1
|
Seibold JM, Abeykoon SW, Ross AE, White RJ. Development of an Electrochemical, Aptamer-Based Sensor for Dynamic Detection of Neuropeptide Y. ACS Sens 2023; 8:4504-4511. [PMID: 38033269 PMCID: PMC11214579 DOI: 10.1021/acssensors.3c00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The ability to monitor dynamic changes in neuropeptide Y (NPY) levels in complex environments can have an impact on many fields, including neuroscience and immunology. Here, we describe the development of an electrochemical, aptamer-based (E-AB) sensor for the dynamic (reversible) measurement of physiologically relevant (nanomolar) concentrations of neuropeptide Y. The E-AB sensors are fabricated using a previously described 80 nucleotide aptamer1 reported to specifically bind NPY with a binding affinity Kd = 0.3 ± 0.2 uM. We investigated two redox tag placement locations on the aptamer sequence (terminal vs internal) and various sensor fabrication and interrogation parameters to tune the performance of the resulting sensor. The best-performing sensor architecture displayed a physiologically relevant dynamic range (nM) and low limit of detection and is selective among competitors and similar molecules. The development of this sensor accomplishes two breakthroughs: first, the development of a nonmicrofluidic aptamer-based electrochemical sensor that can detect NPY on a physiologically relevant (seconds to minutes) time scale and across a relevant concentration range; second, the expansion of the range of molecules for which an electrochemical, aptamer-based sensor can be used.
Collapse
Affiliation(s)
- Jordan M. Seibold
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Sanduni W. Abeykoon
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Ashley E. Ross
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Ryan J. White
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
- Department of Electrical and Computer Engineering
| |
Collapse
|
2
|
Zheng YL, Wang WD, Li MM, Lin S, Lin HL. Updated Role of Neuropeptide Y in Nicotine-Induced Endothelial Dysfunction and Atherosclerosis. Front Cardiovasc Med 2021; 8:630968. [PMID: 33708805 PMCID: PMC7940677 DOI: 10.3389/fcvm.2021.630968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Endothelial dysfunction of the arterial vasculature plays a pivotal role in cardiovascular pathogenesis. Nicotine-induced endothelial dysfunction substantially contributes to the development of arteriosclerotic cardiovascular disease. Nicotine promotes oxidative inflammation, thrombosis, pathological angiogenesis, and vasoconstriction, and induces insulin resistance. However, the exact mechanism through which nicotine induces endothelial dysfunction remains unclear. Neuropeptide Y (NPY) is widely distributed in the central nervous system and peripheral tissues, and it participates in the pathogenesis of atherosclerosis by regulating vasoconstriction, energy metabolism, local plaque inflammatory response, activation and aggregation of platelets, and stress and anxiety-related emotion. Nicotine can increase the expression of NPY, suggesting that NPY is involved in nicotine-induced endothelial dysfunction. Herein, we present an updated review of the possible mechanisms of nicotine-induced atherosclerosis, with a focus on endothelial cell dysfunction associated with nicotine and NPY.
Collapse
Affiliation(s)
- Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Zhu P, Zhang ZH, Huang XF, Shi YC, Khandekar N, Yang HQ, Liang SY, Song ZY, Lin S. Cold exposure promotes obesity and impairs glucose homeostasis in mice subjected to a high‑fat diet. Mol Med Rep 2018; 18:3923-3931. [PMID: 30106124 PMCID: PMC6131648 DOI: 10.3892/mmr.2018.9382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/08/2018] [Indexed: 11/06/2022] Open
Abstract
Cold exposure is considered to be a form of stress and has various adverse effects on the body. The present study aimed to investigate the effects of chronic daily cold exposure on food intake, body weight, serum glucose levels and the central energy balance regulatory pathway in mice fed with a high‑fat diet (HFD). C57BL/6 mice were divided into two groups, which were fed with a standard chow or with a HFD. Half of the mice in each group were exposed to ice‑cold water for 1 h/day for 7 weeks, while the controls were exposed to room temperature. Chronic daily cold exposure significantly increased energy intake, body weight and serum glucose levels in HFD‑fed mice compared with the control group. In addition, 1 h after the final cold exposure, c‑fos immunoreactivity was significantly increased in the central amygdala of HFD‑fed mice compared with HFD‑fed mice without cold exposure, indicating neuronal activation in this brain region. Notably, 61% of these c‑fos neurons co‑expressed the neuropeptide Y (NPY), and the orexigenic peptide levels were significantly increased in the central amygdala of cold‑exposed mice compared with control mice. Notably, cold exposure significantly decreased the anorexigenic brain‑derived neurotropic factor (BDNF) messenger RNA (mRNA) levels in the ventromedial hypothalamic nucleus and increased growth hormone releasing hormone (GHRH) mRNA in the paraventricular nucleus. NPY‑ergic neurons in the central amygdala were activated by chronic cold exposure in mice on HFD via neuronal pathways to decrease BDNF and increase GHRH mRNA expression, possibly contributing to the development of obesity and impairment of glucose homeostasis.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Zhi-Hui Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neeta Khandekar
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - He-Qin Yang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Shi-Yu Liang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
4
|
Raghuraman G, Kalari A, Dhingra R, Prabhakar NR, Kumar GK. Enhanced neuropeptide Y synthesis during intermittent hypoxia in the rat adrenal medulla: role of reactive oxygen species-dependent alterations in precursor peptide processing. Antioxid Redox Signal 2011; 14:1179-90. [PMID: 20836657 PMCID: PMC3048839 DOI: 10.1089/ars.2010.3353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intermittent hypoxia (IH) associated with recurrent apneas often leads to cardiovascular abnormalities. Previously, we showed that IH treatment elevates blood pressure and increases plasma catecholamines (CAs) in rats via reactive oxygen species (ROS)-dependent enhanced synthesis and secretion from the adrenal medulla (AM). Neuropeptide Y (NPY), a sympathetic neurotransmitter that colocalizes with CA in the AM, has been implicated in blood pressure regulation during persistent stress. Here, we investigated whether IH facilitates NPY synthesis in the rat AM and assessed the role of ROS signaling. IH increased NPY-like immunoreactivity in many dopamine-β-hydroxylase-expressing chromaffin cells with a parallel increase in preproNPY mRNA and protein. IH increased the activities of proNPY-processing enzymes, which were due, in part, to elevated protein expression and increased proteolytic processing. IH increased ROS generation, and antioxidants reversed IH-induced increases in ROS, preproNPY, and its processing to bioactive NPY in the AM. IH treatment increased blood pressure and antioxidants and inhibition of NPY amidation prevented this response. These findings suggest that IH-induced elevation in NPY expression in the rat AM is mediated by ROS-dependent augmentation of preproNPY mRNA expression and proNPY-processing enzyme activities and contributes to IH-induced elevation of blood pressure.
Collapse
Affiliation(s)
- Gayatri Raghuraman
- The Center for Systems Biology of O2 Sensing, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
5
|
Thakor AS, Bloomfield MR, Patterson M, Giussani DA. Calcitonin gene-related peptide antagonism attenuates the haemodynamic and glycaemic responses to acute hypoxaemia in the late gestation sheep fetus. J Physiol 2005; 566:587-97. [PMID: 15860534 PMCID: PMC1464744 DOI: 10.1113/jphysiol.2005.085431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 04/27/2005] [Indexed: 12/14/2022] Open
Abstract
The fetal defence to acute hypoxaemia involves cardiovascular and metabolic responses, which include peripheral vasoconstriction and hyperglycaemia. Both these responses are mediated via neuroendocrine mechanisms, which require the stimulation of the sympathetic nervous system. In the adult, accumulating evidence supports a role for calcitonin gene-related peptide (CGRP) in the activation of sympathetic outflow. However, the role of CGRP in stimulated cardiovascular and metabolic functions before birth is completely unknown. This study tested the hypothesis that CGRP plays a role in the fetal cardiovascular and metabolic defence responses to acute hypoxaemia by affecting sympathetic outflow. Under anaesthesia, five sheep fetuses at 0.8 of gestation were surgically instrumented with catheters and a femoral arterial Transonic flow-probe. Five days later, fetuses were subjected to 0.5 h hypoxaemia during either i.v. saline or a selective CGRP antagonist in randomised order. Treatment started 30 min before hypoxaemia and ran continuously until the end of the challenge. Arterial samples were taken for blood gases, metabolic status and hormone analyses. CGRP antagonism did not alter basal arterial blood gas, metabolic, cardiovascular or endocrine status. During hypoxaemia, similar falls in Pa,O2 occurred in all fetuses. During saline infusion, hypoxaemia induced hypertension, bradycardia, femoral vasoconstriction, hyperglycaemia and an increase in haemoglobin, catecholamines and neuropeptide Y (NPY). In contrast, CGRP antagonism markedly diminished the femoral vasoconstrictor and glycaemic responses to hypoxaemia, and attenuated the increases in haemoglobin, catecholamines and NPY. Combined, these results strongly support the hypothesis that CGRP plays a role in the fetal cardiovascular and metabolic defence to hypoxaemia by affecting sympathetic outflow.
Collapse
Affiliation(s)
- A S Thakor
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | | | |
Collapse
|
6
|
Jellyman JK, Gardner DS, Edwards CMB, Fowden AL, Giussani DA. Fetal cardiovascular, metabolic and endocrine responses to acute hypoxaemia during and following maternal treatment with dexamethasone in sheep. J Physiol 2005; 567:673-88. [PMID: 15975982 PMCID: PMC1474208 DOI: 10.1113/jphysiol.2005.089805] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In sheep, direct fetal treatment with dexamethasone alters basal cardiovascular function and the cardiovascular response to acute hypoxaemia. However, in human clinical practice, dexamethasone is administered to the mother, not to the fetus. Hence, this study investigated physiological responses to acute hypoxaemia in fetal sheep during and following maternal treatment with dexamethasone in doses and at dose intervals used in human clinical practice. Under anaesthesia, 18 fetal sheep were instrumented with vascular and amniotic catheters, a carotid flow probe and a femoral flow probe at 118 days gestation (term ca 145 days). Following 6 days recovery at 124 days gestation, 10 ewes received dexamethasone (2 x 12 mg daily i.m. injections in saline). The remaining animals were saline-injected as age-matched controls. Two episodes of hypoxaemia (H) were induced in all animals by reducing the maternal F(IO2)for 1 h (H1, 8 h after the second injection; H2, 3 days after the second injection). In fetuses whose mothers received saline, hypoxaemia induced significant increases in fetal arterial blood pressure, carotid blood flow and carotid vascular conductance and femoral vascular resistance, significant falls in femoral blood flow and femoral vascular conductance and transient bradycardia. These cardiovascular responses were accompanied by a fall in arterial pH, increases in blood glucose and blood lactate concentrations and increased plasma concentrations of catecholamines. In fetuses whose mothers were treated with dexamethasone, bradycardia persisted throughout hypoxaemia, the magnitude of the femoral vasoconstriction, the glycaemic, lactacidaemic and acidaemic responses and the plasma concentration of neuropeptide Y (NPY) were all enhanced during H1. However, during H2, all of these physiological responses were similar to saline controls. In dexamethasone fetuses, the increase in plasma adrenaline was attenuated during H1 and the increase in carotid vascular conductance during hypoxaemia failed to reach statistical significance both during H1 and during H2. These data show that maternal treatment with dexamethasone in doses and intervals used in human obstetric practice modified the fetal cardiovascular, metabolic and endocrine defence responses to acute hypoxaemia. Furthermore, dexamethasone-induced alterations to these defences depended on whether the hypoxaemic challenge occurred during or following maternal dexamethasone treatment.
Collapse
Affiliation(s)
- J K Jellyman
- The Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | | | | | |
Collapse
|
7
|
Abstract
BACKGROUND Academic stress is a good model of psychological stress in humans and is thus useful for studying psychoneurohormonal changes. The aim of the current study was to examine the effect of academic examination stress on activation of the hypothalamus-autonomic nervous system (HANS) and the hypothalamic-pituitary-adrenocortical (HPA) axis, through the measurements of changes in neuro-hormones during final exams as compared to the pre-exam baseline. MATERIALS AND METHODS Forty-eight first- and second-year female medical students participated. Plasma leptin, neuropeptide Y (NPY), nitrite, nitrate, andrenomedullin, cortisol and adrenocorticotropic hormone (ACTH) were measured at baseline and during final examinations. RESULTS Plasma levels of cortisol, ACTH, NPY, adrenomedullin, nitrite and nitrate increased during times of academic stress as compared to baseline levels. However, only plasma leptin level was decreased during the academic stress as compared to baseline, probably through a negative feedback mechanism resulting from sympathetic stimulation. The results indicate that both the HANS and HPA are involved in this type of stress and both are activated at the same time. CONCLUSION Academic stress induced significant neurohormonal changes. Leptin, NPY, nitrite, nitrate, adrenomedullin, cortisol and ACTH can be considered part of a complex mosaic model of the neuroendocrine system during academic stress.
Collapse
Affiliation(s)
- Laila Y Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
8
|
Fletcher AJW, Gardner DS, Edwards CMB, Fowden AL, Giussani DA. Cardiovascular and endocrine responses to acute hypoxaemia during and following dexamethasone infusion in the ovine fetus. J Physiol 2003; 549:271-87. [PMID: 12665612 PMCID: PMC2342926 DOI: 10.1113/jphysiol.2002.036418] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study investigated the effects of fetal treatment with dexamethasone on ovine fetal cardiovascular defence responses to acute hypoxaemia, occurring either during or 48 h following the period of glucocorticoid exposure. To address the mechanisms underlying these responses, chemoreflex function and plasma concentrations of catecholamines, neuropeptide Y (NPY) and vasopressin were measured. Under general halothane anaesthesia, 26 Welsh Mountain sheep fetuses were surgically prepared for long-term recording at between 117 and 120 days of gestation (dGA; term is approximately 145 days) with vascular catheters and a Transonic flow probe around a femoral artery. Following at least 5 days of recovery, fetuses were randomly assigned to one of two experimental groups. After 48 h of baseline recording, at 125 +/- 1 dGA, half of the fetuses (n = 13) were continuously infused I.V. with dexamethasone for 48 h at a rate of 2.06 +/- 0.13 microg kg-1 h-1. The remaining 13 fetuses were infused with heparinized saline at the same rate (controls). At 127 +/- 1 dGA, 2 days from the onset of infusions, seven fetuses from each group were subjected to 1 h of acute hypoxaemia. At 129 +/- 1 dGA, 2 days after the end of infusions, six fetuses from each group were subjected to 1 h of acute hypoxaemia. Similar reductions in fetal partial pressure of arterial oxygen occurred in control and dexamethasone-treated fetuses during the acute hypoxaemia protocols. In control fetuses, acute hypoxaemia led to transient bradycardia, femoral vasoconstriction and significant increases in plasma concentrations of catecholamines, vasopressin and NPY. In fetuses subjected to acute hypoxaemia during dexamethasone treatment, the increase in plasma NPY was enhanced, the bradycardic response was prolonged, and the plasma catecholamine and vasopressin responses were diminished. In fetuses subjected to acute hypoxaemia 48 h following dexamethasone treatment, femoral vasoconstriction and plasma catecholamine and vasopressin responses were enhanced, whilst the prolonged bradycardia and augmented plasma NPY responses persisted. These data show that fetal treatment with dexamethasone modifies the pattern and magnitude of fetal cardiovascular responses to acute oxygen deprivation. Modifications to different mechanisms mediating the fetal defence responses to acute hypoxaemia that occur during dexamethasone treatment may reverse, persist or even become enhanced by 48 h following the treatment period.
Collapse
|
9
|
Sanhueza EM, Johansen-Bibby AA, Fletcher AJW, Riquelme RA, Daniels AJ, Serón-Ferré M, Gaete CR, Carrasco JE, Llanos AJ, Giussani DA. The role of neuropeptide Y in the ovine fetal cardiovascular response to reduced oxygenation. J Physiol 2003; 546:891-901. [PMID: 12563013 PMCID: PMC2342585 DOI: 10.1113/jphysiol.2002.034488] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 11/21/2002] [Indexed: 11/08/2022] Open
Abstract
This study investigated the role of neuropeptide Y (NPY) in mediating cardiovascular responses to reduced oxygenation in the late gestation ovine fetus by: (1) comparing the effects on the cardiovascular system of an exogenous infusion of NPY with those elicited by moderate or severe reductions in fetal oxygenation; and (2) determining the effect of fetal I.V. treatment with a selective NPY-Y(1) receptor antagonist on the fetal cardiovascular responses to acute moderate hypoxaemia. Under general anaesthesia, 14 sheep fetuses (0.8-0.9 of gestation) were surgically prepared with vascular and amniotic catheters. In 5 of these fetuses, a Transonic flow probe was also implanted around a femoral artery. Following at least 5 days of recovery, one group of fetuses (n = 9) was subjected to a 30 min treatment period with exogenous NPY (17 microg kg(-1) bolus plus 0.85 microg kg(-1) min(-1) infusion). In this group, fetal blood pressure and heart rate were monitored continuously and the distribution of the fetal combined ventricular output was assessed via injection of radiolabelled microspheres before and during treatment. The second group of fetuses instrumented with the femoral flow probe (n = 5) were subjected to a 3 h experiment consisting of 1 h of normoxia, 1 h of hypoxaemia, and 1 h of recovery during a slow I.V. infusion of vehicle. One or two days later, the acute hypoxaemia protocol was repeated during fetal I.V. treatment with a selective NPY-Y(1) receptor antagonist (50 microg kg(-1) bolus + 1.5 microg kg(-1) min(-1) infusion). In these fetuses, fetal arterial blood pressure, heart rate and femoral vascular resistance were recorded continuously. The results show that fetal treatment with exogenous NPY mimics the fetal cardiovascular responses to asphyxia, and that treatment of the sheep fetus with a selective NPY-Y(1) receptor antagonist does not affect the fetal cardiovascular response to acute moderate hypoxaemia. These results support a greater role for NPY in mediating the fetal cardiovascular responses to acute asphyxia than to acute moderate hypoxaemia.
Collapse
Affiliation(s)
- Emilia M Sanhueza
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICMB), Facultad de Medicina and Centro Internacional de Estudios Andinos (INCAS), Universidad de Chile, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Viidas U, Norée LO, Ahlmén J, Theodorsson E, Sylvén C. Ambulatory 24-hour blood pressure and peptide balance in hemodialysis patients. SCANDINAVIAN JOURNAL OF UROLOGY AND NEPHROLOGY 1995; 29:259-63. [PMID: 8578266 DOI: 10.3109/00365599509180573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Blood pressure regulation during intermittent hemodialysis treatment involves many different mechanisms. Eight normotensive patients without antihypertensive drugs on intermittent hemodialysis treatment, mean age 50 years, were studied with 24-hour blood pressure measurements. Atrial natriuretic peptide (ANP) and neuropeptide Y (NPY) were determined concomitantly. Eight control individuals matched for age and sex were investigated in the same way. A significant increase of both systolic and diastolic blood pressure, heart rate and pathological circadian rhythm was seen among the dialysis patients. High levels of ANP were found before and after dialysis. NPY showed steady state levels through the 24 hours and did not differ between the two groups. Overhydration is a probable cause of the disturbed blood pressure regulation and increased ANP-values.
Collapse
Affiliation(s)
- U Viidas
- Department of Nephrology, Central Hospital, Skövde, Sweden
| | | | | | | | | |
Collapse
|