
Mirjalili SZ, Tamiji Z, Shirangi M, Amini M. A GC-MS Method for Determination of β-Propiolactone Residues in Inactivated Covid-19 Vaccines. J Chromatogr Sci 2024:bmae049. [PMID: 39286865 DOI: 10.1093/chromsci/bmae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
β-propiolactone is a common inactivator agent used in vaccines. Due to β-propiolactone carcinogenicity, complete hydrolysis of it is necessary to prevent cytotoxicity in mammalian cells. As a result, more attention should be paid to it at the clinic, and it is important to measure its trace amounts. β-propiolactone analysis is challenging due to its instability. A simple and fast gas chromatography-mass spectrometry method was developed for quantitation of residual β-propiolactone in inactivated coronavirus disease 2019 (Covid-19) vaccines. Caprolactone was used as an internal standard in sample solutions; the analysis was performed after extraction of analyte from vaccine media by ethyl acetate. The validity of the method was studied with a linearity of r2 > 0.99 over the concentration range of 0.2-20 μg/mL with the limit of detection and the limit of quantification of 0.07 and 0.20 μg/mL, respectively. The target analyte β-propiolactone was not detected in the samples, demonstrating the test samples were qualified. The established method can be used for quality control of inactivated Covid-19 vaccines.
Collapse
Affiliation(s)
- Seyedeh Zohreh Mirjalili
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Engelab Ave, Tehran 14155-6451, Iran
| | - Zahra Tamiji
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Engelab Ave, Tehran 14155-6451, Iran
- Food and Drug Administration, Tehran University of Medical Sciences, Engelab Ave, Tehran 14155-6451, Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Engelab Ave, Tehran 14155-6451, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Engelab Ave, Tehran 14155-6451, Iran
| |
Collapse
|
2
|
Yew JS, Ong SK, Lim HX, Tan SH, Ong KC, Wong KT, Poh CL. Immunogenicity of trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against EV-A71 and CV-A16. Nanomedicine (Lond) 2024; 19:1779-1799. [PMID: 39140594 PMCID: PMC11418279 DOI: 10.1080/17435889.2024.2372243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Aim: To develop a trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against hand foot and mouth disease (HFMD) and assess its immunogenicity in mice.Materials & methods: Trivalent plasmid carrying the VP1 and VP2 genes of EV-A71, VP1 gene of CV-A16 was encapsulated in Chitosan-TPP nanoparticles through ionic gelation. In vitro characterization and in vivo immunization studies of the CS-TPP-NPs (pIRES-VP121) were performed.Results: Mice administered with CS-TPP NPs (pIRES-VP121) intramuscularly were observed to have the highest IFN-γ response. Sera from mice immunized with the naked pDNA and CS-TPP-NPs (pIRES-VP121) demonstrated good viral clearance against wild-type EV-A71 and CV-A16 in RD cells.Conclusion: CS-TPP-NPs (pIRES-VP121) could serve as a prototype for future development of multivalent HFMD DNA vaccine candidates.
Collapse
Affiliation(s)
- Jia Sheng Yew
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Seng-Kai Ong
- Department of Biological science, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Hui Xuan Lim
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
- Sunway Microbiome Centre, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Chit Laa Poh
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
- ALPS Global Holding Berhad, The ICON, No.1, Off Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
| |
Collapse
|
3
|
Ananya, Panchariya DC, Karthic A, Singh SP, Mani A, Chawade A, Kushwaha S. Vaccine design and development: Exploring the interface with computational biology and AI. Int Rev Immunol 2024; 43:361-380. [PMID: 38982912 DOI: 10.1080/08830185.2024.2374546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Computational biology involves applying computer science and informatics techniques in biology to understand complex biological data. It allows us to collect, connect, and analyze biological data at a large scale and build predictive models. In the twenty first century, computational resources along with Artificial Intelligence (AI) have been widely used in various fields of biological sciences such as biochemistry, structural biology, immunology, microbiology, and genomics to handle massive data for decision-making, including in applications such as drug design and vaccine development, one of the major areas of focus for human and animal welfare. The knowledge of available computational resources and AI-enabled tools in vaccine design and development can improve our ability to conduct cutting-edge research. Therefore, this review article aims to summarize important computational resources and AI-based tools. Further, the article discusses the various applications and limitations of AI tools in vaccine development.
Collapse
Affiliation(s)
- Ananya
- National Institute of Animal Biotechnology, Hyderabad, India
| | | | | | | | - Ashutosh Mani
- Motilal Nehru National Institute of Technology, Prayagraj, India
| | - Aakash Chawade
- Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | |
Collapse
|
4
|
Muzammil K, Rayyani S, Abbas Sahib A, Gholizadeh O, Naji Sameer H, Jwad Kazem T, Badran Mohammed H, Ghafouri Kalajahi H, Zainul R, Yasamineh S. Recent Advances in Crimean-Congo Hemorrhagic Fever Virus Detection, Treatment, and Vaccination: Overview of Current Status and Challenges. Biol Proced Online 2024; 26:20. [PMID: 38926669 PMCID: PMC11201903 DOI: 10.1186/s12575-024-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Saba Rayyani
- Medical Faculty, University of Georgi, Tbilisi, Georgia
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | - Haneen Badran Mohammed
- Optics techniques department, health and medical techniques college, Al-Noor University, Mosul, Iraq
| | | | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
| | - Saman Yasamineh
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
5
|
Beutgen V, Bhagwat AM, Steitz AM, Reinartz S, Müller R, Graumann J. Sample-Treatment with the Virucidal β-Propiolactone Does Not Preclude Analysis by Large Panel Affinity Proteomics, Including the Discovery of Biomarker Candidates. Anal Chem 2024; 96:9332-9342. [PMID: 38810147 PMCID: PMC11172684 DOI: 10.1021/acs.analchem.3c04116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Virus inactivation is a prerequisite for safe handling of high-risk infectious samples. β-Propiolactone (BPL) is an established reagent with proven virucidal efficacy. BPL primarily reacts with DNA, RNA, and amino acids. The latter may modify antigenic protein epitopes interfering with binding properties of affinity reagents such as antibodies and aptamers used in affinity proteomic screens. We investigated (i) the impact of BPL treatment on the analysis of protein levels in plasma samples using the aptamer-based affinity proteomic platform SomaScan and (ii) effects on protein detection in conditioned medium samples using the proximity extension assay-based Olink Target platform. In the former setup, BPL-treated and native plasma samples from patients with ovarian cancer (n = 12) and benign diseases (n = 12) were analyzed using the SomaScan platform. In the latter, conditioned media samples collected from cultured T cells with (n = 3) or without (n = 3) anti-CD3 antibody stimulation were analyzed using the Olink Target platform. BPL-related changes in protein detection were evaluated comparing native and BPL-treated states, simulating virus inactivation, and impact on measurable group differences was assessed. While approximately one-third of SomaScan measurements were significantly changed by the BPL treatment, a majority of antigen/aptamer interactions remained unaffected. Interaction effects of BPL treatment and disease state, potentially altering detectability of group differences, were observable for less than one percent of targets (0.6%). BPL effects on protein detection with Olink Target were also limited, affecting 3.6% of detected proteins with no observable interaction effects. Thus, effects of BPL treatment only moderately interfere with affinity proteomic detectability of differential protein expression between different experimental groups. Overall, the results prove high-throughput affinity proteomics well suited for the analysis of high-risk samples inactivated using BPL.
Collapse
Affiliation(s)
- Vanessa
M. Beutgen
- Institute
of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
- Core
Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Aditya M. Bhagwat
- Institute
of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
- Core
Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anna Mary Steitz
- Translational
Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Silke Reinartz
- Translational
Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Rolf Müller
- Translational
Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Johannes Graumann
- Institute
of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
- Core
Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
6
|
Tobing TM, Rantam FA, Widiyatno TV, Tacharina MR, Rahmahani J, Triakoso N, Kuncorojakti S, Puspitasari H, Susilowati H, Diyantoro D, Azzahra F, Kurniawan Y, Aswin A, Susila EB. Inactivation of an Indonesian isolate of foot-and-mouth disease virus using formaldehyde. Vet World 2024; 17:1190-1195. [PMID: 39077448 PMCID: PMC11283601 DOI: 10.14202/vetworld.2024.1190-1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim Foot-and-mouth disease (FMD) is a highly contagious viral disease that endangers livestock and the environment with significant economic consequences. This study aimed to validate the inactivation of the Indonesian isolate of foot-and-mouth disease virus (FMDV) with various formaldehyde concentration. Materials and Methods The experiment started with FMDV being adapted on BHK-21 cells until cytopathic effects (CPE) appeared. The biological titer of the virus was determined using the 50% tissue culture infectious dose (TCID50) assay. The virus was inactivated by exposing the isolate to different formaldehyde (FA) concentrations (0.025%, 0.05%, 0.1%, and 0.2%) at 37°C for 24 h, and residual infectivity was assessed using CPE scoring of reinoculated BHK-21 cells. Results 72 h post-inoculation, the virulence of the FMDV isolate was indicated by complete CPE on BHK-21 monolayer cells, with a TCID50 value of 109/mL; CPE scoring did not signify significant differences (p < 0.05) among 0.025%, 0.05%, 0.1%, 0.2% FA, and the negative control. All treatment groups showed significant differences (p < 0.05) from the positive control (C+). FA concentrations inactivated the FMDV isolate under the given conditions. 0.025% and 0.05% FA continued to display CPE through the third passage, while 0.2% FA did not significantly differ from 0.1% FA (p > 0.05). 0.1% FA is the optimal concentration for safely and effectively inactivating FMDV. Conclusion All of the formaldehyde concentrations can completely inactivate the FMDV isolate, with the most optimal and safe concentration being 0.1%.
Collapse
Affiliation(s)
- Talenta Miracle Tobing
- Undergraduate Student of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fedik Abdul Rantam
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Thomas Valentinus Widiyatno
- Division of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Martia Rani Tacharina
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Jola Rahmahani
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Nusdianto Triakoso
- Division of Veterinary Clinical Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Suryo Kuncorojakti
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Heni Puspitasari
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Helen Susilowati
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Diyantoro Diyantoro
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fadia Azzahra
- Undergraduate Student of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Yudha Kurniawan
- Magister Program in Vaccinology and Immunotherapeutic, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ahmad Aswin
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Edy Budi Susila
- Pusvetma Veterinary Farma Big Center, Directorate General of Livestock and Animal Health, Ministry of Agriculture, Indonesia
| |
Collapse
|
7
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
8
|
Schulze K, Weber U, Schuy C, Durante M, Guzmán CA. Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses. Pharmaceutics 2024; 16:465. [PMID: 38675126 PMCID: PMC11054185 DOI: 10.3390/pharmaceutics16040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| | - Ulrich Weber
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Fachbereich Mathematik, Naturwissenschaften und Informatik, Technische Hochschule Mittelhessen, 35390 Gießen, Germany
| | - Christoph Schuy
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Department of Physics “Ettore Pancini”, University Federico II, 80138 Naples, Italy
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| |
Collapse
|
9
|
Wu J, Lu X, Song L, Liu L, Gao Y, Li H, Yu K, Qi L. Preparation and evaluation of the immune efficacy of an inactivated fowl adenovirus 8a serotype oil emulsion vaccine. Heliyon 2024; 10:e26578. [PMID: 38434371 PMCID: PMC10907662 DOI: 10.1016/j.heliyon.2024.e26578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
In recent years, fowl adenovirus (FAdV) transmission has significantly increased worldwide, leading to substantial economic losses in the poultry industry. The virus causes hepatitis-hydropericardium syndrome (HHS) and inclusion body hepatitis (IBH). The prevalent FAdV strains in China are FAdV-4, FAdV-8a, FAdV-8b, and FAdV-11. Vaccines for FAdV-4 and FAdV-8b, which prevent HHS and IBH, are available commercially, but no vaccine exists for FAdV-8a. To address this issue, we developed a vaccine using an oil emulsion to inactivate the FAdV-8a serotype. Additionally, we built a fluorescence quantitative PCR for the detection of the virus. The lowest concentration detected was 4.11 × 101 copies/μL. The study's results illustrated that the FAdV-8a oil emulsion vaccine effectively produced significant antibodies and offered ample protection for poultry. This vaccine can potentially limit the transmission of IBH resulting from FAdV-8a in China.
Collapse
Affiliation(s)
- Jingqi Wu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018, China
| | - Xiao Lu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Lingling Song
- Poultry Institute, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Liping Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Yuehua Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018, China
| | - Kexiang Yu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, China
| | - Lihong Qi
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
10
|
Handabile C, Ohno M, Sekiya T, Nomura N, Kawakita T, Kawahara M, Endo M, Nishimura T, Okumura M, Toba S, Sasaki M, Orba Y, Chua BY, Rowntree LC, Nguyen THO, Shingai M, Sato A, Sawa H, Ogasawara K, Kedzierska K, Kida H. Immunogenicity and protective efficacy of a co-formulated two-in-one inactivated whole virus particle COVID-19/influenza vaccine. Sci Rep 2024; 14:4204. [PMID: 38378856 PMCID: PMC10879490 DOI: 10.1038/s41598-024-54421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Due to the synchronous circulation of seasonal influenza viruses and severe acute respiratory coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019 (COVID-19), there is need for routine vaccination for both COVID-19 and influenza to reduce disease severity. Here, we prepared individual WPVs composed of formalin-inactivated SARS-CoV-2 WK 521 (Ancestral strain; Co WPV) or influenza virus [A/California/07/2009 (X-179A) (H1N1) pdm; Flu WPV] to produce a two-in-one Co/Flu WPV. Serum analysis from vaccinated mice revealed that a single dose of Co/Flu WPV induced antigen-specific neutralizing antibodies against both viruses, similar to those induced by either type of WPV alone. Following infection with either virus, mice vaccinated with Co/Flu WPV showed no weight loss, reduced pneumonia and viral titers in the lung, and lower gene expression of proinflammatory cytokines, as observed with individual WPV-vaccinated. Furthermore, a pentavalent vaccine (Co/qFlu WPV) comprising of Co WPV and quadrivalent influenza vaccine (qFlu WPV) was immunogenic and protected animals from severe COVID-19. These results suggest that a single dose of the two-in-one WPV provides efficient protection against SARS-CoV-2 and influenza virus infections with no evidence of vaccine interference in mice. We propose that concomitant vaccination with the two-in-one WPV can be useful for controlling both diseases.
Collapse
Affiliation(s)
- Chimuka Handabile
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Naoki Nomura
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tomomi Kawakita
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mamiko Kawahara
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | | | - Shinsuke Toba
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Brendon Y Chua
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Masashi Shingai
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kazumasa Ogasawara
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Katherine Kedzierska
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hiroshi Kida
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Kang G, Kim M, Lee Y, Yang H, Seong BL, Jung H. Egg microneedles for transdermal vaccination of inactivated influenza virus. Biomater Sci 2024; 12:907-918. [PMID: 38174731 DOI: 10.1039/d3bm01635h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The use of dissolving microneedles (DMNs) is a drug delivery technique in which drug dissolution occurs once it is administered into the skin. The skin is a remarkable site for vaccination due to its significant immunologic properties. Compared to the traditional hypodermic intramuscular (IM) injection, vaccination via DMN does not require cold chains and allows for minimal invasive drug delivery. On account of the significance of skin vaccination, preceding studies have been conducted to elucidate the importance of the DMN technology in vaccination. Most of these studies focused on formulations that maintain the activity of the vaccine, so formulations designed to be specific to the mechanical properties of the microneedle could not be used together independently. In this study, we have developed influenza vaccine loaded egg microneedles (EMN) and characterized the specificity of layer-specific functions of EMN by distinguishing between formulations that can maintain the activity of the vaccine and have the mechanical strength. By the use of in vitro tests such as ELISA and SRID assays, we quantitively evaluated the antigen activity of the formulation candidates to be 87% and 91%, respectively. In vivo tests were also conducted as mouse groups were inoculated with the formulation constructed into egg microneedles (FLU-EMN) to determine the protective efficacy against infection. The results demonstrated that FLU-EMN with functionalized formulations successfully enabled protective immune response even with a fractional dose compared to IM injection.
Collapse
Affiliation(s)
- Geonwoo Kang
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Minkyung Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Youjin Lee
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Huisuk Yang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, 03721, Republic of Korea
- Vaccine Innovative Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03721, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| |
Collapse
|
12
|
Al-Eitan LN, ElMotasem MFM, Khair IY, Alahmad SZ. Vaccinomics: Paving the Way for Personalized Immunization. Curr Pharm Des 2024; 30:1031-1047. [PMID: 38898820 DOI: 10.2174/0113816128280417231204085137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 06/21/2024]
Abstract
Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of "isolate-inactivateinject", which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Moh'd Fahmi Munib ElMotasem
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
13
|
Park J, Pho T, Champion JA. Chemical and biological conjugation strategies for the development of multivalent protein vaccine nanoparticles. Biopolymers 2023; 114:e23563. [PMID: 37490564 PMCID: PMC10528127 DOI: 10.1002/bip.23563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| |
Collapse
|
14
|
Satari HI, Kaswandani N, Medise BE, Sundoro J, Hadinegoro SR, Leonard E, Putra A, Angkasa PF. Safety profile of inactivated COVID-19 vaccine in indonesian adults. Vaccine X 2023; 14:100331. [PMID: 37346082 PMCID: PMC10257516 DOI: 10.1016/j.jvacx.2023.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Background Vaccines are urgently needed to handle the morbidity and mortality of the COVID-19 pandemic in Indonesia. The inactivated vaccine is widely used in Indonesia's national immunization program due to its eligibility of stock, easier to transport, and considered to be more established than newer platforms. In this study, we aimed to evaluate the safety profile of the inactivated vaccine and analyze the safety profile between adults and the elderly. Methods A prospective analytical study was conducted to evaluate the safety profile of inactivated COVID-19 vaccine among healthy adults aged ≥ 18 years from September 2nd to December 28th, 2021, at ten primary health centers from 5 districts in Jakarta, Indonesia. The participants were instructed to record the symptoms after inactivated COVID-19 vaccine injection in the diary card for 28 days. Chi-square tests were carried out to analyze the relationship between the adverse event following immunization (AEFI) in adults and elderly groups. Results Four of 1113 participants were not included in this study due to the lack of follow-up. Out of 1109 participants, there were 1044 adults (18-59 years) and 65 elderly (>59 years). There were no serious AEFI cases reported. Most AEFI cases were mild to moderate and resolved after several days of injection. Local pain, myalgia and fatigue were the most frequent adverse events reported. We found that there was no correlation between the adults and elderly age group with the incidence of AEFI (p = 0.924) for local reactions (p = 0.181) and most of the systemic reactions (p = 0.629). However, there is an increased risk of fever in the elderly group compared to the adult group (OR 4.046, 95 % CI 1.794-9.124, p = 0.003) following immunization. Conclusions Our study demonstrated that the inactivated COVID-19 vaccine is safe, considering that all symptoms experienced were mild to moderate and resolved entirely.
Collapse
Affiliation(s)
- Hindra Irawan Satari
- National Committee of Adverse Event Following Immunization (NC-AEFI) Indonesia, Central Jakarta, Indonesia
- Department of Pediatrics, Faculty of Medicine, University of Indonesia, Central Jakarta, Indonesia
| | - Nastiti Kaswandani
- National Committee of Adverse Event Following Immunization (NC-AEFI) Indonesia, Central Jakarta, Indonesia
- Department of Pediatrics, Faculty of Medicine, University of Indonesia, Central Jakarta, Indonesia
| | - Bernie Endyarni Medise
- National Committee of Adverse Event Following Immunization (NC-AEFI) Indonesia, Central Jakarta, Indonesia
- Department of Pediatrics, Faculty of Medicine, University of Indonesia, Central Jakarta, Indonesia
| | - Julitasari Sundoro
- National Committee of Adverse Event Following Immunization (NC-AEFI) Indonesia, Central Jakarta, Indonesia
| | - Sri Rezeki Hadinegoro
- National Committee of Adverse Event Following Immunization (NC-AEFI) Indonesia, Central Jakarta, Indonesia
| | - Elcha Leonard
- National Committee of Adverse Event Following Immunization (NC-AEFI) Indonesia, Central Jakarta, Indonesia
| | - Ade Putra
- National Committee of Adverse Event Following Immunization (NC-AEFI) Indonesia, Central Jakarta, Indonesia
| | - Putra Fajar Angkasa
- National Committee of Adverse Event Following Immunization (NC-AEFI) Indonesia, Central Jakarta, Indonesia
| |
Collapse
|
15
|
Molecular Characterization and Selection of Indigenous SARS-CoV-2 Delta Variant for the Development of the First Inactivated SARS-CoV-2 Vaccine of Pakistan. Vaccines (Basel) 2023; 11:vaccines11030607. [PMID: 36992191 DOI: 10.3390/vaccines11030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Vaccines are one of the efficient means available so far for preventing and controlling the infection rate of COVID-19. Several researchers have focused on the whole virus’s (SARS-CoV-2) inactivated vaccines which are economically efficient to produce. In Pakistan, multiple variants of SARS-CoV-2 have been reported since the start of the pandemic in February 2020. Due to the continuous evolution of the virus and economic recessions, the present study was designed to develop an indigenous inactivated SARS-CoV-2 vaccine that might help not only to prevent the COVID-19 in Pakistan, it will also save the country’s economic resources. The SARS-CoV-2 were isolated and characterized using the Vero-E6 cell culture system. The seed selection was carried out using cross-neutralization assay and phylogenetic analysis. The selected isolate of SARS-CoV-2 (hCoV-19/Pakistan/UHSPK3-UVAS268/2021) was inactivated using beta-propiolactone followed by vaccine formulation using Alum adjuvant, keeping the S protein concentration as 5 μg/dose. The vaccine efficacy was evaluated by in vivo immunogenicity testing in laboratory animals and in in vitro microneutralization test. The phylogenetic analysis revealed that all the SARS-CoV-2 isolates reported from Pakistan nested into different clades, representing multiple introductions of the virus into Pakistan. The antisera raised against various isolates from different waves in Pakistan showed a varied level of neutralization titers. However, the antisera produced against a variant (hCoV-19/Pakistan/UHSPK3-UVAS268/2021; fourth wave) efficiently neutralized (1:64–1:512) all the tested SARS-CoV-2 isolates. The inactivated whole virus vaccine of SARS-CoV-2 was safe and it also elicited a protective immune response in rabbits and rhesus macaques on the 35th-day post-vaccination. The activity of neutralizing antibodies of vaccinated animals was found at 1:256–1:1024 at 35 days post-vaccination, indicating the effectiveness of the double-dose regime of the indigenous SARS-CoV-2 vaccine.
Collapse
|
16
|
Delisle L, Rolton A, Vignier J. Inactivated ostreid herpesvirus-1 induces an innate immune response in the Pacific oyster, Crassostrea gigas, hemocytes. Front Immunol 2023; 14:1161145. [PMID: 37187746 PMCID: PMC10175643 DOI: 10.3389/fimmu.2023.1161145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.
Collapse
Affiliation(s)
- Lizenn Delisle
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Anne Rolton
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Julien Vignier
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
17
|
Solante R, Alvarez-Moreno C, Burhan E, Chariyalertsak S, Chiu NC, Chuenkitmongkol S, Dung DV, Hwang KP, Ortiz Ibarra J, Kiertiburanakul S, Kulkarni PS, Lee C, Lee PI, Lobo RC, Macias A, Nghia CH, Ong-Lim AL, Rodriguez-Morales AJ, Richtmann R, Safadi MAP, Satari HI, Thwaites G. Expert review of global real-world data on COVID-19 vaccine booster effectiveness and safety during the omicron-dominant phase of the pandemic. Expert Rev Vaccines 2023; 22:1-16. [PMID: 36330971 DOI: 10.1080/14760584.2023.2143347] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION COVID-19 vaccines have been highly effective in reducing morbidity and mortality during the pandemic. However, the emergence of the Omicron variant and subvariants as the globally dominant strains have raised doubts about the effectiveness of currently available vaccines and prompted debate about potential future vaccination strategies. AREAS COVERED Using the publicly available IVAC VIEW-hub platform, we reviewed 52 studies on vaccine effectiveness (VE) after booster vaccinations. VE were reported for SARS-CoV-2 symptomatic infection, severe disease and death and stratified by vaccine schedule and age. In addition, a non-systematic literature review of safety was performed to identify single or multi-country studies investigating adverse event rates for at least two of the currently available COVID-19 vaccines. EXPERT OPINION Booster shots of the current COVID-19 vaccines provide consistently high protection against Omicron-related severe disease and death. Additionally, this protection appears to be conserved for at least 3 months, with a small but significant waning after that. The positive risk-benefit ratio of these vaccines is well established, giving us confidence to administer additional doses as required. Future vaccination strategies will likely include a combination of schedules based on risk profile, as overly frequent boosting may be neither beneficial nor sustainable for the general population.
Collapse
Affiliation(s)
| | - Carlos Alvarez-Moreno
- Infectious Diseases Unit, Facultad de Medicina. Universidad Nacional de Colombia. Clinica Universitaria Colombia, Clínica Colsanitas, Colombia
| | - Erlina Burhan
- Faculty of Medicine Universitas Indonesia, RSUP Persahabatan, Jakarta, Indonesia
| | | | | | | | - D V Dung
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kao-Pin Hwang
- China Medical University Children's Hospital, Taichung, Taiwan
| | - Javier Ortiz Ibarra
- Médico Hospital Materno Perinatal Monica Pretelini Sáez, Toluca de Lerdo, México
| | | | | | | | - Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | - Anna Lisa Ong-Lim
- College of Medicine - Philippine General Hospital, University of the Philippines, Manila, Philippines
| | - Alfonso J Rodriguez-Morales
- Faculty of Medicine, Fundacion Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia & Master of Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima, Peru
| | - Rosana Richtmann
- Santa Joana Hospital and Maternity, the Institute of Infectious Diseases Emílio Ribas in Sao Paulo, Brazil
| | | | - Hindra Irawan Satari
- Division of Infectious Diseases and Tropical Pediatrics, Department of Child Health Medical Faculty, Universitas Indonesia, Cipto Mangunkusumo Hospital, Indonesia
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam, and The Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Liang H, Nian X, Wu J, Liu D, Feng L, Lu J, Peng Y, Zhou Z, Deng T, Liu J, Ji D, Qiu R, Lin L, Zeng Y, Xia F, Hu Y, Li T, Duan K, Li X, Wang Z, Zhang Y, Zhang H, Zhu C, Wang S, Wu X, Wang X, Li Y, Huang S, Mao M, Guo H, Yang Y, Jia R, Xufang J, Wang X, Liang S, Qiu Z, Zhang J, Ding Y, Li C, Zhang J, Fu D, He Y, Zhou D, Li C, Zhang J, Yu D, Yang XM. COVID-19 vaccination boosts the potency and breadth of the immune response against SARS-CoV-2 among recovered patients in Wuhan. Cell Discov 2022; 8:131. [PMID: 36494338 PMCID: PMC9734167 DOI: 10.1038/s41421-022-00496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed. Nevertheless, the antibody response decreased over time, and the Omicron variant exhibited more pronounced resistance to neutralization than the prototype and Delta strains. Moreover, the intensity of the SARS-CoV-2-specific CD4+ T cell response was also increased in recovered patients who received COVID-19 vaccines. Overall, the repeated antigen exposure provided by inactivated COVID-19 vaccination greatly boosted both the potency and breadth of the humoral and cellular immune responses against SARS-CoV-2, effectively protecting recovered individuals from reinfection by circulating SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Hong Liang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Dong Liu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Lu Feng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yan Peng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Zhijun Zhou
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Tao Deng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Jing Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Deming Ji
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Lianzhen Lin
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Yan Zeng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Fei Xia
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Hu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Taojing Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Hang Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Chen Zhu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Shang Wang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiao Wu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiang Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yuwei Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Min Mao
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Huanhuan Guo
- Wuxue Wusheng Plasma Collection Center, Wuxue, Hubei, China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Rui Jia
- China National Biotec Group Company Limited, Beijing, China
| | - Jingwei Xufang
- China National Biotec Group Company Limited, Beijing, China
| | - Xuewei Wang
- China National Biotec Group Company Limited, Beijing, China
| | | | - Zhixin Qiu
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Juan Zhang
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Yaling Ding
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Chunyan Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Jin Zhang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Daoxing Fu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Yanlin He
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Dongbo Zhou
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Cesheng Li
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China.
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China.
| | - Ding Yu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China.
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China.
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
19
|
Negahdaripour M, Vakili B, Nezafat N. Exosome-based vaccines and their position in next generation vaccines. Int Immunopharmacol 2022; 113:109265. [DOI: 10.1016/j.intimp.2022.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
|
20
|
Kongsomros S, Pongsakul N, Panachan J, Khowawisetsut L, Somkird J, Sangma C, Kanjanapruthipong T, Wongtrakoongate P, Chairoungdua A, Pattanapanyasat K, Newburg DS, Morrow AL, Hongeng S, Thitithanyanont A, Chutipongtanate S. Comparison of viral inactivation methods on the characteristics of extracellular vesicles from SARS-CoV-2 infected human lung epithelial cells. J Extracell Vesicles 2022; 11:e12291. [PMID: 36468940 PMCID: PMC9721205 DOI: 10.1002/jev2.12291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction of SARS-CoV-2 infection with extracellular vesicles (EVs) is of particular interest at the moment. Studying SARS-CoV-2 contaminated-EV isolates in instruments located outside of the biosafety level-3 (BSL-3) environment requires knowing how viral inactivation methods affect the structure and function of extracellular vesicles (EVs). Therefore, three common viral inactivation methods, ultraviolet-C (UVC; 1350 mJ/cm2 ), β-propiolactone (BPL; 0.005%), heat (56°C, 45 min) were performed on defined EV particles and their proteins, RNAs, and function. Small EVs were isolated from the supernatant of SARS-CoV-2-infected human lung epithelial Calu-3 cells by stepwise centrifugation, ultrafiltration and qEV size-exclusion chromatography. The EV isolates contained SARS-CoV-2. UVC, BPL and heat completely abolished SARS-CoV-2 infectivity of the contaminated EVs. Particle detection by electron microscopy and nanoparticle tracking was less affected by UVC and BPL than heat treatment. Western blot analysis of EV markers was not affected by any of these three methods. UVC reduced SARS-CoV-2 spike detectability by quantitative RT-PCR and slightly altered EV-derived β-actin detection. Fibroblast migration-wound healing activity of the SARS-CoV-2 contaminated-EV isolate was only retained after UVC treatment. In conclusion, specific viral inactivation methods are compatible with specific measures in SARS-CoV-2 contaminated-EV isolates. UVC treatment seems preferable for studying functions of EVs released from SARS-CoV-2 infected cells.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi HospitalMahidol UniversitySamut PrakanThailand
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Department of Microbiology, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Nutkridta Pongsakul
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
| | - Jirawan Panachan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jinjuta Somkird
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Chak Sangma
- Department of Chemistry, Faculty of ScienceKasetsart UniversityBangkokThailand
| | | | | | - Arthit Chairoungdua
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Research DepartmentFaculty of Medicine Siriraj Hospital, Mahidol UniversityBangkokThailand
| | - David S. Newburg
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Ardythe L. Morrow
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Infectious Diseases, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | | | - Somchai Chutipongtanate
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi HospitalMahidol UniversitySamut PrakanThailand
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
21
|
Li P, Shi D, Shen W, Shi S, Guo X, Li J, Xu S, Zhang Y, Zhao Z. Pilot genome-wide association study of antibody response to inactivated SARS-CoV-2 vaccines. Front Immunol 2022; 13:1054147. [PMID: 36451823 PMCID: PMC9704361 DOI: 10.3389/fimmu.2022.1054147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 02/13/2024] Open
Abstract
Vaccines are a key weapon against the COVID-19 pandemic caused by SARS-CoV-2. However, there are inter-individual differences in immune response to SARS-CoV-2 vaccines and genetic contributions to these differences have barely been investigated. Here, we performed genome-wide association study (GWAS) of antibody levels in 168 inactivated SARS-CoV-2 vaccine recipients. A total of 177 SNPs, corresponding to 41 independent loci, were identified to be associated with IgG, total antibodies or neutral antibodies. Specifically, the rs4543780, the intronic variant of FAM89A gene, was associated with total antibodies level and was annotated as a potential regulatory variant affecting gene expression of FAM89A, a biomarker differentiating bacterial from viral infections in febrile children. These findings might advance our knowledge of the molecular mechanisms driving immunity to SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Ping Li
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Dawei Shi
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Wenlong Shen
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xinjie Guo
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jia Li
- Division of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Sihong Xu
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yan Zhang
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
22
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Chavda VP, Yao Q, Vora LK, Apostolopoulos V, Patel CA, Bezbaruah R, Patel AB, Chen ZS. Fast-track development of vaccines for SARS-CoV-2: The shots that saved the world. Front Immunol 2022; 13:961198. [PMID: 36263030 PMCID: PMC9574046 DOI: 10.3389/fimmu.2022.961198] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In December 2019, an outbreak emerged of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which leads to coronavirus disease 2019 (COVID-19). The World Health Organisation announced the outbreak a global health emergency on 30 January 2020 and by 11 March 2020 it was declared a pandemic. The spread and severity of the outbreak took a heavy toll and overburdening of the global health system, particularly since there were no available drugs against SARS-CoV-2. With an immediate worldwide effort, communication, and sharing of data, large amounts of funding, researchers and pharmaceutical companies immediately fast-tracked vaccine development in order to prevent severe disease, hospitalizations and death. A number of vaccines were quickly approved for emergency use, and worldwide vaccination rollouts were immediately put in place. However, due to several individuals being hesitant to vaccinations and many poorer countries not having access to vaccines, multiple SARS-CoV-2 variants quickly emerged that were distinct from the original variant. Uncertainties related to the effectiveness of the various vaccines against the new variants as well as vaccine specific-side effects have remained a concern. Despite these uncertainties, fast-track vaccine approval, manufacturing at large scale, and the effective distribution of COVID-19 vaccines remain the topmost priorities around the world. Unprecedented efforts made by vaccine developers/researchers as well as healthcare staff, played a major role in distributing vaccine shots that provided protection and/or reduced disease severity, and deaths, even with the delta and omicron variants. Fortunately, even for those who become infected, vaccination appears to protect against major disease, hospitalisation, and fatality from COVID-19. Herein, we analyse ongoing vaccination studies and vaccine platforms that have saved many deaths from the pandemic.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Qian Yao
- Graduate School, University of St. La Salle, Bacolod City, Philippines
| | | | | | - Chirag A. Patel
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Aayushi B. Patel
- Pharmacy Section, LM. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| |
Collapse
|
24
|
Nagpal D, Nagpal S, Kaushik D, Kathuria H. Current clinical status of new COVID-19 vaccines and immunotherapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70772-70807. [PMID: 36063274 PMCID: PMC9442597 DOI: 10.1007/s11356-022-22661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 04/15/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is a positive-strand RNA belonging to Coronaviridae family, along with MERS and SARS. Since its first report in 2019 in Wuhan, China, it has affected over 530 million people and led to 6.3 million deaths worldwide until June 2022. Despite eleven vaccines being used worldwide already, new variants are of concern. Therefore, the governing bodies are re-evaluating the strategies for achieving universal vaccination. Initially, the WHO expected that vaccines showing around 50-80% efficacy would develop in 1-2 years. However, US-FDA announced emergency approval of the two m-RNA vaccines within 11 months of vaccine development, which enabled early vaccination for healthcare workers in many countries. Later, in January 2021, 63 vaccine candidates were under human clinical trials and 172 under preclinical development. Currently, the number of such clinical studies is still increasing. In this review, we have summarized the updates on the clinical status of the COVID-19 and the available treatments. Additionally, COVID-19 had created negative impacts on world's economy; affected agriculture, industries, and tourism service sectors; and majorly affected low-income countries. The review discusses the clinical outcomes, latest statistics, socio-economic impacts of pandemic and treatment approaches against SARS-CoV-2, and strategies against the new variant of concern. The review will help understand the current status of vaccines and other therapies while also providing insights about upcoming vaccines and therapies for COVID-19 management.
Collapse
Affiliation(s)
- Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Shakti Nagpal
- Department of Pharmacy, National University of Singapore, Singapore, 117543 Republic of Singapore
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore, 117543 Republic of Singapore
- Nusmetics Pte Ltd, Makerspace, i4 building, 3 Research Link, Singapore, 117602 Republic of Singapore
| |
Collapse
|
25
|
Dotiwala F, Upadhyay AK. A comprehensive review of BBV152 vaccine development, effectiveness, safety, challenges, and prospects. Front Immunol 2022; 13:940715. [PMID: 36177016 PMCID: PMC9513542 DOI: 10.3389/fimmu.2022.940715] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The world has responded to the COVID-19 pandemic with unprecedented speed and vigor in the mass vaccination campaigns, targeted to reduce COVID-19 severity and mortality, reduce the pressure on the healthcare system, re-open society, and reduction in disease mortality and morbidity. Here we review the preclinical and clinical development of BBV152, a whole virus inactivated vaccine and an important tool in the fight to control this pandemic. BBV152, formulated with a TLR7/8 agonist adjuvant generates a Th1-biased immune response that induces high neutralization efficacy against different SARS-CoV-2 variants of concern and robust long-term memory B- and T-cell responses. With seroconversion rates as high as 98.3% in vaccinated individuals, BBV152 shows 77.8% and 93.4% protection from symptomatic COVID-19 disease and severe symptomatic COVID-19 disease respectively. Studies in pediatric populations show superior immunogenicity (geometric mean titer ratio of 1.76 compared to an adult) with a seroconversion rate of >95%. The reactogenicity and safety profiles were comparable across all pediatric age groups between 2-18 yrs. as in adults. Like most approved vaccines, the BBV152 booster given 6 months after full vaccination, reverses a waning immunity, restores the neutralization efficacy, and shows synergy in a heterologous prime-boost study with about 3-fold or 300% increase in neutralization titers against multiple SARS-CoV-2 variants of concern. Based on the interim Phase III data, BBV152 received full authorization for adults and emergency use authorization for children from ages 6 to 18 years in India. It is also licensed for emergency use in 14 countries globally. Over 313 million vaccine doses have already been administered in India alone by April 18th, 2022.
Collapse
|
26
|
Chavda VP, Chen Y, Dave J, Chen ZS, Chauhan SC, Yallapu MM, Uversky VN, Bezbaruah R, Patel S, Apostolopoulos V. COVID-19 and vaccination: myths vs science. Expert Rev Vaccines 2022; 21:1603-1620. [PMID: 35980281 DOI: 10.1080/14760584.2022.2114900] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed since the inception of the coronavirus disease 2019 (COVID-19) in December 2019, at unprecedented speed. However, these rapidly developed vaccines raised many questions related to the efficacy and safety of vaccines in different communities across the globe. Various hypotheses regarding COVID-19 and its vaccines were generated, and many of them have also been answered with scientific evidence. Still, there are many myths/misinformation related to COVID-19 and its vaccines, which create hesitancy for COVID-19 vaccination, and must be addressed critically to achieve success in the battle against the pandemic. AREA COVERED The development of anti-SARS-CoV-2 vaccines against COVID-19, their safety and efficacy, and myths/misinformation relating to COVID-19 and vaccines are presented. EXPERT OPINION In this pandemic we have seen a global collaborative effort of researchers, governments, and industry, supported by billions of dollars in funding, have allowed the development of vaccines far more quickly than in the past. Vaccines go through rigorous testing, analysis, and evaluations in clinical settings prior to their approval, even if they are approved for emergency use. Despite the myths, vaccination represents an important strategy to get back to normality.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad
| | - Yangmin Chen
- Peter J. Tobin College of Business, St. John's University, Queens, NY 11439, USA
| | - Jayant Dave
- Department of Pharmaceutical Quality Assurance, L.M. College of Pharmacy, Ahmedabad
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institure, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh -786004, Assam, India
| | - Sandip Patel
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Melbourne, VIC, 3030, Australia.,Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| |
Collapse
|
27
|
Barnard DL, Belnap DM, Azadi P, Heiss C, Snyder DS, Bock SC, Konowalchuk TW. Examining the Interactions of GalahadTM Compound with Viruses to Develop a Novel Inactivated Influenza A Virus Vaccine. Heliyon 2022; 8:e09887. [PMID: 35821966 PMCID: PMC9258431 DOI: 10.1016/j.heliyon.2022.e09887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022] Open
Abstract
Galahad™ is a proanthocyanidin complexed with polysaccharides that inactivates viruses and indicates potential for an innovative approach to making protective vaccines. The polysaccharide portion of Galahad™ consists mainly of arabinan and arabinogalactan. In a seven-day toxicity study in rats, it was not toxic even when tested undiluted. Galahad™ inactivated a wide range of DNA and RNA viruses including adenoviruses, corona viruses such as SARS-CoV-2, and influenza viruses. Electron microscopy studies showed that exposure to Galahad™ caused extensive clumping of virions followed by lack of detection of virions after longer periods of exposure. Based on the viral inactivation data, the hypotheses tested is that Galahad™ inactivation of virus can be used to formulate a protective inactivated virus vaccine. To evaluate this hypothesis, infectious influenza A virus (H5N1, Duck/MN/1525/81) with a titer of 105.7 CCID50/0.1 ml was exposed for 10 min to Galahad™. This treatment caused the infectious virus titer to be reduced to below detectable limits. The Galahad™ -inactivated influenza preparation without adjuvant or preservative was given to BALB/c mice using a variety of routes of administration and dosing regimens. The most protective route of administration and dosing regimen was when mice were given the vaccine twice intranasally, the second dose coming 14 days after the primary vaccine dose. All the mice receiving this vaccine regimen survived the virus challenge while only 20% of the mice receiving placebo survived. This suggests that a Galahad™-inactivated influenza virus vaccine can elicit a protective immune response even without the use of an adjuvant. This technology should be investigated further for its potential to make effective human vaccines. Discovery of novel virus-inactivating agent: polysaccharide/catechin (Galahad™). Non-toxic: inactivates/lowers titers in 25 viruses, including Avian H5N1, COVID-19. Agent used to make whole virus vaccine; tested in 400 animal mouse model. Galahad™-inactivated vaccine 100% successful intranasally vs. lethal H5N1 challenge. Platform offers possible benefits—in time, cost, & mass distribution.
Collapse
|
28
|
Ghosh A, Kar PK, Gautam A, Gupta R, Singh R, Chakravarti R, Ravichandiran V, Ghosh Dastidar S, Ghosh D, Roy S. An insight into SARS-CoV-2 structure, pathogenesis, target hunting for drug development and vaccine initiatives. RSC Med Chem 2022; 13:647-675. [PMID: 35814927 PMCID: PMC9215161 DOI: 10.1039/d2md00009a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been confirmed to be a new coronavirus having 79% and 50% similarity with SARS-CoV and MERS-CoV, respectively. For a better understanding of the features of the new virus SARS-CoV-2, we have discussed a possible correlation between some unique features of the genome of SARS-CoV-2 in relation to pathogenesis. We have also reviewed structural druggable viral and host targets for possible clinical application if any, as cases of reinfection and compromised protection have been noticed due to the emergence of new variants with increased infectivity even after vaccination. We have also discussed the types of vaccines that are being developed against SARS-CoV-2. In this review, we have tried to give a brief overview of the fundamental factors of COVID-19 research like basic virology, virus variants and the newly emerging techniques that can be applied to develop advanced treatment strategies for the management of COVID-19 disease.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
- Department of Chemistry, University of Calcutta Kolkata India
- Netaji Subhas Chandra Bose Cancer Research institute 3081, Nayabad Kolkata-700094 India
| | - Paritosh K Kar
- Foundation on Tropical Diseases & Health Research Development, A Mission on Charitable Health Care Unit Balichak CT, Paschim Medinipur West Bengal 721 124 India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen Sand 14 72076 Tübingen Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen Max-Planck-Ring 5 72076 Tübingen Germany
| | - Rahul Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology Kolkata India
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
| | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata India
| | - Syamal Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology Kolkata India
| |
Collapse
|
29
|
Finkensieper J, Issmail L, Fertey J, Rockstroh A, Schopf S, Standfest B, Thoma M, Grunwald T, Ulbert S. Low-Energy Electron Irradiation of Tick-Borne Encephalitis Virus Provides a Protective Inactivated Vaccine. Front Immunol 2022; 13:825702. [PMID: 35340807 PMCID: PMC8942778 DOI: 10.3389/fimmu.2022.825702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic flavivirus which is endemic in many European and Asian countries. Humans can get infected with TBEV usually via ticks, and possible symptoms of the infection range from fever to severe neurological complications such as encephalitis. Vaccines to protect against TBEV-induced disease are widely used and most of them consist of whole viruses, which are inactivated by formaldehyde. Although this production process is well established, it has several drawbacks, including the usage of hazardous chemicals, the long inactivation times required and the potential modification of antigens by formaldehyde. As an alternative to chemical treatment, low-energy electron irradiation (LEEI) is known to efficiently inactivate pathogens by predominantly damaging nucleic acids. In contrast to other methods of ionizing radiation, LEEI does not require substantial shielding constructions and can be used in standard laboratories. Here, we have analyzed the potential of LEEI to generate a TBEV vaccine and immunized mice with three doses of irradiated or chemically inactivated TBEV. LEEI-inactivated TBEV induced binding antibodies of higher titer compared to the formaldehyde-inactivated virus. This was also observed for the avidity of the antibodies measured after the second dose. After viral challenge, the mice immunized with LEEI- or formaldehyde-inactivated TBEV were completely protected from disease and had no detectable virus in the central nervous system. Taken together, the results indicate that LEEI could be an alternative to chemical inactivation for the production of a TBEV vaccine.
Collapse
Affiliation(s)
- Julia Finkensieper
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Leila Issmail
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Jasmin Fertey
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Alexandra Rockstroh
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Simone Schopf
- Fraunhofer-Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Bastian Standfest
- Department of Laboratory Automation and Biomanufacturing Engineering, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Martin Thoma
- Department of Laboratory Automation and Biomanufacturing Engineering, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Thomas Grunwald
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| |
Collapse
|
30
|
Sadeghalvad M, Mansourabadi AH, Noori M, Nejadghaderi SA, Masoomikarimi M, Alimohammadi M, Rezaei N. Recent developments in SARS-CoV-2 vaccines: A systematic review of the current studies. Rev Med Virol 2022; 33:e2359. [PMID: 35491495 PMCID: PMC9348268 DOI: 10.1002/rmv.2359] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/28/2023]
Abstract
Designing and manufacturing efficient vaccines against coronavirus disease 2019 (COVID-19) is a major objective. In this systematic review, we aimed to evaluate the most important vaccines under construction worldwide, their efficiencies and clinical results in healthy individuals and in those with specific underlying diseases. We conducted a comprehensive search in PubMed, Scopus, EMBASE, and Web of Sciences by 1 December 2021 to identify published research studies. The inclusion criteria were publications that evaluated the immune responses and safety of COVID-19 vaccines in healthy individuals and in those with pre-existing diseases. We also searched the VAERS database to estimate the incidence of adverse events of special interest (AESI) post COVID-19 vaccination. Almost all investigated vaccines were well tolerated and developed good levels of both humoural and cellular responses. A protective and efficient humoural immune response develops after the second or third dose of vaccine and a longer interval (about 28 days) between the first and second injections of vaccine could induce higher antibody responses. The vaccines were less immunogenic in immunocompromised patients, particularly those with haematological malignancies. In addition, we found that venous and arterial thrombotic events, Bell's palsy, and myocarditis/pericarditis were the most common AESI. The results showed the potency of the SARS-CoV-2 vaccines to protect subjects against disease. The provision of further effective and safe vaccines is necessary in order to reach a high coverage of immunisation programs across the globe and to provide protection against infection itself.
Collapse
Affiliation(s)
- Mona Sadeghalvad
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| | | | - Maryam Noori
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran,Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Seyed Aria Nejadghaderi
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran,School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Masoomeh Masoomikarimi
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| | - Masoumeh Alimohammadi
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran,Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran,Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
31
|
YİĞİT SE, GÖKMEN İB, OKUTURLAR Y, KÖKSAL İ. Comparison of Clinical Progress of Covid-19 Patients Followed in the Hospital by Vaccination Status. TURKISH JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.46310/tjim.1073683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Savina K, Sreekumar R, Soonu VK, Variyar EJ. Various vaccine platforms in the field of COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:35. [PMID: 35284578 PMCID: PMC8899459 DOI: 10.1186/s43088-022-00215-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Background With the emergence of Corona virus Disease-2019, a novel worldwide health disaster is threatening the population. The WHO declared COVID-19 as a pandemic in December 2019, when it first surfaced in Hunan seafood market in Wuhan, South China, and quickly spread far and wide. Different corona virus variants are currently causing concern all across the world. Main body It has become critical for our scientists to develop a viable method to prevent infection or the pandemic from spreading globally. Antiviral medicines, oxygen therapy, and immune system stimulation are all used to treat the condition. SARS-CoV-2 undergoes mutation and due to evolutionary pressures, different mutant strains caused various symptoms in different geographical regions and the epidemic is spreading and becoming more fragile, posing a greater risk of mortality. Vaccines are tools to increase our immunity as a precaution, and increasing the global immunization rate can help improve the situation. Recent developments in the field of vaccine platforms are discussed here. Short conclusion Vaccines are of highest priority to control and eradicate the viral infectious disease COVID-19 more than any other protective solutions. A number of mutations have occurred and some variants such as alpha, beta, gamma, and delta, and it has now progressed to the new version Omicron, which is a variant of concern. Booster doses are anticipated to function as a barrier to the capacity of the most recent known variety, and more research is needed to determine how effective they will be. This page discusses various technologies employed in the field of COVID-19 vaccine, as well as potential barriers and recent developments in this field.
Collapse
|
33
|
Choudhury PR, Saha T, Goel S, Shah JM, Ganjewala D. Cross-species virus transmission and its pandemic potential. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:18. [PMID: 35095263 PMCID: PMC8787036 DOI: 10.1186/s42269-022-00701-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The majority of pandemics are known to be a result of either bacteria or viruses out of which viruses seem to be an entity of growing concern due to the sheer number of yet unidentified and potentially threatening viruses, their ability to quickly evolve and transform, their ability to transfer and change from one host organism to another and the difficulty in creating safe vaccines on time. MAIN BODY The present review attempts to bring forth the potential risks, prevention and its impact on the global society in terms of sociological and economic parameters. Taking hindsight from previously as well as ongoing current viral epidemics, this article aims to draw a concrete correlation between these viruses in terms of their origin, spread and attempts to compare how much they can affect the population. The study also assesses the worst-case scenarios and the amount of preparedness, required to fight against such pandemics and compares the required amount of preparedness to the current precautions and measures by different governments all across the world. SHORT CONCLUSION Learning from the current pandemic, we can implement certain measures to prevent the adverse effects of pandemics in the future and through severe preparedness can combat the challenges brought about by the pandemic.
Collapse
Affiliation(s)
- Priyanka Ray Choudhury
- Amity Institute of Biotechnology, Amity University Noida, Sector 125, Noida, 201303 India
| | - Tapoja Saha
- Amity Institute of Biotechnology, Amity University Noida, Sector 125, Noida, 201303 India
| | - Sachin Goel
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306 India
| | - Janvi Manish Shah
- Department of Biotechnology, Thadomal Shahani Engineering College, Mumbai, 400050 India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, Amity University Noida, Sector 125, Noida, 201303 India
| |
Collapse
|
34
|
Ecer F. An extended MAIRCA method using intuitionistic fuzzy sets for coronavirus vaccine selection in the age of COVID-19. Neural Comput Appl 2022; 34:5603-5623. [PMID: 35017795 PMCID: PMC8736313 DOI: 10.1007/s00521-021-06728-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022]
Abstract
All over the world, the COVID-19 outbreak seriously affects life, whereas numerous people have infected and passed away. To control the spread of it and to protect people, appreciable vaccine development efforts continue with increasing momentum. Given that this pandemic will be in our lives for a long time, it is obvious that a reliable and useful framework is needed to choose among coronavirus vaccines. To this end, this paper proposes a new intuitionistic fuzzy extension of MAIRCA framework, named intuitionistic fuzzy MAIRCA (IF-MAIRCA) to assess coronavirus vaccines according to some evaluation criteria. Based on the group decision-making, the IF-MAIRCA framework both extracts the criteria weights and discovers the prioritization of the alternatives under uncertainty. In this work, as a case study, five coronavirus vaccines approved by the world's leading authorities are evaluated according to various criteria. The findings demonstrate that the most significant criteria considered in coronavirus vaccine selection are “duration of protection,” “effectiveness of the vaccine,” “success against the mutations,” and “logistics,” respectively, whereas the best coronavirus vaccine is AZD1222. Apart from this, the proposed model's robustness is verified with a three-phase sensitivity analysis.
Collapse
Affiliation(s)
- Fatih Ecer
- Department of Business Administrative, Faculty of Economics and Administrative Sciences, Afyon Kocatepe University, 03030 Afyonkarahisar, Turkey
| |
Collapse
|
35
|
Naz SS, Munir I. An Outline of Contributing Vaccine Technologies for SARS CoV2 Advancing in Clinical and Preclinical Phase-Trials. Recent Pat Biotechnol 2022; 16:122-143. [PMID: 35040422 DOI: 10.2174/1872208316666220118094344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/11/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV2) is an RNA virus involving 4 structural and 16 non-structural proteins, and exhibiting high transmission potential and fatality. The emergence of this newly encountered beta coronavirus-SARS CoV2 has brought over 2 million people to death, and more than 10 billion people got infected across the globe as yet. Consequently, the global scientific community has contributed to the synthesis and design of effective immunization technologies to combat this virus. OBJECTIVES This literature review was intended to gather an update on published reports of the vaccines advancing in the clinical trial phases or preclinical trials, to summarize the foundations and implications of contributing vaccine candidates inferring their impact in the pandemic repression. In addition, this literature review distinctly facilitates an outline of the overall vaccine effectiveness at current doses. METHODS The reported data in this review was extracted from research articles, review articles and patents published from January 2020 to July 2021, available on Google Scholar, Pubmed, Pubmed Central, Research Gate, Science direct, and Free Patent Online Database by using combination of keywords. Moreover, some information is retrieved from native web pages of vaccine manufacturing companies' due to progressing research and unavailability of published research papers. CONCLUSION Contributing vaccine technologies include: RNA (Ribonucleic acid) vaccines, DNA (Deoxyribonucleic acid) vaccines, viral vector vaccines, protein-based vaccines, inactivated vaccines, viruses-like particles, protein superglue, and live-attenuated vaccines. Some vaccines are prepared by establishing bacterial and yeast cell lines and as self-assembling adenovirus- derived multimeric protein-based self-assembling nanoparticle (ADDOmer). On May 19, WHO has issued an emergency use sanction of Moderna, Pfizer, Sinopharm, AstraZeneca, and Covishield vaccine candidates on account of clinical credibility from experimental data.
Collapse
Affiliation(s)
- Sheikh Saba Naz
- Department of Microbiology, Jinnah University for Women, Pakistan
| | - Iqra Munir
- Department of Microbiology, Jinnah University for Women, Pakistan
- National Nanotechnology Research Center-UNAM, Bilkent University, Turkey
| |
Collapse
|
36
|
Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel) 2021; 9:1490. [PMID: 34960236 PMCID: PMC8708925 DOI: 10.3390/vaccines9121490] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vaccination is a key component of public health policy with demonstrated cost-effective benefits in protecting both human and animal populations. Vaccines can be manufactured under multiple forms including, inactivated (killed), toxoid, live attenuated, Virus-like Particles, synthetic peptide, polysaccharide, polysaccharide conjugate (glycoconjugate), viral vectored (vector-based), nucleic acids (DNA and mRNA) and bacterial vector/synthetic antigen presenting cells. Several processes are used in the manufacturing of vaccines and recent developments in medical/biomedical engineering, biology, immunology, and vaccinology have led to the emergence of innovative nucleic acid vaccines, a novel category added to conventional and subunit vaccines. In this review, we have summarized recent advances in vaccine technologies and platforms focusing on their mechanisms of action, advantages, and possible drawbacks.
Collapse
Affiliation(s)
- Majed Ghattas
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Garima Dwivedi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Marc Lavertu
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- AexeRNA Therapeutics, Washington, DC 20001, USA
| |
Collapse
|
37
|
Al-Jighefee HT, Najjar H, Ahmed MN, Qush A, Awwad S, Kamareddine L. COVID-19 Vaccine Platforms: Challenges and Safety Contemplations. Vaccines (Basel) 2021; 9:1196. [PMID: 34696306 PMCID: PMC8537163 DOI: 10.3390/vaccines9101196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic as of March 2020, creating a global crisis and claiming millions of lives. To halt the pandemic and alleviate its impact on society, economy, and public health, the development of vaccines and antiviral agents against SARS-CoV-2 was a dire need. To date, various platforms have been utilized for SARS-CoV-2 vaccine development, and over 200 vaccine candidates have been produced, many of which have obtained the United States Food and Drug Administration (FDA) approval for emergency use. Despite this successful development and licensure, concerns regarding the safety and efficacy of these vaccines have arisen, given the unprecedented speed of vaccine development and the newly emerging SARS-CoV-2 strains and variants. In this review, we summarize the different platforms used for Coronavirus Disease 2019 (COVID-19) vaccine development, discuss their strengths and limitations, and highlight the major safety concerns and potential risks associated with each vaccine type.
Collapse
Affiliation(s)
- Hadeel T. Al-Jighefee
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hoda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Muna Nizar Ahmed
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Abeer Qush
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Sara Awwad
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
| | - Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (H.T.A.-J.); (H.N.); (M.N.A.); (A.Q.); (S.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
38
|
Sa-nguanmoo N, Namdee K, Khongkow M, Ruktanonchai U, Zhao Y, Liang XJ. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. NANO RESEARCH 2021; 15:2196-2225. [PMID: 34659650 PMCID: PMC8501370 DOI: 10.1007/s12274-021-3832-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.
Collapse
Affiliation(s)
- Nawamin Sa-nguanmoo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, 12120 Thailand
| | - YongXiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning, 530021 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
39
|
Rasouli M, Vakilian F, Ranjbari J. Therapeutic and protective potential of mesenchymal stem cells, pharmaceutical agents and current vaccines against covid-19. Curr Stem Cell Res Ther 2021; 17:166-185. [PMID: 34530719 DOI: 10.2174/1574888x16666201221151853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
It has been almost 18 months since the first outbreak of COVID-19 disease was reported in Wuhan, China. This unexpected devastating phenomenon, raised a great deal of concerns and anxiety among people around the world and imposed a huge economic burden on the nations' health care systems. Accordingly, clinical scientists, pharmacologists and physicians worldwide felt an urgent demand for a safe, effective therapeutic agent, treatment strategy or vaccine in order to prevent or cure the recently-emerged disease. Initially, due to lack of specific pharmacological agents and approved vaccines to combat the COVID-19, the disease control in the confirmed cases was limited to supportive care. Accordingly, repositioning or repurposing current drugs and examining their possible therapeutic efficacy received a great deal of attention. Despite revealing promising results in some clinical trials, the overall results are conflicting. For this reason, there is an urgent to seek and investigate other potential therapeutics. Mesenchymal stem cells (MSC) representing immunomodulatory and regenerative capacity to treat both curable and intractable diseases, have been investigated in COVID-19 clinical trials carried out in different parts of the world. Nevertheless, up to now, none of MSC-based approaches has been approved in controlling COVID-19 infection. Thanks to the fact that the final solution for defeating the pandemic is developing a safe, effective vaccine, enormous efforts and clinical research have been carried out. In this review, we will concisely discuss the safety and efficacy of the most relevant pharmacological agents, MSC-based approaches and candidate vaccines for treating and preventing COVID-19 infection.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
40
|
Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021; 13:v13091833. [PMID: 34578415 PMCID: PMC8472842 DOI: 10.3390/v13091833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is known to cause the most significant disease in the mink industry. It is globally widespread and manifested as a deadly plasmacytosis and hyperglobulinemia. So far, measures to control the viral spread have been limited to manual serological testing for AMDV-positive mink. Further, due to the persistent nature of this virus, attempts to eradicate Aleutian disease (AD) have largely failed. Therefore, effective strategies to control the viral spread are of crucial importance for wildlife protection. One potentially key tool in the fight against this disease is by the immunization of mink against AMDV. Throughout many years, several researchers have tried to develop AMDV vaccines and demonstrated varying degrees of protection in mink by those vaccines. Despite these attempts, there are currently no vaccines available against AMDV, allowing the continuation of the spread of Aleutian disease. Herein, we summarize previous AMDV immunization attempts in mink as well as other preventative measures with the purpose to shed light on future studies designing such a potentially crucial preventative tool against Aleutian disease.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases of Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence:
| |
Collapse
|
41
|
Verdecia M, Kokai-Kun JF, Kibbey M, Acharya S, Venema J, Atouf F. COVID-19 vaccine platforms: Delivering on a promise? Hum Vaccin Immunother 2021; 17:2873-2893. [PMID: 34033528 PMCID: PMC8381795 DOI: 10.1080/21645515.2021.1911204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 and COVID-19 has brought into sharp focus the need for a vaccine to prevent this disease. Vaccines have saved millions of lives since their introduction to the public over 200 years ago. The potential for vaccination reached new heights in the mid-20th century with the development of technologies that expanded the ability to create novel vaccines. Since then, there has been continued technological advancement in vaccine development. The resulting platforms provide the promise for solutions for many infectious diseases, including those that have been with us for decades as well as those just now emerging. Each vaccine platform represents a different technology with a unique set of advantages and challenges, especially when considering manufacturing. Therefore, it is essential to understand each platform as a separate product and process with its specific quality considerations. This review outlines the relevant platforms for developing a vaccine for SARS-CoV-2 and discusses the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Mark Verdecia
- United States Pharmacopeial Convention, Rockville, MD, USA
| | | | - Maura Kibbey
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Sarita Acharya
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Jaap Venema
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Fouad Atouf
- United States Pharmacopeial Convention, Rockville, MD, USA
| |
Collapse
|
42
|
Abolaban FA, Djouider FM. Gamma irradiation-mediated inactivation of enveloped viruses with conservation of genome integrity: Potential application for SARS-CoV-2 inactivated vaccine development. Open Life Sci 2021; 16:558-570. [PMID: 34131589 PMCID: PMC8174122 DOI: 10.1515/biol-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Radiation inactivation of enveloped viruses occurs as the result of damages at the molecular level of their genome. The rapidly emerging and ongoing coronavirus disease 2019 (COVID-19) pneumonia pandemic prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now a global health crisis and an economic devastation. The readiness of an active and safe vaccine against the COVID-19 has become a race against time in this unqualified global panic caused by this pandemic. In this review, which we hope will be helpful in the current situation of COVID-19, we analyze the potential use of γ-irradiation to inactivate this virus by damaging at the molecular level its genetic material. This inactivation is a vital step towards the design and development of an urgently needed, effective vaccine against this disease.
Collapse
Affiliation(s)
- Fouad A. Abolaban
- Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, PO Box 80204, Jeddah, 21589, Saudi Arabia
| | - Fathi M. Djouider
- Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, PO Box 80204, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
43
|
García-Montero C, Fraile-Martínez O, Bravo C, Torres-Carranza D, Sanchez-Trujillo L, Gómez-Lahoz AM, Guijarro LG, García-Honduvilla N, Asúnsolo A, Bujan J, Monserrat J, Serrano E, Álvarez-Mon M, De León-Luis JA, Álvarez-Mon MA, Ortega MA. An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times. Vaccines (Basel) 2021; 9:vaccines9050433. [PMID: 33925526 PMCID: PMC8146241 DOI: 10.3390/vaccines9050433] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Since the worldwide COVID-19 pandemic was declared a year ago, the search for vaccines has become the top priority in order to restore normalcy after 2.5 million deaths worldwide, overloaded sanitary systems, and a huge economic burden. Vaccine development has represented a step towards the desired herd immunity in a short period of time, owing to a high level of investment, the focus of researchers, and the urge for the authorization of the faster administration of vaccines. Nevertheless, this objective may only be achieved by pursuing effective strategies and policies in various countries worldwide. In the present review, some aspects involved in accomplishing a successful vaccination program are addressed, in addition to the importance of vaccination in a pandemic in the face of unwillingness, conspiracy theories, or a lack of information among the public. Moreover, we provide some updated points related to the landscape of the clinical development of vaccine candidates, specifically, the top five vaccines that are already being assessed in Phase IV clinical trials (BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, and CoronaVac).
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | | | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
| | - Luis G. Guijarro
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Encarnación Serrano
- Los fresnos of Health Centre, Health Area III, Torrejon de Ardoz, 28850 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Juan A De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- First of May Health Centre, Health Area I, Rivas Vaciamadrid, 28521 Madrid, Spain;
- Correspondence:
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (L.S.-T.); (A.M.G.-L.); (N.G.-H.); (J.B.); (J.M.); (M.Á.-M.); (M.A.Á.-M.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| |
Collapse
|
44
|
Salian VS, Wright JA, Vedell PT, Nair S, Li C, Kandimalla M, Tang X, Carmona Porquera EM, Kalari KR, Kandimalla KK. COVID-19 Transmission, Current Treatment, and Future Therapeutic Strategies. Mol Pharm 2021; 18:754-771. [PMID: 33464914 PMCID: PMC7839412 DOI: 10.1021/acs.molpharmaceut.0c00608] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
At the stroke of the New Year 2020, COVID-19, a zoonotic disease that would turn into a global pandemic, was identified in the Chinese city of Wuhan. Although unique in its transmission and virulence, COVID-19 is similar to zoonotic diseases, including other SARS variants (e.g., SARS-CoV) and MERS, in exhibiting severe flu-like symptoms and acute respiratory distress. Even at the molecular level, many parallels have been identified between SARS and COVID-19 so much so that the COVID-19 virus has been named SARS-CoV-2. These similarities have provided several opportunities to treat COVID-19 patients using clinical approaches that were proven to be effective against SARS. Importantly, the identification of similarities in how SARS-CoV and SARS-CoV-2 access the host, replicate, and trigger life-threatening pathological conditions have revealed opportunities to repurpose drugs that were proven to be effective against SARS. In this article, we first provided an overview of COVID-19 etiology vis-à-vis other zoonotic diseases, particularly SARS and MERS. Then, we summarized the characteristics of droplets/aerosols emitted by COVID-19 patients and how they aid in the transmission of the virus among people. Moreover, we discussed the molecular mechanisms that enable SARS-CoV-2 to access the host and become more contagious than other betacoronaviruses such as SARS-CoV. Further, we outlined various approaches that are currently being employed to diagnose and symptomatically treat COVID-19 in the clinic. Finally, we reviewed various approaches and technologies employed to develop vaccines against COVID-19 and summarized the attempts to repurpose various classes of drugs and novel therapeutic approaches.
Collapse
Affiliation(s)
- Vrishali S. Salian
- Department of Pharmaceutics, College of Pharmacy,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Jessica A. Wright
- Department of Pharmacy Services, Mayo
Clinic, Rochester, Minnesota 55905, United States
| | - Peter T. Vedell
- Division of Biostatistics and Informatics, Department of
Health Sciences Research, Mayo Clinic, Rochester, Minnesota
55905, United States
| | - Sanjana Nair
- Department of Pharmaceutics, College of Pharmacy,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Chenxu Li
- Department of Pharmaceutics, College of Pharmacy,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Mahathi Kandimalla
- College of Letters and Science,
University of California, Berkeley, Berkeley, California
55906, United States
| | - Xiaojia Tang
- Division of Biostatistics and Informatics, Department of
Health Sciences Research, Mayo Clinic, Rochester, Minnesota
55905, United States
| | - Eva M. Carmona Porquera
- Division of Pulmonary and Critical Care Medicine,
Department of Internal Medicine, Mayo Clinic, Rochester,
Minnesota 55905, United States
| | - Krishna R. Kalari
- Division of Biostatistics and Informatics, Department of
Health Sciences Research, Mayo Clinic, Rochester, Minnesota
55905, United States
| | - Karunya K. Kandimalla
- Department of Pharmaceutics, College of Pharmacy,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| |
Collapse
|
45
|
Shkair L, Garanina EE, Stott RJ, Foster TL, Rizvanov AA, Khaiboullina SF. Membrane Microvesicles as Potential Vaccine Candidates. Int J Mol Sci 2021; 22:1142. [PMID: 33498909 PMCID: PMC7865840 DOI: 10.3390/ijms22031142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The prevention and control of infectious diseases is crucial to the maintenance and protection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how outbreaks of emerging and re-emerging infections can lead to pandemics of significant public health and socio-economic burden. Vaccination is one of the most effective approaches to protect against infectious diseases, and to date, multiple vaccines have been successfully used to protect against and eradicate both viral and bacterial pathogens. The main criterion of vaccine efficacy is the induction of specific humoral and cellular immune responses, and it is well established that immunogenicity depends on the type of vaccine as well as the route of delivery. In addition, antigen delivery to immune organs and the site of injection can potentiate efficacy of the vaccine. In light of this, microvesicles have been suggested as potential vehicles for antigen delivery as they can carry various immunogenic molecules including proteins, nucleic acids and polysaccharides directly to target cells. In this review, we focus on the mechanisms of microvesicle biogenesis and the role of microvesicles in infectious diseases. Further, we discuss the application of microvesicles as a novel and effective vaccine delivery system.
Collapse
Affiliation(s)
- Layaly Shkair
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Robert J. Stott
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (L.S.); (E.E.G.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
46
|
|
47
|
Javan S, Motamedi-Sedeh F, Dezfulian M. Reduction of viral load of avian influenza A virus (H9N2) on SPF eggs and cell line by gamma irradiation. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Avian influenza A H9N2 viruses are circulating in domestic poultry worldwide. In this research a low-pathogenic AIV H9N2 was multiplied on MDCK cell line and SPF eggs and irradiated by a Nordian gamma cell instrument. Irradiated and non-irradiated AIV samples were titrated by TCID50 and EID50 methods, respectively. Haemagglutinin antigen was analysed by Haemagglutinin test. Infectivity of irradiated virus samples was determined by cell culture and egg inoculation methods. The virus titration decreased as the dose of gamma radiation increased. AIV proliferation on cell culture can be inactivated by gamma irradiation at a lower dose of gamma-ray (20 kGy) than the virus inactivation on embryonated eggs (30 kGy). The safety test showed complete inactivation of AIV on allantoic fluid with gamma-ray doses: 30 kGy and 20 kGy for virus on MDCK cells after four blind cultures.
Collapse
|
48
|
Jain S, Batra H, Yadav P, Chand S. COVID-19 Vaccines Currently under Preclinical and Clinical Studies, and Associated Antiviral Immune Response. Vaccines (Basel) 2020; 8:vaccines8040649. [PMID: 33153096 PMCID: PMC7711779 DOI: 10.3390/vaccines8040649] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
With a death toll of over one million worldwide, the COVID-19 pandemic caused by SARS-CoV-2 has become the most devastating humanitarian catastrophe in recent decades. The fear of acquiring infection and spreading to vulnerable people has severely impacted society's socio-economic status. To put an end to this growing number of infections and deaths as well as to switch from restricted to everyday living, an effective vaccine is desperately needed. As a result, enormous efforts have been made globally to develop numerous vaccine candidates in a matter of months. Currently, over 30 vaccine candidates are under assessment in clinical trials, with several undergoing preclinical studies. Here, we reviewed the major vaccine candidates based on the specific vaccine platform utilized to develop them. We also discussed the immune responses generated by these candidates in humans and preclinical models to determine vaccine safety, immunogenicity, and efficacy. Finally, immune responses induced in recovered COVID-19 patients and their possible vaccine development implications were also briefly reviewed.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (S.J.); (H.B.)
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (S.J.); (H.B.)
| | - Poonam Yadav
- CHI Health, Department of Pulmonary Medicine, Creighton University Medical Center, Omaha, NE 68131, USA;
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-8017
| |
Collapse
|
49
|
Teklue T, Sun Y, Abid M, Luo Y, Qiu HJ. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis 2019; 67:529-542. [PMID: 31538406 DOI: 10.1111/tbed.13364] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
African swine fever (ASF) is a highly lethal haemorrhagic disease of swine caused by African swine fever virus (ASFV), a unique and genetically complex virus. The disease continues to be a huge burden to the pig industry in Africa, Europe and recently in Asia, especially China. The purpose of this review was to recapitulate the current scenarios and evolving trends in ASF vaccine development. The unavailability of an applicable ASF vaccine is partly due to the complex nature of the virus, which encodes various proteins associated with immune evasion. Moreover, the incomplete understanding of immune protection determinants of ASFV hampers the rational vaccine design. Developing an effective ASF vaccine continues to be a challenging task due to many undefined features of ASFV immunobiology. Recent attempts on DNA and live attenuated ASF vaccines have been reported with promising efficacy, and especially live attenuated vaccines have been proved to provide complete homologous protection. Single-cycle viral vaccines have been developed for various diseases such as Rift Valley fever and bluetongue, and the rational extension of these strategies could be helpful for developing single-cycle ASF vaccines. Therefore, live attenuated vaccines in short term and single-cycle vaccines in long term would be the next generation of ASF vaccines.
Collapse
Affiliation(s)
- Teshale Teklue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Abid
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
50
|
Kumar P, Srivastava M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease 2018; 29:434-444. [PMID: 30539045 PMCID: PMC6261883 DOI: 10.1007/s13337-018-0498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important pneumovirus which causes acute respiratory disease in human beings. The viral infection leads to mild to severe respiratory symptoms depending on the age and immune status of the infected individual. Several groups across the world are working on the development of immunogens and therapy to manage HMPV infection with promising results under laboratory conditions but till date any virus specific vaccine or therapy has not been approved for clinical use. This minireview gives an overview of the prophylactic and therapeutic approaches to manage HMPV infections.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| | - Mansi Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| |
Collapse
|