1
|
Wang D, Wei J, Yuan X, Chen Z, Wang L, Geng Y, Zhang J, Wang Y. Transcriptome and comparative chloroplast genome analysis of Taxus yunnanensis individuals with high and low paclitaxel yield. Heliyon 2024; 10:e27223. [PMID: 38455575 PMCID: PMC10918223 DOI: 10.1016/j.heliyon.2024.e27223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Paclitaxel is a potent anti-cancer drug that is mainly produced through semi-synthesis, which still requires plant materials as precursors. The content of paclitaxel and 10-deacetyl baccatin III (10-DAB) in Taxus yunnanensis has been found to differ from that of other Taxus species, but there is little research on the mechanism underlying the variation in paclitaxel content in T. yunnanensis of different provenances. In this experiment, the contents of taxoids and precursors in twigs between a high paclitaxel-yielding individual (TG) and a low paclitaxel-yielding individual (TD) of T. yunnanensis were compared, and comparative analyses of transcriptomes as well as chloroplast genomes were performed. High-performance liquid chromatography (HPLC) detection showed that 10-DAB and baccatin III contents in TG were 18 and 47 times those in TD, respectively. Transcriptomic analysis results indicated that genes encoding key enzymes in the paclitaxel biosynthesis pathway, such as taxane 10-β-hydroxylase (T10βH), 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT), and debenzoyl paclitaxel N-benzoyl transferase (DBTNBT), exhibited higher expression levels in TG. Additionally, qRT-PCR showed that the relative expression level of T10βH and DBAT in TG were 29 and 13 times those in TD, respectively. In addition, six putative transcription factors were identified that may be involved in paclitaxel biosynthesis from transcriptome data. Comparative analysis of plastid genomes showed that the TD chloroplast contained a duplicate of rps12, leading to a longer plastid genome length in TD relative to TG. Fifteen mutation hotspot regions were identified between the two plastid genomes that can serve as candidate DNA barcodes for identifying high-paclitaxel-yield individuals. This experiment provides insight into the difference in paclitaxel accumulation among different provenances of T. yunnanensis individuals.
Collapse
Affiliation(s)
- Dong Wang
- College of Forestry, Southwest Forestry University, Kunming, 650224, China
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Jiansheng Wei
- Haba Snow Mountain Provincial Nature Reserve Management and Protection Bureau, Diqing, 674402, China
| | - Xiaolong Yuan
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Zhonghua Chen
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Lei Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Yunfen Geng
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Jinfeng Zhang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Yi Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| |
Collapse
|
2
|
Qi J, Song T, Yang Z, Sun S, Tung CH, Xu Z. Simultaneous Dual Cu/Ir Catalysis: Stereodivergent Synthesis of Chiral β-Lactams with Adjacent Tertiary/Quaternary/Tertiary Stereocenters. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jialin Qi
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Tingting Song
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Zhenning Yang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Shuzhe Sun
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
3
|
El-Sayed AS, El-Sayed MT, Rady AM, Zein N, Enan G, Shindia A, El-Hefnawy S, Sitohy M, Sitohy B. Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation. Molecules 2020; 25:E3000. [PMID: 32630044 PMCID: PMC7412027 DOI: 10.3390/molecules25133000] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Endophytic fungi have been considered as a repertoire for bioactive secondary metabolites with potential application in medicine, agriculture and food industry. The biosynthetic pathways by fungal endophytes raise the argument of acquisition of these machineries of such complex metabolites from the plant host. Diterpenoids "Taxol" is the most effective anticancer drug with highest annual sale, since its discovery in 1970 from the Pacific yew tree, Taxus brevifolia. However, the lower yield of Taxol from this natural source (bark of T. brevifolia), availability and vulnerability of this plant to unpredicted fluctuation with the ecological and environmental conditions are the challenges. Endophytic fungi from Taxus spp. opened a new avenue for industrial Taxol production due to their fast growth, cost effectiveness, independence on climatic changes, feasibility of genetic manipulation. However, the anticipation of endophytic fungi for industrial Taxol production has been challenged by the loss of its productivity, due to the metabolic reprograming of cells, downregulating the expression of its encoding genes with subculturing and storage. Thus, the objectives of this review were to (1) Nominate the endophytic fungal isolates with the Taxol producing potency from Taxaceae and Podocarpaceae; (2) Emphasize the different approaches such as molecular manipulation, cultural optimization, co-cultivation for enhancing the Taxol productivities; (3) Accentuate the genome mining of the rate-limiting enzymes for rapid screening the Taxol biosynthetic machinery; (4) Triggering the silenced rate-limiting genes and transcriptional factors to activates the biosynthetic gene cluster of Taxol.
Collapse
Affiliation(s)
- Ashraf S.A. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Manal T. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Amgad M. Rady
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Cairo 12566, Egypt;
| | - Nabila Zein
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Gamal Enan
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Ahmed Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Sara El-Hefnawy
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
4
|
An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol 2019; 70:160-172. [DOI: 10.2478/aiht-2019-70-3258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
The entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.
Collapse
|
5
|
Shi QW, Li ZP, Zhao D, Gu JS, Oritani T, Kiyota H. New 2(3→20)Abeotaxane and 3,11-Cyclotaxane from Needles ofTaxus cuspidata. Biosci Biotechnol Biochem 2014; 68:1584-7. [PMID: 15277767 DOI: 10.1271/bbb.68.1584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two new taxoid metabolites, 2alpha,7beta,10beta-triacetoxy-5alpha,13alpha-dihydroxy-2(3-->20)abeotaxa-4(20),11-dien-9-one (1) and 2alpha-acetoxy-5alpha-cinnamoyloxy-9alpha,10beta-dihydroxy-3,11-cyclotax-4(20)-en-13-one (2), were isolated from the methanol extract of needles of the Japanese yew, Taxus cuspidata.
Collapse
Affiliation(s)
- Qing-Wen Shi
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Hebei Medicinal University, 336 Zhongshan East Road, 050017, Shijiazhuang, Hebei, Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
6
|
Novel Taxa-4(20),12-diene and 2(3→20)Abeotaxane from Needles ofTaxus canadensis. Biosci Biotechnol Biochem 2014; 75:1698-701. [DOI: 10.1271/bbb.110223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Abstract
A full account of synthetic efforts toward a lowly oxidized taxane framework is presented. A non-natural taxane, dubbed "taxadienone", was synthesized as our first entry into the taxane family of diterpenes. The final synthetic sequence illustrates a seven-step, gram-scale and enantioselective route to this tricyclic compound in 18% overall yield. This product was then modified further to give (+)-taxadiene, the lowest oxidized member of the taxane family of natural products.
Collapse
Affiliation(s)
- Yoshihiro Ishihara
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
8
|
Ballatore C, Brunden KR, Huryn DM, Trojanowski JQ, Lee VMY, Smith AB. Microtubule stabilizing agents as potential treatment for Alzheimer's disease and related neurodegenerative tauopathies. J Med Chem 2012; 55:8979-96. [PMID: 23020671 PMCID: PMC3493881 DOI: 10.1021/jm301079z] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The microtubule (MT) associated protein tau, which is highly expressed in the axons of neurons, is an endogenous MT-stabilizing agent that plays an important role in axonal transport. Loss of MT-stabilizing tau function, caused by misfolding, hyperphosphorylation, and sequestration of tau into insoluble aggregates, leads to axonal transport deficits with neuropathological consequences. Several in vitro and preclinical in vivo studies have shown that MT-stabilizing drugs can be utilized to compensate for the loss of tau function and to maintain/restore effective axonal transport. These findings indicate that MT-stabilizing compounds hold considerable promise for the treatment of Alzheimer disease and related tauopathies. The present article provides a synopsis of the key findings demonstrating the therapeutic potential of MT-stabilizing drugs in the context of neurodegenerative tauopathies, as well as an overview of the different classes of MT-stabilizing compounds.
Collapse
Affiliation(s)
- Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Kurt R. Brunden
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Donna M. Huryn
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
| | - John Q. Trojanowski
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
| |
Collapse
|
9
|
Zhao J, Bane S, Snyder JP, Hu H, Mukherjee K, Slebodnick C, Kingston DGI. Design and synthesis of simplified taxol analogs based on the T-Taxol bioactive conformation. Bioorg Med Chem 2011; 19:7664-78. [PMID: 22071526 PMCID: PMC3225578 DOI: 10.1016/j.bmc.2011.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
A series of compounds designed to adopt a conformation similar to the tubulin-binding T-Taxol conformation of the anticancer drug paclitaxel has been synthesized. Both the internally bridged analogs 37-39, 41 and the open-chain analogs 27-29 and 43 were prepared. The bridged analogs 37-39 and 41 were synthesized by Grubbs' metatheses of compounds 30-32 and 33, which, in turn, were prepared by coupling β-lactams 24-26 with alcohols 22 and 23. Both the bridged and the open-chain analogs showed moderate to good cytotoxicity.
Collapse
Affiliation(s)
- Jielu Zhao
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Susan Bane
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
| | - James P. Snyder
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Haipeng Hu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Kamalika Mukherjee
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
10
|
Abstract
The emergence of multidrug-resistant Mycobacterium tuberculosis strains has made many of the currently available anti-tuberculosis (TB) drugs ineffective. Accordingly, there is a pressing need to identify new drug targets. Filamentous temperature-sensitive protein Z (FtsZ), a bacterial tubulin homologue, is an essential cell-division protein that polymerizes in a GTP-dependent manner, forming a highly dynamic cytokinetic ring, designated as the Z ring, at the septum site. Other cell-division proteins are recruited to the Z ring and, upon resolution of the septum, two daughter cells are produced. Since inactivation of FtsZ or alteration of FtsZ assembly results in the inhibition of Z-ring and septum formation, FtsZ is a very promising target for novel antimicrobial drug development. This review describes the function and dynamic behaviors of FtsZ and the recent development of FtsZ inhibitors as potential anti-TB agents.
Collapse
|
11
|
Neumann H, Neumann-Staubitz P. Synthetic biology approaches in drug discovery and pharmaceutical biotechnology. Appl Microbiol Biotechnol 2010; 87:75-86. [PMID: 20396881 PMCID: PMC2872025 DOI: 10.1007/s00253-010-2578-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/21/2010] [Accepted: 03/22/2010] [Indexed: 12/17/2022]
Abstract
Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Heinz Neumann
- Free Floater (Junior) Research Group “Applied Synthetic Biology”, Institute for Microbiology and Genetics, Georg-August University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Petra Neumann-Staubitz
- General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Hampel D, Mau CJD, Croteau RB. Taxol biosynthesis: Identification and characterization of two acetyl CoA:taxoid-O-acetyl transferases that divert pathway flux away from Taxol production. Arch Biochem Biophys 2009; 487:91-7. [PMID: 19501040 PMCID: PMC2748654 DOI: 10.1016/j.abb.2009.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 05/25/2009] [Accepted: 05/27/2009] [Indexed: 01/24/2023]
Abstract
Two cDNAs encoding taxoid-O-acetyl transferases (TAX 9 and TAX 14) were obtained from a previously isolated family of Taxus acyl/aroyl transferase cDNA clones. The recombinant enzymes catalyze the acetylation of taxadien-5alpha,13alpha-diacetoxy-9alpha,10beta-diol to generate taxadien-5alpha,10beta,13alpha-tri-acetoxy-9alpha-ol and taxadien-5alpha,9alpha,13alpha-triacetoxy-10beta-ol, respectively, both of which then serve as substrates for a final acetylation step to yield taxusin, a prominent side-route metabolite of Taxus. Neither enzyme acetylate the 5alpha- or the 13alpha-hydroxyls of taxoid polyols, indicating that prior acylations is required for efficient peracetylation to taxusin. Both enzymes were kinetically characterized, and the regioselectivity of acetylation was shown to vary with pH. Sequence comparison with other taxoid acyl transferases confirmed that primary structure of this enzyme type reveals little about function in taxoid metabolism. Unlike previously identified acetyl transferases involved in Taxol production, these two enzymes appear to act exclusively on partially acetylated taxoid polyols to divert the Taxol pathway to side-route metabolites.
Collapse
Affiliation(s)
- Daniela Hampel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | | | |
Collapse
|
13
|
Ganesh T. Improved biochemical strategies for targeted delivery of taxoids. Bioorg Med Chem 2007; 15:3597-623. [PMID: 17419065 PMCID: PMC2374751 DOI: 10.1016/j.bmc.2007.03.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 12/21/2022]
Abstract
Paclitaxel (Taxol) and docetaxel (Taxotere) are very important anti-tumor drugs in clinical use for cancer. However, their clinical utility is limited due to systemic toxicity, low solubility and inactivity against drug resistant tumors. To improve chemotherapeutic levels of these drugs, it would be highly desirable to design strategies which bypass the above limitations. In this respect various prodrug and drug targeting strategies have been envisioned either to improve oral bioavailability or tumor specific delivery of taxoids. Abnormal properties of cancer cells with respect to normal cells have guided in designing of these protocols. This review article records the designed biochemical strategies and their biological efficacies as potential taxoid chemotherapeutics.
Collapse
Affiliation(s)
- Thota Ganesh
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Ge H, Spletstoser JT, Yang Y, Kayser M, Georg GI. Synthesis of docetaxel and butitaxel analogues through kinetic resolution of racemic beta-lactams with 7-O-triethylsilylbaccatin III. J Org Chem 2007; 72:756-9. [PMID: 17253791 PMCID: PMC2596597 DOI: 10.1021/jo061339s] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetic resolution of racemic cis-4-phenyl- and cis-4-tert-butyl-3-hydroxy-beta-lactam derivatives with 7-O-triethylsilylbaccatin III yielded paclitaxel and butitaxel analogues with high diastereoselectivity. The results demonstrated that the tert-butyldimethylsilyl protecting group at the C3-hydroxy group of the beta-lactams provided optimum kinetic resolution in comparison with the sterically less demanding triethylsilyl group and the larger triisopropylsilyl group. In addition, it was found that the C4 beta-lactam substituents also influenced diastereoselectivity. The C4 tert-butyl-beta-lactams provided better diastereoselectivity than the corresponding C4 phenyl beta-lactams.
Collapse
Affiliation(s)
- Haibo Ge
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, KS 66045-7582, USA
| | - Jared T. Spletstoser
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, KS 66045-7582, USA
| | - Yan Yang
- Department of Physical Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Margaret Kayser
- Department of Physical Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Gunda I. Georg
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, KS 66045-7582, USA
| |
Collapse
|
15
|
|
16
|
Jaroszewski JW, Staerk D, Holm-Móller SB, Jensen TH, Franzyk H, Somanadhan B. Naravelia zeyanica: occurrence of primary benzamides in flowering plants. Nat Prod Res 2006; 19:291-4. [PMID: 15702644 DOI: 10.1080/14786410410001714641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Extract of Naravelia zeylanica (Ranunculaceae) yielded three simple benzamides, 3,4-methylenedioxybenzamide, 4-methoxybenzamide and 4-hydroxy-3-methoxybenzamide. These simple C6C1 metabolites have been encountered as natural products for the first time. The compounds were identified by direct comparison of their spectral (1H- and 13C-NMR) and chromatographic (GCMS) data with those of authentic samples. Authentic 4-hydroxy-3-methoxybenzamide was synthesized in one step by treatment of 4-hydroxy-3-methoxybenzonitrile with sodium perborate. Authentic 3,4-methylenedioxybenzamide was synthesized from the corresponding acid.
Collapse
Affiliation(s)
- Jerzy W Jaroszewski
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
17
|
Huang Q, Kirikae F, Kirikae T, Pepe A, Slayden RA, Tonge PJ, Ojima I. Targeting FtsZ for antituberculosis drug discovery: noncytotoxic taxanes as novel antituberculosis agents. J Med Chem 2006; 49:463-6. [PMID: 16420032 PMCID: PMC2527599 DOI: 10.1021/jm050920y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Screening of 120 taxanes identified a number of compounds that exhibited significant antituberculosis activity. Rational optimization of selected compounds led to the discovery that the C-seco-taxane-multidrug-resistance (MDR) reversal agents (C-seco-TRAs) are noncytotoxic at the upper limit of solubility and detection (>80 microM), while maintaining MIC(99) values of 1.25-2.5 microM against drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis (MTB). Treatment of MTB cells with TRA 3aa and 10a at the MIC caused filamentation and prolongation of the cells, a phenotypic response to FtsZ inactivation.
Collapse
Affiliation(s)
- Qing Huang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400
| | - Fumiko Kirikae
- International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Teruo Kirikae
- International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Antonella Pepe
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400
| | - Richard A. Slayden
- Department of Microbiology, Immunology and Pathology Colorado State University, Fort Collins, CO 80523-1682
| | - Peter J. Tonge
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400
- Iinstitute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook. Stony Brook, NY 11794-3400
| | - Iwao Ojima
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400
- Iinstitute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook. Stony Brook, NY 11794-3400
- *To whom correspondence should be addressed. Phone (631) 632-7890; Fax (631) 632-7942; Email
| |
Collapse
|
18
|
Jennewein S, Wildung MR, Chau M, Walker K, Croteau R. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci U S A 2004; 101:9149-54. [PMID: 15178753 PMCID: PMC428488 DOI: 10.1073/pnas.0403009101] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biosynthesis of the anticancer drug Taxol involves 19 enzymatic steps from the universal diterpenoid progenitor geranylgeranyl diphosphate derived by the plastidial methylerythritol phosphate pathway for isoprenoid precursor supply. To gain further insight about Taxol biosynthesis relevant to the improved production of this drug and to draw inferences about the organization, regulation, and origins of this complex natural product pathway, random sequencing of a cDNA library derived from Taxus cuspidata cells (induced for taxoid biosynthesis with methyl jasmonate) was undertaken. This effort revealed surprisingly high abundances for transcripts of several of the 12 defined genes of Taxol biosynthesis, yielded cDNAs encoding two previously uncharacterized cytochrome P450 taxoid hydroxylases, and provided candidate genes for all but one of the remaining seven steps of this extended sequence of reactions.
Collapse
Affiliation(s)
- Stefan Jennewein
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | |
Collapse
|
19
|
Ojima I, Fumero-Oderda CL, Kuduk SD, Ma Z, Kirikae F, Kirikae T. Structure-activity relationship study of taxoids for their ability to activate murine macrophages as well as inhibit the growth of macrophage-like cells. Bioorg Med Chem 2003; 11:2867-88. [PMID: 12788358 DOI: 10.1016/s0968-0896(03)00181-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A series of new taxoids modified at the C-3', C-3'N, C-10, C-2 and C-7 positions has been designed, synthesized and evaluated for their potency to induce NO and TNF production by peritoneal murine macrophages (Mphi) from LPS-responsive C3H/HeN and LPS-hyporesponsive C3H/HeJ strains and human blood cells, and for their ability to inhibit the growth of Mphi-like cell lines J774.1 and J7.DEF3. The SAR-study has shown that the nature of the substituents at these positions have critical effect on the induction of TNF and NO production by Mphi. Positions C-3' and C-10 are the most flexible and an intriguing effect of the length of the substituents at the C-10 position is observed for taxoids bearing a straight chain alkanoyl moiety. An aromatic group at the C-3'N and C-2 positions is required for the activity, while only hydroxyl or acetyl substituents seem to be tolerated at the C-7 position. The natural stereochemistry in the C-13 isoserine side chain of the taxoids is an absolute requirement for macrophage activation. It has also been clearly shown that there is no correlation between the ability of the taxoids to induce TNF/NO production in C3H/HeN Mphi and the cytotoxicity against Mphi-like cells.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Gupta ML, Bode CJ, Georg GI, Himes RH. Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin. Proc Natl Acad Sci U S A 2003; 100:6394-7. [PMID: 12740436 PMCID: PMC164457 DOI: 10.1073/pnas.1131967100] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have successfully used mutagenesis to engineer Taxol (paclitaxel) binding activity in Saccharomyces cerevisiae tubulin. Taxol, a successful antitumor agent, acts by promoting tubulin assembly and stabilizing microtubules. Several structurally diverse antimitotic compounds, including the epothilones, compete with Taxol for binding to mammalian microtubules, suggesting that Taxol and these compounds share an overlapping binding site. However, Taxol has no effect on tubulin or microtubules from S. cerevisiae, whereas epothilone does. After considering data on Taxol binding to mammalian tubulin and recent modeling studies, we have hypothesized that differences in five key amino acids are responsible for the lack of Taxol binding to yeast tubulin. After changing these amino acids to those found in mammalian brain tubulin, we observed Taxol-related activity in yeast tubulin comparable to that in mammalian tubulin. Importantly, this experimental system can be used to reveal tubulin interactions with Taxol, the epothilones, and other Taxol-like compounds.
Collapse
Affiliation(s)
- Mohan L Gupta
- Department of Molecular Biosciences, University of Kansas, Lawrence 66045, USA
| | | | | | | |
Collapse
|