1
|
González-Mariscal L, Raya-Sandino A, González-González L, Hernández-Guzmán C. Relationship between G proteins coupled receptors and tight junctions. Tissue Barriers 2018; 6:e1414015. [PMID: 29420165 DOI: 10.1080/21688370.2017.1414015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tight junctions (TJs) are sites of cell-cell adhesion, constituted by a cytoplasmic plaque of molecules linked to integral proteins that form a network of strands around epithelial and endothelial cells at the uppermost portion of the lateral membrane. TJs maintain plasma membrane polarity and form channels and barriers that regulate the transit of ions and molecules through the paracellular pathway. This structure that regulates traffic between the external milieu and the organism is affected in numerous pathological conditions and constitutes an important target for therapeutic intervention. Here, we describe how a wide array of G protein-coupled receptors that are activated by diverse stimuli including light, ions, hormones, peptides, lipids, nucleotides and proteases, signal through heterotrimeric G proteins, arrestins and kinases to regulate TJs present in the blood-brain barrier, the blood-retinal barrier, renal tubular cells, keratinocytes, lung and colon, and the slit diaphragm of the glomerulus.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Arturo Raya-Sandino
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Laura González-González
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Christian Hernández-Guzmán
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| |
Collapse
|
2
|
Kuruca SE, Karadenizli S, Akgun-Dar K, Kapucu A, Kaptan Z, Uzum G. The effects of 17β-estradiol on blood brain barrier integrity in the absence of the estrogen receptor alpha; an in-vitro model. Acta Histochem 2017; 119:638-647. [PMID: 28803749 DOI: 10.1016/j.acthis.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB), which saves the brain from toxic substances, is formed by endothelial cells. It is mainly composed of tight junction (TJ) proteins existing between endothelial cells. Estrogen is an important regulatory hormone of BBB permeability. It protects the BBB before menopause, but may increase BBB permeability with aging. In addition, nitric oxide modulates BBB permeability. Alcohol impairs the integrity of the BBB with oxidants and inflammatory mediators such as iNOS. We investigated the effects of estrogen on BBB integrity in an in vitro BBB model created with ERα-free HUVEC (human umbilical vein endothelial-like cells) to mimics the menopausal period. In vitro BBB model is created with HUVEC/C6 (rat glioma cells) co-culture. The effect of 17β-estradiol on ethanol-induced BBB disruption and change/or increase of iNOS activity, which modulate BBB integrity, were evaluated. Inducibility and functionality of BBB were investigated using transendothelial electrical resistance (TEER) and the expression of proteins TJ proteins (occludin and claudin-1) and iNOS activity by immunostaining. Our results revealed that 17β-estradiol treatment before and after ethanol decrease expression of occludin and claudin-1 and value of TEER which are BBB disrupt indicators. In addition, ethanol and 17β-estradiol separately and pre- and post-ethanol 17β-estradiol treatment increased iNOS expression. Thus our study suggests caution in the use of 17β-estradiol after menopause because 17β-estradiol at this time may both increase the inflammatory process as well as damage the BBB. We think that beneficial effects of 17β-estradiol may be through ERα but it needs further studies.
Collapse
|
3
|
García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers 2016; 4:e1228439. [PMID: 28123925 DOI: 10.1080/21688370.2016.1228439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.
Collapse
Affiliation(s)
- Alexander García-Ponce
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Sandra Chánez Paredes
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Karla Fabiola Castro Ochoa
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| |
Collapse
|
4
|
Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36:862-90. [PMID: 26868179 PMCID: PMC4853841 DOI: 10.1177/0271678x16630991] [Citation(s) in RCA: 541] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture model of the blood-brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
Collapse
Affiliation(s)
- Hans C Helms
- Department of Pharmacy, University of Copenhagen, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, UK
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | | | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, HAS, Szeged, Hungary
| | - Carola Förster
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg, Germany
| | - Hans J Galla
- Institute of Biochemistry, University of Muenster, Germany
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Babette Weksler
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, NY, USA
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Müller-Redetzky HC, Lienau J, Witzenrath M. The Lung Endothelial Barrier in Acute Inflammation. THE VERTEBRATE BLOOD-GAS BARRIER IN HEALTH AND DISEASE 2015. [PMCID: PMC7123850 DOI: 10.1007/978-3-319-18392-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell Tissue Res 2014; 355:657-73. [PMID: 24599335 PMCID: PMC7102256 DOI: 10.1007/s00441-014-1821-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022]
Abstract
The lungs provide a large inner surface to guarantee respiration. In lung alveoli, a delicate membrane formed by endo- and epithelial cells with their fused basal lamina ensures rapid and effective gas exchange between alveolar and vascular compartments while concurrently forming a robust barrier against inhaled particles and microbes. However, upon infectious or sterile inflammatory stimulation, tightly regulated endothelial barrier leakiness is required for leukocyte transmigration. Further, endothelial barrier disruption may result in uncontrolled extravasation of protein-rich fluids. This brief review summarizes some important mechanisms of pulmonary endothelial barrier regulation and disruption, focusing on the role of specific cell populations, coagulation and complement cascades and mediators including angiopoietins, specific sphingolipids, adrenomedullin and reactive oxygen and nitrogen species for the regulation of pulmonary endothelial barrier function. Further, current therapeutic perspectives against development of lung injury are discussed.
Collapse
|
7
|
Species-Dependent Blood-Brain Barrier Disruption of Lipopolysaccharide: Amelioration by Colistin In Vitro and In Vivo. Antimicrob Agents Chemother 2013; 57:4336-4342. [PMID: 23796941 DOI: 10.1128/aac.00765-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/20/2013] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to use in vitro and in vivo models to assess the impact of lipopolysaccharide (LPS) from two different bacterial species on blood-brain barrier (BBB) integrity and brain uptake of colistin. Following repeated administration of LPS from Pseudomonas aeruginosa, the brain-to-plasma ratio of [14C]sucrose in Swiss outbred mice was not significantly increased. Furthermore, while the brain uptake of colistin in mice increased 3-fold following administration of LPS from Salmonella enterica, LPS from P. aeruginosa had no significant effect on colistin brain uptake. This apparent species-dependent effect did not appear to correlate with differences in plasma cytokine levels, as the concentrations of tumor necrosis factor alpha and interleukin-6 following administration of each LPS were not different (P > 0.05). To clarify whether this species-specific effect of LPS was due to direct effects on the BBB, human brain capillary endothelial (hCMEC/D3) cells were treated with LPS from P. aeruginosa or S. enterica and claudin-5 expression was measured by Western blotting. S. enterica LPS significantly (P < 0.05) reduced claudin-5 expression at a concentration of 7.5 μg/ml. In contrast, P. aeruginosa LPS decreased (P < 0.05) claudin-5 expression only at the highest concentration tested (i.e., 30 μg/ml). Coadministration of therapeutic concentrations of colistin ameliorated the S. enterica LPS-induced reduction in claudin-5 expression in hCMEC/D3 cells and the perturbation in BBB function in mice. This study demonstrates that BBB disruption induced by LPS is species dependent, at least between P. aeruginosa and S. enterica, and can be ameliorated by colistin.
Collapse
|
8
|
Hoopes SL, Willcockson HH, Caron KM. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice. PLoS One 2012; 7:e45261. [PMID: 23028890 PMCID: PMC3444480 DOI: 10.1371/journal.pone.0045261] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/15/2012] [Indexed: 12/25/2022] Open
Abstract
Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrlfl/fl/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrlfl/fl/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrlfl/fl/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia.
Collapse
Affiliation(s)
- Samantha L Hoopes
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
9
|
Abstract
Infection with the protozoan parasite Toxoplasma gondii is characterized by asymptomatic latent infection in the central nervous system and skeletal muscle tissue in the majority of immunocompentent individuals. Life-threatening reactivation of the infection in immunocompromized patients originates from rupture of Toxoplasma cysts in the brain. While major progress has been made in our understanding of the immunopathogenesis of infection the mechanism(s) of neuroinvasion of the parasite remains poorly understood. The present review presents the current understanding of blood-brain barrier (patho)physiology and the interaction of Toxoplasma gondii with cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Sabrina M Feustel
- Institute for Microbiology and Hygiene, Charité Medical School, Berlin, Germany
| | | | | |
Collapse
|
10
|
Julian CG, Subudhi AW, Wilson MJ, Dimmen AC, Pecha T, Roach RC. Acute mountain sickness, inflammation, and permeability: new insights from a blood biomarker study. J Appl Physiol (1985) 2011; 111:392-9. [PMID: 21636566 DOI: 10.1152/japplphysiol.00391.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathophysiology of acute mountain sickness (AMS) is unknown. One hypothesis is that hypoxia induces biochemical changes that disrupt the blood-brain barrier (BBB) and, subsequently, lead to the development of cerebral edema and the defining symptoms of AMS. This study explores the relationship between AMS and biomarkers thought to protect against or contribute to BBB disruption. Twenty healthy volunteers participated in a series of hypobaric hypoxia trials distinguished by pretreatment with placebo, acetazolamide (250 mg), or dexamethasone (4 mg), administered using a randomized, double-blind, placebo-controlled, crossover design. Each trial included peripheral blood sampling and AMS assessment before (-15 and 0 h) and during (0.5, 4, and 9 h) a 10-h hypoxic exposure (barometric pressure = 425 mmHg). Anti-inflammatory and/or anti-permeability [interleukin (IL)-1 receptor agonist (IL-1RA), heat shock protein (HSP)-70, and adrenomedullin], proinflammatory (IL-6, IL-8, IL-2, IL-1β, and substance P), angiogenic, or chemotactic biomarkers (macrophage inflammatory protein-1β, VEGF, TNF-α, monocyte chemotactic protein-1, and matrix metalloproteinase-9) were assessed. AMS-resistant subjects had higher IL-1RA (4 and 9 h and overall), HSP-70 (0 h and overall), and adrenomedullin (overall) compared with AMS-susceptible subjects. Acetazolamide raised IL-1RA and HSP-70 compared with placebo in AMS-susceptible subjects. Dexamethasone also increased HSP-70 and adrenomedullin in AMS-susceptible subjects. Macrophage inflammatory protein-1β was higher in AMS-susceptible than AMS-resistant subjects after 4 h of hypoxia; dexamethasone minimized this difference. Other biomarkers were unrelated to AMS. Resistance to AMS was accompanied by a marked anti-inflammatory and/or anti-permeability response that may have prevented downstream pathophysiological events leading to AMS. Conversely, AMS susceptibility does not appear to be related to an exaggerated inflammatory response.
Collapse
Affiliation(s)
- Colleen Glyde Julian
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, 12469 East 17 Place, Bldg 400, Aurora, CO 80045-0508, USA
| | | | | | | | | | | |
Collapse
|
11
|
Petersen KA, Birk S, Kitamura K, Olesen J. Effect of Adrenomedullin on the Cerebral Circulation: Relevance to Primary Headache Disorders. Cephalalgia 2009; 29:23-30. [DOI: 10.1111/j.1468-2982.2008.01695.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adrenomedullin (ADM) is closely related to calcitonin gene-related peptide, which has a known causative role in migraine. Animal studies have strongly suggested that ADM has a vasodilatory effect within the cerebral circulation. For these reasons, ADM is also likely to be involved in migraine. However, the hypothetical migraine-inducing property and effect on human cerebral circulation of ADM have not previously been investigated. Human ADM (0.08 µg kg−1 min−1) or placebo (saline 0.9%) was administered as a 20-min intravenous infusion to 12 patients suffering from migraine without aura in a crossover double-blind study. The occurrence of headache and associated symptoms were registered regularly 24 h post infusion. Cerebral blood flow (CBF) was measured by 133Xenon single-photon emission computed tomography, mean blood flow velocity in the middle cerebral artery (VMCA) by transcranial Doppler and the diameter of peripheral arteries by transdermal ultrasound (C-scan). ADM did not induce significantly more headache or migraine compared with placebo ( P = 0.58). CBF was unaffected by ADM infusion (global CBF, P = 0.32 and rCBFMCA, P = 0.38) and the same applied for the VMCA ( P = 0.18). The superficial temporal artery dilated compared with placebo ( P < 0.001), and facial flushing was seen after ADM administration ( P = 0.001). In conclusion, intravenous ADM is not a mediator of migraine headache and does not dilate intracranial arteries.
Collapse
Affiliation(s)
- KA Petersen
- Danish Headache Centre, University of Copenhagen, Copenhagen
- Department of Neurology, Glostrup University Hospital, Glostrup, Denmark
| | - S Birk
- Danish Headache Centre, University of Copenhagen, Copenhagen
- Department of Neurology, Glostrup University Hospital, Glostrup, Denmark
| | - K Kitamura
- First Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan
| | - J Olesen
- Danish Headache Centre, University of Copenhagen, Copenhagen
- Department of Neurology, Glostrup University Hospital, Glostrup, Denmark
| |
Collapse
|
12
|
Dunworth WP, Fritz-Six KL, Caron KM. Adrenomedullin stabilizes the lymphatic endothelial barrier in vitro and in vivo. Peptides 2008; 29:2243-9. [PMID: 18929609 PMCID: PMC2639781 DOI: 10.1016/j.peptides.2008.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/10/2008] [Accepted: 09/15/2008] [Indexed: 02/04/2023]
Abstract
The lymphatic vascular system functions to maintain fluid homeostasis by removing fluid from the interstitial space and returning it to venous circulation. This process is dependent upon the maintenance and modulation of a semi-permeable barrier between lymphatic endothelial cells of the lymphatic capillaries. However, our understanding of the lymphatic endothelial barrier and the molecular mechanisms that govern its function remains limited. Adrenomedullin (AM) is a 52 amino acid secreted peptide which has a wide range of effects on cardiovascular physiology and is required for the normal development of the lymphatic vascular system. Here, we report that AM can also modulate lymphatic permeability in cultured dermal microlymphatic endothelial cells (HMVEC-dLy). AM stimulation caused a reorganization of the tight junction protein ZO-1 and the adherens protein VE-cadherin at the plasma membrane, effectively tightening the endothelial barrier. Stabilization of the lymphatic endothelial barrier by AM occurred independently of changes in junctional protein gene expression and AM(-/-) endothelial cells showed no differences in the gene expression of junctional proteins compared to wildtype endothelial cells. Nevertheless, local administration of AM in the mouse tail decreased the rate of lymph uptake from the interstitial space into the lymphatic capillaries. Together, these data reveal a previously unrecognized role for AM in controlling lymphatic endothelial permeability and lymphatic flow through reorganization of junctional proteins.
Collapse
Affiliation(s)
- William P. Dunworth
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Kimberly L. Fritz-Six
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Kathleen M. Caron
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
- Corresponding Author: Department of Cell & Molecular Physiology, CB # 7545, 6330 MBRB 111 Mason Farm Rd., The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA. Phone: (919) 966-5215. FAX: (919) 966-5230. e-mail:
| |
Collapse
|
13
|
Fritz-Six KL, Dunworth WP, Li M, Caron KM. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest 2008; 118:40-50. [PMID: 18097475 DOI: 10.1172/jci33302] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022] Open
Abstract
The lymphatic vascular system mediates fluid homeostasis, immune defense, and tumor metastasis. Only a handful of genes are known to affect the development of the lymphatic vasculature, and even fewer represent therapeutic targets for lymphatic diseases. Adrenomedullin (AM) is a multifunctional peptide vasodilator that transduces its effects through the calcitonin receptor-like receptor (calcrl) when the receptor is associated with a receptor activity-modifying protein (RAMP2). Here we report on the involvement of these genes in lymphangiogenesis. AM-, calcrl-, or RAMP2-null mice died mid-gestation after development of interstitial lymphedema. This conserved phenotype provided in vivo evidence that these components were required for AM signaling during embryogenesis. A conditional knockout line with loss of calcrl in endothelial cells confirmed an essential role for AM signaling in vascular development. Loss of AM signaling resulted in abnormal jugular lymphatic vessels due to reduction in lymphatic endothelial cell proliferation. Furthermore, AM caused enhanced activation of ERK signaling in human lymphatic versus blood endothelial cells, likely due to induction of CALCRL gene expression by the lymphatic transcriptional regulator Prox1. Collectively, our studies identify a class of genes involved in lymphangiogenesis that represent a pharmacologically tractable system for the treatment of lymphedema or inhibition of tumor metastasis.
Collapse
Affiliation(s)
- Kimberly L Fritz-Six
- Department of Cell and Molecular Physiology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
14
|
Hocke AC, Temmesfeld-Wollbrueck B, Schmeck B, Berger K, Frisch EM, Witzenrath M, Brell B, Suttorp N, Hippenstiel S. Perturbation of endothelial junction proteins by Staphylococcus aureus alpha-toxin: inhibition of endothelial gap formation by adrenomedullin. Histochem Cell Biol 2006; 126:305-16. [PMID: 16596365 DOI: 10.1007/s00418-006-0174-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
Endothelial hyperpermeability is a hallmark of an inflammatory reaction and contributes to tissue damage in severe infections. Loss of endothelial cell-cell adhesion leads to intercellular gap formation allowing paracellular fluid flux. Although Staphylococcus aureus alpha-toxin significantly contributed to staphylococci disease, little is known about its mechanism of endothelial hyperpermeability induction. Here, we demonstrate that in a model of isolated perfused rat ileum discontinuation of capillary vascular-endothelial-cadherin (VE-cadherin) was observed after bolus application of S. aureus alpha-toxin being inhibited by the endogenous peptide adrenomedullin (ADM). In vitro, alpha-toxin exposure induced loss of immunoreactivity of VE-cadherin and occludin in human cultured umbilical vein endothelial cells. Likewise, ADM blocked alpha-toxin-related junctional protein disappearance from intercellular sites. Additionally, cyclic AMP elevation was shown to stabilize endothelial barrier function after alpha-toxin application. Although no RhoA activation was noted after endothelial alpha-toxin exposure, inhibition of Rho kinase and myosin light chain kinase blocked loss of immunoreactivity of VE-cadherin and occludin as well as intercellular gap formation. In summary, stabilization of endothelial junctional integrity as indicated by interendothelial immunostaining might be an interesting approach to stabilize endothelial barrier function in severe S. aureus infections.
Collapse
Affiliation(s)
- Andreas C Hocke
- Department of Internal Medicine/Infectious and Pulmonary Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, Niwa M. Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 2006; 26:109-18. [PMID: 16763778 PMCID: PMC11520619 DOI: 10.1007/s10571-006-9028-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 11/08/2005] [Indexed: 12/14/2022]
Abstract
AIMS Brain vascular endothelial cells secret Adrenomedullin (AM) has multifunctional biological properties. AM affects cerebral blood flow and blood-brain barrier (BBB) function. We studied the role of AM on the permeability and tight junction proteins of brain microvascular endothelial cells (BMEC). METHODS BMEC were isolated from rats and a BBB in vitro model was generated. The barrier functions were studied by measuring the transendothelial electrical resistance (TEER) and the permeability of sodium fluorescein and Evans' blue albumin. The expressions of tight junction proteins were analyzed using immunocytochemistry and immunoblotting. RESULTS AM increased TEER of BMEC monolayer dose-dependently. Immunocytochemistry revealed that AM enhanced the claudin-5 expression at a cell-cell contact site in a dose-dependent manner. Immunoblotting also showed an overexpression of claudin-5 in AM exposure. CONCLUSIONS AM therefore inhibits the paracellular transport in a BBB in vitro model through claudin-5 overexpression.
Collapse
Affiliation(s)
- Masaru Honda
- Department of Neurosurgery, Nagasaki University School of Medicine, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Well-documented central nervous system changes during colitis suggest possible alterations of blood-brain barrier (BBB) permeability, yet the integrity of the BBB has not been fully evaluated in experimental colitis. Our aim was to investigate whether trinitrobenzene sulphonic acid (TNBS) colitis was associated with an increase in the permeability of the BBB. Sprague-Dawley rats were given an intracolonic injection of saline or TNBS and studied 1, 2, 3, 7 and 21 days after treatment. The extravasation of endogenous immunoglobulin G, a large molecule, was not altered at any time after TNBS treatment. In contrast, significant increases in the BBB leakage of sodium fluorescein, a much smaller molecule, were observed 1 and 2 days after the induction of colitis, in and around the circumventricular organs; the organum vasculosum of the lamina terminalis, subfornical organ and median eminence of the hypothalamus. TNBS-treated rats also exhibited sodium fluorescein leakage in focal areas in the brain parenchyma. The expression of endothelial barrier antigen, a protein associated with the BBB, was reduced about 60% 48 h after the induction of colitis. This returned to control values by 3 weeks, when colitis had largely subsided. In conclusion, experimental colitis transiently increased permeability of the brain to small molecules through a mild disruption of the BBB.
Collapse
Affiliation(s)
- S S Natah
- Institute for Infection, Immunity and Inflammation, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
17
|
Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The Choroid Plexus‐Cerebrospinal Fluid System: From Development to Aging. Curr Top Dev Biol 2005; 71:1-52. [PMID: 16344101 DOI: 10.1016/s0070-2153(05)71001-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The function of the cerebrospinal fluid (CSF) and the tissue that secretes it, the choroid plexus (CP), has traditionally been thought of as both providing physical protection to the brain through buoyancy and facilitating the removal of brain metabolites through the bulk drainage of CSF. More recent studies suggest, however, that the CP-CSF system plays a much more active role in the development, homeostasis, and repair of the central nervous system (CNS). The highly specialized choroidal tissue synthesizes trophic and angiogenic factors, chemorepellents, and carrier proteins, and is strategically positioned within the ventricular cavities to supply the CNS with these biologically active substances. Through polarized transport systems and receptor-mediated transcytosis across the choroidal epithelium, the CP, a part of the blood-CSF barrier (BCSFB), controls the entry of nutrients, such as amino acids and nucleosides, and peptide hormones, such as leptin and prolactin, from the periphery into the brain. The CP also plays an important role in the clearance of toxins and drugs. During CNS development, CP-derived growth factors, such as members of the transforming growth factor-beta superfamily and retinoic acid, play an important role in controlling the patterning of neuronal differentiation in various brain regions. In the adult CNS, the CP appears to be critically involved in neuronal repair processes and the restoration of the brain microenvironment after traumatic and ischemic brain injury. Furthermore, recent studies suggest that the CP acts as a nursery for neuronal and astrocytic progenitor cells. The advancement of our knowledge of the neuroprotective capabilities of the CP may therefore facilitate the development of novel therapies for ischemic stroke and traumatic brain injury. In the later stages of life, the CP-CSF axis shows a decline in all aspects of its function, including CSF secretion and protein synthesis, which may in themselves increase the risk for development of late-life diseases, such as normal pressure hydrocephalus and Alzheimer's disease. The understanding of the mechanisms that underlie the dysfunction of the CP-CSF system in the elderly may help discover the treatments needed to reverse the negative effects of aging that lead to global CNS failure.
Collapse
Affiliation(s)
- Zoran B Redzic
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Abstract
The fundamental functions of epithelia and endothelia in multicellular organisms are to separate compositionally distinct compartments and regulate the exchange of small solutes and other substances between them. Tight junctions (TJs) between adjacent cells constitute the barrier to the passage of ions and molecules through the paracellular pathway and function as a 'fence' within the plasma membrane to create and maintain apical and basolateral membrane domains. How TJs achieve this is only beginning to be understood. Recently identified components of TJs include the claudins, a family of four-transmembrane-span proteins that are prime candidates for molecules that function in TJ permeability. Their identification and characterization have provided new insight into the diversity of different TJs and heterogeneity of barrier functions in different epithelia and endothelia.
Collapse
Affiliation(s)
- Kursad Turksen
- Ottawa Health Research Institute, Ontario K1Y 4E9, Canada.
| | | |
Collapse
|