1
|
Zadka Y, Rosenthal G, Doron O, Barnea O. Limitation of cerebral blood flow by increased venous outflow resistance in elevated ICP. J Appl Physiol (1985) 2024; 136:224-232. [PMID: 38059286 DOI: 10.1152/japplphysiol.00477.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023] Open
Abstract
Extensive investigation and modeling efforts have been dedicated to cerebral pressure autoregulation, which is primarily regulated by the ability of the cerebral arterioles to change their resistance and modulate cerebral blood flow (CBF). However, the mechanisms by which elevated intracranial pressure (ICP) leads to increased resistance to venous outflow have received less attention. We modified our previously described model of intracranial fluid interactions with a newly developed model of a partially collapsed blood vessel, which we termed the "flow control zone" (FCZ). We sought to determine the degree to which ICP elevation causing venous compression at the FCZ becomes the main parameter limiting CBF. The FCZ component was designed using nonlinear functions representing resistance as a function of cross-sectional area and the pressure-volume relations of the vessel wall. We used our previously described swine model of cerebral edema with graduated elevation of ICP to calculate venous outflow resistance and a newly defined parameter, the cerebral resistance index (CRI), which is the ratio between venous outflow resistance and cerebrovascular resistance. Model simulations of cerebral edema and increased ICP led to increased venous outflow resistance. There was a close similarity between model predictions of venous outflow resistance and experimental results in the swine model (cross-correlation coefficient of 0.97, a mean squared error of 0.087, and a mean absolute error of 0.15). CRI was strongly correlated to ICP in the swine model (r2 = 0.77, P = 0.00012, 95% confidence interval [0.15, 0.45]). A CRI value of 0.5 was associated with ICP values above clinically significant thresholds (24 mmHg) in the swine model and a diminished capacity of changes in arteriolar resistance to influence flow in the mathematical model. Our results demonstrate the importance of venous compression at the FCZ in determining CBF when ICP is elevated. The cerebral resistance index may provide an indication of when compression of venous outflow becomes the dominant factor in limiting CBF following brain injury.NEW & NOTEWORTHY The goal of this study was to investigate the effects of venous compression caused by elevated intracranial pressure (ICP) due to cerebral edema, validated through animal experiments. The flow control zone model highlights the impact of cerebral venous compression on cerebral blood flow (CBF) during elevated ICP. The cerebral venous outflow resistance-to-cerebrovascular resistance ratio may indicate when venous outflow compression becomes the dominant factor limiting CBF. CBF regulation descriptions should consider how arterial or venous factors may predominantly influence flow in different clinical scenarios.
Collapse
Affiliation(s)
- Yuliya Zadka
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Guy Rosenthal
- Department of Neurosurgery, Hadassah University Medical Center, Jerusalem, Israel
| | - Omer Doron
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Ofer Barnea
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Gelormini C, Caricato A, Pastorino R, Guerino Biasucci D, Ioannoni E, Montano N, Stival E, Signorelli F, Melchionda I, Albanese A, Marchese E, Silva S, Antonelli M. Brain tissue oxygenation monitoring in subarachnoid hemorrhage for the detection of delayed ischemia: a systematic review and meta-analysis. Minerva Anestesiol 2023; 89:96-103. [PMID: 36745118 DOI: 10.23736/s0375-9393.22.16468-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) is a severe subtype of stroke which can be caused by the rupture of an intracranial aneurysm. Following SAH, about 30% of patients develop a late neurologic deterioration due to a delayed cerebral ischemia (DCI). This is a metanalysis and systematic review on the association between values of brain tissue oxygenation (PbtO2) and DCI in patients with SAH. EVIDENCE ACQUISITION The protocol was written according to the PRISMA-P (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and approved by the International Prospective Register of Systematic Reviews (PROSPERO registration number CRD42021229338). Relevant literature published up to August 1, 2022 was systematically searched throughout the databases MEDLINE, WEB OF SCIENCE, SCOPUS. A systematic review and metanalysis was carried out. The studies considered eligible were those published in English; that enrolled adult patients (≥18years) admitted to neurointensive care units with aneurysmal SAH (aSAH); that reported presence of multimodality monitoring including PbtO2 and detection of DCI during the period of monitoring. EVIDENCE SYNTHESIS We founded 286 studies, of which six considered eligible. The cumulative mean of PbtO2 was 19.5 mmHg in the ischemic group and 24.1mmHg in the non ischemic group. The overall mean difference of the values of PbtO2 between the patients with or without DCI resulted significantly different (-4.32 mmHg [IC 95%: -5.70, -2.94], without heterogeneity, I2 = 0%, and a test for overall effect with P<0.00001). CONCLUSIONS PbtO2 values were significantly lower in patients with DCI. Waiting for definitive results, monitoring of PbtO2 should be considered as a complementary parameter for multimodal monitoring of the risk of DCI in patients with SAH.
Collapse
Affiliation(s)
- Camilla Gelormini
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
| | - Anselmo Caricato
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Roberta Pastorino
- Department of Woman, Child, and Public Health, Gemelli University Hospital IRCCS, Rome, Italy
| | - Daniele Guerino Biasucci
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Eleonora Ioannoni
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Nicola Montano
- Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Eleonora Stival
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Francesco Signorelli
- Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Isabella Melchionda
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Alessio Albanese
- Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Enrico Marchese
- Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Serena Silva
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| |
Collapse
|
3
|
Patchana T, Wiginton J, Brazdzionis J, Ghanchi H, Zampella B, Toor H, Dorkoski R, Mannickarottu A, Wacker M, Sweiss R, Miulli DE. Increased Brain Tissue Oxygen Monitoring Threshold to Improve Hospital Course in Traumatic Brain Injury Patients. Cureus 2020; 12:e7115. [PMID: 32257661 PMCID: PMC7101240 DOI: 10.7759/cureus.7115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction This article is a retrospective analysis of the neurosurgical census at our institution to determine an optimal threshold for brain tissue oxygenation (PbtO2). The use of brain tissue oxygen monitoring has been in place for approximately three decades but data suggesting optimal thresholds to improve outcomes have been lacking. Though there are multiple modalities to monitor cerebral oxygenation, the monitoring of brain tissue oxygen tension has been deemed the gold standard. Still, it is not clear exactly how reductions in PbtO2 should be treated or what appropriate thresholds to treat might be. The aim of our study was to determine if our threshold of 28 mmHg for a good functional outcome could be correlated to the Glasgow Coma Scale (GCS) and Glasgow Outcome Scale (GOS). Methods A retrospective analysis of the Arrowhead Regional Medical Center (ARMC) Neurosurgery Census was performed. Patients from 2017-2019 who had placement of Licox® cerebral oxygen monitoring sensors (Integra® Lifesciences, Plainsboro Township, New Jersey) were included in the analysis. Fifteen patients were consecutively identified, all of which presented with traumatic brain injury (TBI). Data on age, gender, days in the intensive care unit (ICU), days before discharge or end of medical care, admission GCS, hospital length of stay, GOS, maximum and minimum PbtO2 values for five days following insertion, minimum and maximum intracranial pressures (ICPs), and brain temperature were included for analysis. Patient data were separated into two groups; those with consistently higher PbtO2 scores (≥ 28 mmHg; n = 7) and those with inconsistent/lower PbtO2 scores (< 28 mmHg; n = 8). Standard student t-tests were used to find potential statistical differences between the groups (α = 0.05). Results There were seven patients in the consistently high PbtO2 category (≥ 28 mmHg) and eight patients in the inconsistent/low PbtO2 category (<28 mmHg). The average maximum and minimum PbtO2 for the group displaying worse outcomes (as defined by GCS/GOS) was 23.0 mmHg and 14 mmHg, respectively. Those with consistent Day 2 PbtO2 scores of ≥ 28 mmHg had significantly higher GCS scores at discharge/end of medical care (p < 0.05). Average GCS for the patient group with >28 mmHg PbtO2 averaged over Days 2-5 group was 11.4 (n=7). Average GCS for the <28 group was 7.0 (n=8). The GCS for the >28 group was 63% higher than found in the <28 group (p = 0.03). GOS scores were significantly higher in those with consistently higher PbtO2 (≥ 28) than those with lower PbtO2 scores (< 28). The averages were 3.5 in the higher PbtO2 group as compared to 2 in the lower PbtO2 group. Conclusion Along with ICP monitors and monitoring in the assessment of CPP, brain tissue oxygenation allows yet another metric by which to optimize treatment in TBI patients. At our institution, a PbtO2 level of ≥ 28 mmHg is targeted in order to facilitate a good functional outcome in TBI patients. Keeping patients at this level improves GCS and GOS at discharge/end of medical treatment.
Collapse
Affiliation(s)
- Tye Patchana
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - James Wiginton
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - James Brazdzionis
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Hammad Ghanchi
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Bailey Zampella
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Harjyot Toor
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Ryan Dorkoski
- Environmental and Plant Science, Ohio University, Athens, USA
| | | | - Margaret Wacker
- Neurosurgery, Arrowhead Regional Medical Center, Colton, USA
| | - Raed Sweiss
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Dan E Miulli
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| |
Collapse
|
4
|
Elmer J, Flickinger KL, Anderson MW, Koller AC, Sundermann ML, Dezfulian C, Okonkwo DO, Shutter LA, Salcido DD, Callaway CW, Menegazzi JJ. Effect of neuromonitor-guided titrated care on brain tissue hypoxia after opioid overdose cardiac arrest. Resuscitation 2018; 129:121-126. [PMID: 29679696 PMCID: PMC6054552 DOI: 10.1016/j.resuscitation.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Brain tissue hypoxia may contribute to preventable secondary brain injury after cardiac arrest. We developed a porcine model of opioid overdose cardiac arrest and post-arrest care including invasive, multimodal neurological monitoring of regional brain physiology. We hypothesized brain tissue hypoxia is common with usual post-arrest care and can be prevented by modifying mean arterial pressure (MAP) and arterial oxygen concentration (PaO2). METHODS We induced opioid overdose and cardiac arrest in sixteen swine, attempted resuscitation after 9 min of apnea, and randomized resuscitated animals to three alternating 6-h blocks of standard or titrated care. We invasively monitored physiological parameters including brain tissue oxygen (PbtO2). During standard care blocks, we maintained MAP > 65 mmHg and oxygen saturation 94-98%. During titrated care, we targeted PbtO2 > 20 mmHg. RESULTS Overall, 10 animals (63%) achieved ROSC after a median of 12.4 min (range 10.8-21.5 min). PbtO2 was higher during titrated care than standard care blocks (unadjusted β = 0.60, 95% confidence interval (CI) 0.42-0.78, P < 0.001). In an adjusted model controlling for MAP, vasopressors, sedation, and block sequence, PbtO2 remained higher during titrated care (adjusted β = 0.75, 95%CI 0.43-1.06, P < 0.001). At three predetermined thresholds, brain tissue hypoxia was significantly less common during titrated care blocks (44 vs 2% of the block duration spent below 20 mmHg, P < 0.001; 21 vs 0% below 15 mmHg, P < 0.001; and, 7 vs 0% below 10 mmHg, P = .01). CONCLUSIONS In this model of opioid overdose cardiac arrest, brain tissue hypoxia is common and treatable. Further work will elucidate best strategies and impact of titrated care on functional outcomes.
Collapse
Affiliation(s)
- Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| | - Katharyn L Flickinger
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Maighdlin W Anderson
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Allison C Koller
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Matthew L Sundermann
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Cameron Dezfulian
- Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Lori A Shutter
- Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - David D Salcido
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - James J Menegazzi
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Nordström CH, Koskinen LO, Olivecrona M. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Front Neurol 2017; 8:274. [PMID: 28674514 PMCID: PMC5474476 DOI: 10.3389/fneur.2017.00274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022] Open
Abstract
Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood-brain barrier (BBB) and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2) and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP) ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia) or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the information from all monitoring techniques should be presented bedside online. Accordingly, in the future, the chemical variables obtained from microdialysis will probably be analyzed by biochemical sensors.
Collapse
Affiliation(s)
| | - Lars-Owe Koskinen
- Department of Clinical Neuroscience, Division of Neurosurgery, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Faculty of Health and Medicine, Department of Anesthesia and Intensive Care, Section for Neurosurgery Örebro University Hospital, Örebro University, Örebro, Sweden
- Department for Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
Ng SR, Pang H, Chen P, Li CM, O'Hare D. A Novel Electroactive Polymer for pH-independent Oxygen Sensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Abstract
Maintenance of adequate oxygenation is a mainstay of intensive care, however, recommendations on the safety, accuracy, and the potential clinical utility of invasive and non-invasive tools to monitor brain and systemic oxygenation in neurocritical care are lacking. A literature search was conducted for English language articles describing bedside brain and systemic oxygen monitoring in neurocritical care patients from 1980 to August 2013. Imaging techniques e.g., PET are not considered. A total of 281 studies were included, the majority described patients with traumatic brain injury (TBI). All tools for oxygen monitoring are safe. Parenchymal brain oxygen (PbtO2) monitoring is accurate to detect brain hypoxia, and it is recommended to titrate individual targets of cerebral perfusion pressure (CPP), ventilator parameters (PaCO2, PaO2), and transfusion, and to manage intracranial hypertension, in combination with ICP monitoring. SjvO2 is less accurate than PbtO2. Given limited data, NIRS is not recommended at present for adult patients who require neurocritical care. Systemic monitoring of oxygen (PaO2, SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recommended in patients who require neurocritical care.
Collapse
|
8
|
Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 2014; 21 Suppl 2:S1-26. [PMID: 25208678 PMCID: PMC10596301 DOI: 10.1007/s12028-014-0041-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurocritical care depends, in part, on careful patient monitoring but as yet there are little data on what processes are the most important to monitor, how these should be monitored, and whether monitoring these processes is cost-effective and impacts outcome. At the same time, bioinformatics is a rapidly emerging field in critical care but as yet there is little agreement or standardization on what information is important and how it should be displayed and analyzed. The Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine, and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to begin to address these needs. International experts from neurosurgery, neurocritical care, neurology, critical care, neuroanesthesiology, nursing, pharmacy, and informatics were recruited on the basis of their research, publication record, and expertise. They undertook a systematic literature review to develop recommendations about specific topics on physiologic processes important to the care of patients with disorders that require neurocritical care. This review does not make recommendations about treatment, imaging, and intraoperative monitoring. A multidisciplinary jury, selected for their expertise in clinical investigation and development of practice guidelines, guided this process. The GRADE system was used to develop recommendations based on literature review, discussion, integrating the literature with the participants' collective experience, and critical review by an impartial jury. Emphasis was placed on the principle that recommendations should be based on both data quality and on trade-offs and translation into clinical practice. Strong consideration was given to providing pragmatic guidance and recommendations for bedside neuromonitoring, even in the absence of high quality data.
Collapse
Affiliation(s)
- Peter Le Roux
- Brain and Spine Center, Suite 370, Medical Science Building, Lankenau Medical Center, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care : a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40:1189-209. [PMID: 25138226 DOI: 10.1007/s00134-014-3369-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/07/2014] [Indexed: 12/18/2022]
Abstract
Neurocritical care depends, in part, on careful patient monitoring but as yet there are little data on what processes are the most important to monitor, how these should be monitored, and whether monitoring these processes is cost-effective and impacts outcome. At the same time, bioinformatics is a rapidly emerging field in critical care but as yet there is little agreement or standardization on what information is important and how it should be displayed and analyzed. The Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine, and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to begin to address these needs. International experts from neurosurgery, neurocritical care, neurology, critical care, neuroanesthesiology, nursing, pharmacy, and informatics were recruited on the basis of their research, publication record, and expertise. They undertook a systematic literature review to develop recommendations about specific topics on physiologic processes important to the care of patients with disorders that require neurocritical care. This review does not make recommendations about treatment, imaging, and intraoperative monitoring. A multidisciplinary jury, selected for their expertise in clinical investigation and development of practice guidelines, guided this process. The GRADE system was used to develop recommendations based on literature review, discussion, integrating the literature with the participants' collective experience, and critical review by an impartial jury. Emphasis was placed on the principle that recommendations should be based on both data quality and on trade-offs and translation into clinical practice. Strong consideration was given to providing pragmatic guidance and recommendations for bedside neuromonitoring, even in the absence of high quality data.
Collapse
Affiliation(s)
- Peter Le Roux
- Brain and Spine Center, Suite 370, Medical Science Building, Lankenau Medical Center, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Raj R, Bendel S, Reinikainen M, Kivisaari R, Siironen J, Lång M, Skrifvars M. Hyperoxemia and long-term outcome after traumatic brain injury. Crit Care 2013; 17:R177. [PMID: 23958227 PMCID: PMC4056982 DOI: 10.1186/cc12856] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The relationship between hyperoxemia and outcome in patients with traumatic brain injury (TBI) is controversial. We sought to investigate the independent relationship between hyperoxemia and long-term mortality in patients with moderate-to-severe traumatic brain injury. METHODS The Finnish Intensive Care Consortium database was screened for mechanically ventilated patients with a moderate-to-severe TBI. Patients were categorized, according to the highest measured alveolar-arterial O₂ gradient or the lowest measured PaO₂ value during the first 24 hours of ICU admission, to hypoxemia (<10.0 kPa), normoxemia (10.0 to 13.3 kPa) and hyperoxemia (>13.3 kPa). We adjusted for markers of illness severity to evaluate the independent relationship between hyperoxemia and 6-month mortality. RESULTS A total of 1,116 patients were included in the study, of which 16% (n = 174) were hypoxemic, 51% (n = 567) normoxemic and 33% (n = 375) hyperoxemic. The total 6-month mortality was 39% (n = 435). A significant association between hyperoxemia and a decreased risk of mortality was found in univariate analysis (P = 0.012). However, after adjusting for markers of illness severity in a multivariate logistic regression model hyperoxemia showed no independent relationship with 6-month mortality (hyperoxemia vs. normoxemia OR 0.88, 95% CI 0. 63 to 1.22, P = 0.43; hyperoxemia vs. hypoxemia OR 0.97, 95% CI 0.63 to 1.50, P = 0.90). CONCLUSION Hyperoxemia in the first 24 hours of ICU admission after a moderate-to-severe TBI is not predictive of 6-month mortality.
Collapse
Affiliation(s)
- Rahul Raj
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5 FI-00029 HUS Helsinki,Finland
| | - Stepani Bendel
- Department of Intensive Care Medicine, Kuopio University Hospital and Kuopio University, Puijonlaaksontie 2, 70211 Kuopio, Finland
| | - Matti Reinikainen
- Department of Intensive Care Medicine, North Karelia Central Hospital, Tikkamäentie 16, 80210 Joensuu, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5 FI-00029 HUS Helsinki,Finland
| | - Jari Siironen
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5 FI-00029 HUS Helsinki,Finland
| | - Maarit Lång
- Department of Intensive Care Medicine, Kuopio University Hospital and Kuopio University, Puijonlaaksontie 2, 70211 Kuopio, Finland
| | - Markus Skrifvars
- Department of Neurosurgery, Helsinki University Central Hospital, Topeliuksenkatu 5 FI-00029 HUS Helsinki,Finland
- Department of Anesthesiology and Intensive Care Medicine, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Le Roux P. Physiological monitoring of the severe traumatic brain injury patient in the intensive care unit. Curr Neurol Neurosci Rep 2013; 13:331. [PMID: 23328942 DOI: 10.1007/s11910-012-0331-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Despite encouraging animal research, pharmacological agents and neuroprotectants have disappointed in the clinical environment. Current TBI management therefore is directed towards identification, prevention, and treatment of secondary cerebral insults that are known to exacerbate outcome after injury. This strategy is based on a variety of monitoring techniques that include the neurological examination, imaging, laboratory analysis, and physiological monitoring of the brain and other organ systems used to guide therapeutic interventions. Recent clinical series suggest that TBI management informed by multimodality monitoring is associated with improved patient outcome, in part because care is provided in a patient-specific manner. In this review we discuss physiological monitoring of the brain after TBI and the emerging field of neurocritical care bioinformatics.
Collapse
Affiliation(s)
- Peter Le Roux
- Department of Neurosurgery, University of Pennsylvania, 235 South 8th Street, Philadelphia, PA 19106, USA.
| |
Collapse
|
12
|
Purins K, Enblad P, Wiklund L, Lewén A. Brain tissue oxygenation and cerebral perfusion pressure thresholds of ischemia in a standardized pig brain death model. Neurocrit Care 2012; 16:462-9. [PMID: 22302179 DOI: 10.1007/s12028-012-9675-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Neurointensive care of traumatic brain injury (TBI) patients is currently based on intracranial pressure (ICP) and cerebral perfusion pressure (CPP) targeted protocols. Monitoring brain tissue oxygenation (BtipO2) is of considerable clinical interest, but the exact threshold level of ischemia has been difficult to establish due to the complexity of the clinical situation. The objective of this study was to use the Neurovent-PTO (NV) probe, and to define critical cerebral oxygenation- and CPP threshold levels of cerebral ischemia in a standardized brain death model caused by increasing the ICP in pig. Ischemia was defined by a severe increase of cerebral microdialysis (MD) lactate/pyruvate ratio (L/P ratio > 30). METHODS BtipO2, L/P ratio, Glucose, Glutamate, Glycerol and CPP were recorded using NV and MD probes during gradual increase of ICP by inflation of an epidural balloon catheter with saline until brain death was achieved. RESULTS Baseline level of BtipO2 was 22.9 ± 6.2 mmHg, the L/P ratio 17.7 ± 6.1 and CPP 73 ± 17 mmHg. BtipO2 and CPP decreased when intracranial volume was added. The L/P ratio increased above its ischemic levels, (>30)when CPP decreased below 30 mmHg and BtipO2 to <10 mmHg. CONCLUSIONS A severe increase of ICP leading to CPP below 30 mmHg and BtipO2 below 10 mmHg is associated with an increase of the L/P ratio, thus seems to be critical thresholds for cerebral ischemia under these conditions.
Collapse
Affiliation(s)
- Karlis Purins
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
13
|
Nielsen TH, Engell SI, Johnsen RA, Schulz MK, Gerke O, Hjelmborg J, Toft P, Nordström CH. Comparison between cerebral tissue oxygen tension and energy metabolism in experimental subdural hematoma. Neurocrit Care 2012; 15:585-92. [PMID: 21638119 DOI: 10.1007/s12028-011-9563-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND An experimental swine model (n = 7) simulating an acute subdural hematoma (ASDH) was employed (1) to explore the relation between the brain tissue oxygenation (PbtO(2)) and the regional cerebral energy metabolism as obtained by microdialysis, and (2) to define the lowest level of PbtO(2) compatible with intact energy metabolism. METHODS ASDH was produced by infusion of 7 ml of autologous blood (infusion rate 0.5 ml/min) by a catheter placed subdurally. PbtO(2) and microdialysis probes were placed symmetrically in the injured ("bad-side") and non-injured ("good-side") hemispheres. Intracranial pressure (ICP) was monitored in the "good-side." RESULTS ICP, cerebral perfusion pressure (CPP), PbtO(2), glucose, lactate, pyruvate, lactate-pyruvate ratio (LP ratio), glutamate, and glycerol were recorded at baseline (60 min) and post trauma (360 min). After the creation of the ASDH, PbtO(2) decreased significantly in both the hemispheres (P < 0.001). No significant difference was found between the sides post trauma. The LP ratio, glutamate, and glycerol in the "bad-side" increased significantly over the "good-side" where the values remained within the normal limits. A PbtO(2) value below approximately 25 mmHg was found to be associated with disturbed energy metabolism in the "bad-side" but not in the "good-side." No correlation was found between the LP ratio and PbtO(2) in either hemisphere. CONCLUSIONS PbtO(2) monitoring accurately describes tissue oxygenation but does not disclose whether the oxygen delivery is sufficient for maintaining cerebral energy metabolism. Accordingly, it may not be possible to define a threshold level for PbtO(2) below which energy failure and permanent tissue damage occurs.
Collapse
Affiliation(s)
- Troels Halfeld Nielsen
- Department of Neurosurgery, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Friess SH, Ralston J, Eucker SA, Helfaer MA, Smith C, Margulies SS. Neurocritical care monitoring correlates with neuropathology in a swine model of pediatric traumatic brain injury. Neurosurgery 2011; 69:1139-47; discussion 1147. [PMID: 21670716 PMCID: PMC3188667 DOI: 10.1227/neu.0b013e3182284aa1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Small-animal models have been used in traumatic brain injury (TBI) research to investigate the basic mechanisms and pathology of TBI. Unfortunately, successful TBI investigations in small-animal models have not resulted in marked improvements in clinical outcomes of TBI patients. OBJECTIVE To develop a clinically relevant immature large-animal model of pediatric neurocritical care following TBI. METHODS Eleven 4-week-old piglets were randomly assigned to either rapid axial head rotation without impact (n = 6) or instrumented sham (n = 5). All animals had an intracranial pressure monitor, brain tissue oxygen tension (Pbto(2)) probe, and cerebral microdialysis probe placed in the frontal lobe and data collected for 6 hours following injury. RESULTS Injured animals had sustained elevations in intracranial pressure and lactate-pyruvate ratio (LPR), and decreased Pbto(2) compared with sham. Pbto(2) and LPR from separate frontal lobes had strong linear correlation in both sham and injured animals. Neuropathologic examination demonstrated significant axonal injury and infarct volumes in injured animals compared with sham at 6 hours postinjury. Averaged over time, Pbto(2) in both injured and sham animals had a strong inverse correlation with total injury volume. Average LPR had a strong correlation with total injury volume. CONCLUSION LPR and Pbto(2) can be utilized as serial nonterminal secondary markers in our injury model for neuropathology, and as evaluation metrics for novel interventions and therapeutics in the acute postinjury period. This translational model bridges a vital gap in knowledge between TBI studies in small-animal models and clinical trials in the pediatric TBI population.
Collapse
Affiliation(s)
- Stuart H. Friess
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jill Ralston
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | | | - Mark A Helfaer
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Colin Smith
- Department of Neuropathology, Western General Hospital, Edinburgh, Scotland, UK
| | - Susan S. Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Vender J, Waller J, Dhandapani K, McDonnell D. An evaluation and comparison of intraventricular, intraparenchymal, and fluid-coupled techniques for intracranial pressure monitoring in patients with severe traumatic brain injury. J Clin Monit Comput 2011; 25:231-6. [PMID: 21938526 DOI: 10.1007/s10877-011-9300-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 08/29/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Intracranial pressure measurements have become one of the mainstays of traumatic brain injury management. Various technologies exist to monitor intracranial pressure from a variety of locations. Transducers are usually placed to assess pressure in the brain parenchyma and the intra-ventricular fluid, which are the two most widely accepted compartmental monitoring sites. The individual reliability and inter-reliability of these devices with and without cerebrospinal fluid diversion is not clear. The predictive capability of monitors in both of these sites to local, regional, and global changes also needs further clarification. The technique of monitoring intraventricular pressure with a fluid-coupled transducer system is also reviewed. There has been little investigation into the relationship among pressure measurements obtained from these two sources using these three techniques. METHODS Eleven consecutive patients with severe, closed traumatic brain injury not requiring intracranial mass lesion evacuation were admitted into this prospective study. Each patient underwent placement of a parenchymal and intraventricular pressure monitor. The ventricular catheter tubing was also connected to a sensor for fluid-coupled measurement. Pressure from all three sources was measured hourly with and without ventricular drainage. RESULTS Statistically significant correlation within each monitoring site was seen. No monitoring location was more predictive of global pressure changes or more responsive to pressure changes related to patient stimulation. However, the intraventricular pressure measurements were not reliable in the presence of cerebrospinal fluid drainage whereas the parenchymal measurements remained unaffected. CONCLUSION Intraparenchymal pressure monitoring provides equivalent, statistically similar pressure measurements when compared to intraventricular monitors in all care and clinical settings. This is particularly valuable when uninterrupted cerebrospinal fluid drainage is desirable.
Collapse
Affiliation(s)
- John Vender
- Department of Neurosurgery, Medical College of Georgia, BI 3088, 1120 15th St, 30912, Augusta, Georgia.
| | | | | | | |
Collapse
|
16
|
Cerejo A, Silva PA, Dias C, Vaz R. Monitoring of brain oxygenation in surgery of ruptured middle cerebral artery aneurysms. Surg Neurol Int 2011; 2:70. [PMID: 21697985 PMCID: PMC3115273 DOI: 10.4103/2152-7806.81732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/07/2011] [Indexed: 11/09/2022] Open
Abstract
Background: The occurrence of brain ischemic lesions, due to temporary arterial occlusion or incorrect placement of the definitive clip, is a major complication of aneurysm surgery. Temporary clipping is a current technique during surgery and there is no reliable method of predicting the possibility of ischemia due to extended regional circulatory interruption. Even with careful inspection, misplacement of the definitive clip can be difficult to detect. Brain tissue oxygen concentration (PtiO2) was monitored during surgery of middle cerebral artery (MCA) aneurysm presenting with subarachnoid hemorrhage (SAH), for detection of changes in brain oxygenation due to reduced blood flow, as a predictor of ischemic events, during temporary clipping and after definitive clipping. Methods: PtiO2 was monitored during surgery of 13 patients harboring MCA aneurysms presenting with SAH, using a polarographic microcatheter (Licox, GMS, Kiel, Germany) placed in the territory of MCA. Results A decrease in PtiO2 values was verified in every period of temporary clipping. Brain infarction occurred in 2 patients; in both cases, there was a decrease in PtiO2 greater than 80% from basal value, a minimum value of less than 2 mmHg persisting for 2 or more minutes during temporary clipping, and an incomplete recovery of PtiO2 after definitive clipping. In 2 patients, incomplete recovery of values after definitive clipping led to verification of inappropriate placement and repositioning of the clip. Conclusion: The results suggest that intraoperative monitoring of PtiO2 may be a useful method of detection of changes in brain tissue oxygenation during MCA aneurysm surgery. Postoperative infarction in the territory of MCA developed in cases with an abrupt decrease of PtiO2 and a very low and persistent minimum value, during temporary clipping, and an incomplete recovery after definitive clipping. Verification of clip position should be considered when there is an incomplete recovery or a persistent fall in PtiO2 after definitive clipping.
Collapse
Affiliation(s)
- António Cerejo
- Department of Neurosurgery, Hospital S. João, Porto, Portugal
| | | | | | | |
Collapse
|
17
|
Cerejo A, Silva PA, Dias C, Vaz R. Monitoring of brain tissue oxygenation in surgery of middle cerebral artery incidental aneurysms. Surg Neurol Int 2011; 2:37. [PMID: 21541203 PMCID: PMC3086171 DOI: 10.4103/2152-7806.78250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/25/2011] [Indexed: 11/16/2022] Open
Abstract
Introduction: The management of incidental unruptured aneurysms remains a matter of controversy; middle-sized or large anterior circulation incidental aneurysms, in young or middle age patients, should be considered for treatment. Surgical clipping is an accepted treatment for middle cerebral artery unruptured aneurysms. Ischemic events can occur even in cases of incidental aneurysm surgery. Since regional cerebral blood flow can be compromised due to temporary arterial clipping or to incorrect placement of defi nitive clip, we performed intra-operative monitoring of brain tissue oxygen concentration (PtiO2), to detect changes in brain oxygenation due to reduced blood fl ow, eventually leading to ischemia, during surgery of middle cerebral artery incidental aneurysms. Methods: PtiO2 monitoring was performed during surgery of eight patients harboring incidental MCA aneurysms, using a polarographic microcatheter (Licox, GMS – Kiel, Germany), placed in the temporal lobe on the side of the lesion, from dural opening to dural closure. Results: Basal values varied between 2.3 and 27.3 mmHg; these values are lower than those previously described in the literature as “normal” for uninjured brain or in cases of subarachnoid hemorrhage. In all patients, a significant decrease in PtiO2 was found in every period of temporary clipping of MCA. Post-operative infarction in the territory of middle cerebral artery occurred in one patient and, in that case, there was a persistent minimum value of 0.6 mmHg, without recovery after the placement of the definitive clip. In another patient, an incorrect placement of the definitive clip could be predicted by a decrease in PtiO2 value. Conclusions: PtiO2 monitoring during aneurysm surgery shows brain tissue perfusion in real time and there is a correlation between any episode of reduced blood flow to the affected vascular territory during surgery and a decrease of PtiO2 values. Unexpected low basal values were obtained in “uninjured” brain, with no influence from subarachnoid hemorrhage. The values of risk for brain infarction during temporary arterial occlusion still need further studies, but an incomplete recovery or a persistent fall in PtiO2 values after definitive clipping should be considered as an indication for verification of the position of the clip.
Collapse
Affiliation(s)
- A Cerejo
- Department of Neurosurgery, Hospital S. João, Porto, Portugal
| | | | | | | |
Collapse
|
18
|
The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv Syst 2010; 26:419-30. [PMID: 19937246 DOI: 10.1007/s00381-009-1037-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Secondary neuronal injury is implicated in poor outcome after acute neurological insults. Outcome can be improved with protocol-driven therapy. These therapies have largely been based on monitoring and control of intracranial pressure and the maintenance of an adequate cerebral perfusion pressure. DISCUSSION In recent years, brain tissue oxygen partial pressure (PbtO2) monitoring has emerged as a clinically useful modality and a complement to intracranial pressure monitors. This review examines the physiology of PbtO2 monitors and practical aspects of their use.
Collapse
|
19
|
Shahlaie K, Boggan JE, Latchaw RE, Ji C, Muizelaar JP. Posttraumatic vasospasm detected by continuous brain tissue oxygen monitoring: treatment with intraarterial verapamil and balloon angioplasty. Neurocrit Care 2008; 10:61-9. [PMID: 18807219 DOI: 10.1007/s12028-008-9138-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 08/14/2008] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Posttraumatic vasospasm (PTV) is a relatively common event following traumatic brain injury (TBI) that has been strongly correlated with worse neurological outcome in many studies. However, vasospasm continues to be an under-recognized source of secondary injury following TBI, and currently published guidelines do not address screening or management strategies for PTV. Brain tissue oxygen (P(bt)O(2)) monitoring probes allow for continuous screening for cerebral hypoxia following TBI, but their use as a monitor for PTV has not been previously described. METHODS Case report and literature review. RESULTS We present a case of PTV identified by persistent low P(bt)O(2) despite aggressive medical therapy. Computed tomography and digital subtraction angiography confirmed severe cerebral arterial vasospasm involving both anterior and posterior circulations. The patient was successfully treated with serial intraarterial therapy including balloon angioplasty and verapamil infusion. CONCLUSION Posttraumatic vasospasm should be included in the differential diagnosis of cerebral hypoxia (e.g., low P(bt)O(2)) following TBI. Management strategies for PTV may include early, aggressive intraarterial therapies including drug infusion and balloon angioplasty.
Collapse
Affiliation(s)
- Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
20
|
Hutchinson GM. Determining critical values of calculated parameters within a physiologic model. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:3436-9. [PMID: 17271023 DOI: 10.1109/iembs.2004.1403964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To determine the critical value of calculated but not readily measurable variables of a physiologic model, we examine clinical studies of similar variables and establish the critical values. The calculated variables considered in this study are the partial pressure of oxygen in the myocardium and in the gray matter of the brain. Partial pressure target values of 29 mmHg for cerebral tissue and 23 mmHg for myocardial tissue were determined to be suitable for a critical threshold. We validated these with a physiologic model test by ensuring that these corresponded to a reasonable value of cardiac output, vital sign commonly used to evaluate patient well being. These values can be used for future analysis of physiologic monitors' alarm systems when using physiologic models.
Collapse
Affiliation(s)
- G M Hutchinson
- GE Healthcare--Information Technologies, Milwaukee, WI, USA
| |
Collapse
|
21
|
Dunn IF, Ellegala DB, Fox JF, Kim DH. Principles of cerebral oxygenation and blood flow in the neurological critical care unit. Neurocrit Care 2006; 4:77-82. [PMID: 16498199 DOI: 10.1385/ncc:4:1:077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebrovascular disease and trauma are leading causes of death in the United States. In addition to the initial insult to the brain, disturbances of cerebral oxygenation and metabolism underlie many of the secondary pathophysiological processes that increase both morbidity and mortality. Therefore, researchers and clinicians have sought to obtain a more thorough understanding of the physiological and biochemical principles of cerebral oxygenation and metabolism. New technologies capable of offering continuous and quantitative assessment of cerebral oxygenation may improve clinical outcomes. In this article, we review the physiological principles of cerebral metabolism, cerebral blood flow and their metabolic coupling, and cerebral oxygenation, with particular emphasis on variables that could be monitored and managed in an intensive care unit setting.
Collapse
Affiliation(s)
- Ian F Dunn
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
22
|
Stocchetti N, Protti A, Lattuada M, Magnoni S, Longhi L, Ghisoni L, Egidi M, Zanier ER. Impact of pyrexia on neurochemistry and cerebral oxygenation after acute brain injury. J Neurol Neurosurg Psychiatry 2005; 76:1135-9. [PMID: 16024893 PMCID: PMC1739755 DOI: 10.1136/jnnp.2004.041269] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Postischaemic pyrexia exacerbates neuronal damage. Hyperthermia related cerebral changes have still not been well investigated in humans. OBJECTIVE To study how pyrexia affects neurochemistry and cerebral oxygenation after acute brain injury. METHODS 18 acutely brain injured patients were studied at the onset and resolution of febrile episodes (brain temperature > or = 38.7 degrees C). Intracranial pressure (ICP), brain tissue oxygen tension (PbrO2), and brain tissue temperature (Tbr) were recorded continuously; jugular venous blood was sampled intermittently. Microdialysis probes were inserted in the cerebral cortex and in subcutaneous tissue. Glucose, lactate, pyruvate, and glutamate were measured hourly. The lactate to pyruvate ratio was calculated. RESULTS Mean (SD) Tbr rose from 38 (0.5) to 39.3 (0.3) degrees C. Arteriojugular oxygen content difference (AJD(O2)) fell from 4.2 (0.7) to 3.8 (0.5) vol% (p < 0.05) and PbrO2 rose from 32 (21) to 37 (22) mm Hg (p < 0.05). ICP increased slightly and no significant neurochemical alterations occurred. Opposite changes were recorded when brain temperature returned towards baseline. CONCLUSIONS As long as substrate and oxygen delivery remain adequate, hyperthermia on its own does not seem to induce any further significant neurochemical alterations. Changes in cerebral blood volume may, however, affect intracranial pressure.
Collapse
Affiliation(s)
- N Stocchetti
- Milan University, Neuroscience Intensive Care, Ospedale Policlinico IRCCS, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Neff RA, Simmens SJ, Evans C, Mendelowitz D. Prenatal nicotine exposure alters central cardiorespiratory responses to hypoxia in rats: implications for sudden infant death syndrome. J Neurosci 2005; 24:9261-8. [PMID: 15496661 PMCID: PMC6730089 DOI: 10.1523/jneurosci.1918-04.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maternal cigarette smoking and prenatal nicotine exposure are the highest risk factors for sudden infant death syndrome (SIDS). During hypoxia, respiratory frequency and heart rate transiently increase and subsequently decrease. These biphasic cardiorespiratory responses normally serve to prolong survival during hypoxia by reducing the metabolic demands of cardiac and respiratory muscles. However, exaggerated responses to hypoxia may be life threatening and have been implicated in SIDS. Heart rate is primarily determined by the activity of brainstem preganglionic cardioinhibitory vagal neurons (CVNs) in the nucleus ambiguus. We developed an in vitro rat brainstem slice preparation that maintains rhythmic inspiratory-related activity and contains fluorescently labeled CVNs. Synaptic inputs to CVNs were examined using patch-clamp electrophysiological techniques. Hypoxia evoked a biphasic change in the frequency of both GABAergic and glycinergic IPSCs in CVNs, comprised of an initial increase followed by a decrease in IPSC frequency. Prenatal exposure to nicotine changed the GABAergic response to hypoxia from a biphasic response to a precipitous decrease in spontaneous GABAergic IPSC frequency. This study establishes a likely neurochemical mechanism for the heart rate response to hypoxia and a link between prenatal nicotine exposure and an exaggerated bradycardia during hypoxia that may contribute to SIDS.
Collapse
Affiliation(s)
- Robert A Neff
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
24
|
Sarrafzadeh AS, Kiening KL, Unterberg AW. Neuromonitoring: brain oxygenation and microdialysis. Curr Neurol Neurosci Rep 2004; 3:517-23. [PMID: 14565908 DOI: 10.1007/s11910-003-0057-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Patients with cerebral lesions run a high risk of developing cerebral hypoxic and ischemic damage due to secondary insults. To minimize the risk of secondary cerebral hypoxia and ischemia, new monitoring techniques of cerebral oxygenation and metabolism have been developed and may help to understand the pathophysiology of secondary brain damage for a better treatment and outcome in critical patients. Cerebral microdialysis is a relatively new technique for measuring brain molecules of the extracellular space. The technical aspects, the interpretation of the commonly measured parameters, the use of the two commonly used oxygenation parameters (jugular venous oxygen saturation and monitoring of brain tissue PO(2) and the microdialysis technique to monitor cerebral metabolism in patients with head injury), subarachnoid hemorrhage, and ischemic stroke are considered. Pitfalls of the techniques and their future potential are discussed.
Collapse
Affiliation(s)
- Asita S Sarrafzadeh
- Department of Neurosurgery, Charité Campus Virchow Medical Clinic, Humboldt University of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | |
Collapse
|
25
|
Littlejohns LR, Bader MK, March K. Brain Tissue Oxygen Monitoring in Severe Brain Injury, I. Crit Care Nurse 2003. [DOI: 10.4037/ccn2003.23.4.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Linda R. Littlejohns
- Linda R. Littlejohns has 20 years of experience as a neuroscience critical care nurse and 6 years of experience as a neuroscience clinical nurse specialist. She is currently vice president of clinical development at Integra NeuroSciences, San Diego, Calif
| | - Mary Kay Bader
- Mary Kay Bader has 22 years of experience as a neuroscience critical care nurse and 11 years of experience as a neuroscience clinical nurse specialist. She is currently the neuroscience clinical nurse specialist at Mission Hospital Regional Medical Center, Mission Viejo, Calif
| | - Karen March
- Karen March has 29 years of experience as a neuroscience critical care nurse and 11 ½ years of experience as a neuroscience clinical nurse specialist. She is currently the director of clinical development at Integra NeuroSciences, San Diego, Calif
| |
Collapse
|