1
|
Larson SR, Bortell N, Illies A, Crisler WJ, Matsuda JL, Lenz LL. Myeloid Cell CK2 Regulates Inflammation and Resistance to Bacterial Infection. Front Immunol 2020; 11:590266. [PMID: 33363536 PMCID: PMC7752951 DOI: 10.3389/fimmu.2020.590266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
Kinase activity plays an essential role in the regulation of immune cell defenses against pathogens. The protein kinase CK2 (formerly casein kinase II) is an evolutionarily conserved kinase with hundreds of identified substrates. CK2 is ubiquitously expressed in somatic and immune cells, but the roles of CK2 in regulation of immune cell function remain largely elusive. This reflects the essential role of CK2 in organismal development and limited prior work with conditional CK2 mutant murine models. Here, we generated mice with a conditional (floxed) allele of Csnk2a, which encodes the catalytic CK2α subunit of CK2. When crossed to Lyz2-cre mice, excision of Csnk2a sequence impaired CK2α expression in myeloid cells but failed to detectably alter myeloid cell development. By contrast, deficiency for CK2α increased inflammatory myeloid cell recruitment, activation, and resistance following systemic Listeria monocytogenes (Lm) infection. Results from mixed chimera experiments indicated that CK2α deficiency in only a subset of myeloid cells was not sufficient to reduce bacterial burdens. Nor did cell-intrinsic deficiency for CK2α suffice to alter accumulation or activation of monocytes and neutrophils in infected tissues. These data suggest that CK2α expression by Lyz2-expressing cells promotes inflammatory and anti-bacterial responses through effects in trans. Our results highlight previously undescribed suppressive effects of CK2 activity on inflammatory myeloid cell responses and illustrate that cell-extrinsic effects of CK2 can shape inflammatory and protective innate immune responses.
Collapse
Affiliation(s)
- Sandy R. Larson
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Nikki Bortell
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alysha Illies
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - William J. Crisler
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jennifer L. Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Laurel L. Lenz
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
2
|
Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res 2016; 1641:217-33. [PMID: 26790349 DOI: 10.1016/j.brainres.2016.01.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
|
3
|
Eradath MK, Abe H, Matsumoto M, Matsumoto K, Tanaka K, Ichinohe N. Anatomical inputs to sulcal portions of areas 9m and 8Bm in the macaque monkey. Front Neuroanat 2015; 9:30. [PMID: 25814938 PMCID: PMC4357300 DOI: 10.3389/fnana.2015.00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/26/2015] [Indexed: 02/04/2023] Open
Abstract
Neuronal activities recorded from the dorsal bank of the anterior cingulate sulcus have suggested that this cortical area is involved in control of search vs. repetition, goal-based action selection and encoding of prediction error regarding action value. In this study, to explore potential anatomical bases for these neuronal activities, we injected retrograde tracers (CTB-Alexa-488 and CTB-gold) into the dorsal bank of the anterior cingulate sulcus and examined the distribution of labeled cell bodies in macaque monkey brains. The Nissl staining showed that the cortex in the dorsal bank of the anterior cingulate sulcus has consistent layer 4 which means that the cortical region is a part of the granular prefrontal cortex. The injection site belonged to the sulcal portion of area 9m in two cases and the sulcal portion of area 8Bm in one case. In addition to the continuous distribution of labeled cells in the two areas (areas 9m and 8Bm) around the injection site, the labeled cells were densely distributed in the cingulate areas (areas 24, 32, and 23) in all the cases. The dense labeling of cells was also found in other prefrontal areas (areas 46, 10, 11, and 12) in the two cases with injection into the sulcal portion of area 9m, whereas the dense labeling of cells was found in pre-motor areas (F6 and F7) in the case with injection into the sulcal portion of area 8Bm. The dense labeling of cells in the prefrontal and premotor areas was more similar to those previously found after injections into dorsal parts of areas 9 and 8B. Subcortical distribution of labeled cells was found in the mediodorsal nucleus of thalamus, claustrum, and substantia nigra pars compacta in all the cases.
Collapse
Affiliation(s)
- Manoj K Eradath
- Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute Saitama, Japan ; Graduate School for Science and Engineering, Saitama University Saitama, Japan
| | - Hiroshi Abe
- Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute Saitama, Japan ; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Cognitive Function, RIKEN Brain Science Institute Saitama, Japan
| | - Madoka Matsumoto
- Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute Saitama, Japan ; Department of Neuropsychiatry, The University of Tokyo Hospital Bunkyo, Japan
| | - Kenji Matsumoto
- Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute Saitama, Japan ; Brain Science Institute, Tamagawa University Machida, Japan
| | - Keiji Tanaka
- Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute Saitama, Japan
| | - Noritaka Ichinohe
- Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute Saitama, Japan ; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Cognitive Function, RIKEN Brain Science Institute Saitama, Japan ; Department of Ultrastructural Research, National Centre of Neurology and Psychiatry, National Institute of Neuroscience Kodaira, Japan
| |
Collapse
|
4
|
Puig MV, Antzoulatos EG, Miller EK. Prefrontal dopamine in associative learning and memory. Neuroscience 2014; 282:217-29. [PMID: 25241063 DOI: 10.1016/j.neuroscience.2014.09.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 01/14/2023]
Abstract
Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems.
Collapse
Affiliation(s)
- M V Puig
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - E G Antzoulatos
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618, USA
| | - E K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Haber SN, Behrens TEJ. The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 2014; 83:1019-39. [PMID: 25189208 PMCID: PMC4255982 DOI: 10.1016/j.neuron.2014.08.031] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 02/03/2023]
Abstract
Coupling stimuli and actions with positive or negative outcomes facilitates the selection of appropriate actions. Several brain regions are involved in the development of goal-directed behaviors and habit formation during incentive-based learning. This Review focuses on higher cognitive control of decision making and the cortical and subcortical structures and connections that attribute value to stimuli, associate that value with choices, and select an action plan. Delineating the connectivity between these areas is fundamental for understanding how brain regions work together to evaluate stimuli, develop actions plans, and modify behavior, as well as for elucidating the pathophysiology of psychiatric diseases.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Timothy E J Behrens
- FMRIB Centre, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| |
Collapse
|
6
|
Puig MV, Miller EK. Neural Substrates of Dopamine D2 Receptor Modulated Executive Functions in the Monkey Prefrontal Cortex. Cereb Cortex 2014; 25:2980-7. [PMID: 24814093 DOI: 10.1093/cercor/bhu096] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dopamine D2 receptors (D2R) play a major role in cognition, mood and motor movements. Their blockade by antipsychotic drugs reduces hallucinatory and delusional behaviors in schizophrenia, but often fails to alleviate affective and cognitive dysfunctions. The prefrontal cortex (PFC) expresses D2R and is altered in schizophrenia. We investigated how D2R modulate behavior and PFC function in monkeys. Two monkeys learned new and performed highly familiar visuomotor associations, where each cue was associated with a saccade to a right or left target. We recorded neural spikes and local field potentials from multiple electrodes while injecting the D2R antagonist eticlopride in the lateral PFC. Blocking prefrontal D2R impaired associative learning and cognitive flexibility, reduced motivation, but left the performance of familiar associations intact. Eticlopride reduced saccade-direction selectivity of prefrontal neurons, leading to a decrease in neural information about the associations, and an increase in alpha oscillations. These results, together with our recent study using a D1R antagonist, suggest that D1R and D2R in the primate lateral PFC cooperate to modulate several executive functions. Our findings help to gain insight into why antipsychotic drugs, with strong antagonistic actions on D2R, fail to ameliorate cognitive and emotional deficits in schizophrenia.
Collapse
Affiliation(s)
- M Victoria Puig
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Chib VS, Yun K, Takahashi H, Shimojo S. Noninvasive remote activation of the ventral midbrain by transcranial direct current stimulation of prefrontal cortex. Transl Psychiatry 2013; 3:e268. [PMID: 23756377 PMCID: PMC3693403 DOI: 10.1038/tp.2013.44] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The midbrain lies deep within the brain and has an important role in reward, motivation, movement and the pathophysiology of various neuropsychiatric disorders such as Parkinson's disease, schizophrenia, depression and addiction. To date, the primary means of acting on this region has been with pharmacological interventions or implanted electrodes. Here we introduce a new noninvasive brain stimulation technique that exploits the highly interconnected nature of the midbrain and prefrontal cortex to stimulate deep brain regions. Using transcranial direct current stimulation (tDCS) of the prefrontal cortex, we were able to remotely activate the interconnected midbrain and cause increases in participants' appraisals of facial attractiveness. Participants with more enhanced prefrontal/midbrain connectivity following stimulation exhibited greater increases in attractiveness ratings. These results illustrate that noninvasive direct stimulation of prefrontal cortex can induce neural activity in the distally connected midbrain, which directly effects behavior. Furthermore, these results suggest that this tDCS protocol could provide a promising approach to modulate midbrain functions that are disrupted in neuropsychiatric disorders.
Collapse
Affiliation(s)
- V S Chib
- Division of Biology, California Institute of Technology, Pasadena, CA 19128, USA.
| | - K Yun
- Division of Biology, California Institute of Technology, Pasadena, CA, USA,Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - H Takahashi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - S Shimojo
- Division of Biology, California Institute of Technology, Pasadena, CA, USA,Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
8
|
McIntosh S, Howell L, Hemby SE. Dopaminergic dysregulation in prefrontal cortex of rhesus monkeys following cocaine self-administration. Front Psychiatry 2013; 4:88. [PMID: 23970867 PMCID: PMC3748374 DOI: 10.3389/fpsyt.2013.00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 01/20/2023] Open
Abstract
Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v.) under limited (n = 4) and extended access conditions (n = 6). The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC) were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport), tyrosine hydroxylase (TH; marker of dopamine synthesis) and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity), extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2), and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity), and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine). Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTH(Ser31) in all regions. In addition, a slight but significant reduction in phosphorylated pTH(Ser40) was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex.
Collapse
Affiliation(s)
- Scot McIntosh
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine , Winston-Salem, NC , USA ; Center for Neurobiology of Addiction Treatment, Wake Forest University School of Medicine , Winston-Salem, NC , USA
| | | | | |
Collapse
|
9
|
Watanabe N, Wada M, Irukayama-Tomobe Y, Ogata Y, Tsujino N, Suzuki M, Furutani N, Sakurai T, Yamamoto M. A single nucleotide polymorphism of the neuropeptide B/W receptor-1 gene influences the evaluation of facial expressions. PLoS One 2012; 7:e35390. [PMID: 22545105 PMCID: PMC3335863 DOI: 10.1371/journal.pone.0035390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/15/2012] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide B/W receptor-1 (NPBWR1) is expressed in discrete brain regions in rodents and humans, with particularly strong expression in the limbic system, including the central nucleus of the amygdala. Recently, Nagata-Kuroiwa et al. reported that Npbwr1(-/-) mice showed changes in social behavior, suggesting that NPBWR1 plays important roles in the emotional responses of social interactions.The human NPBWR1 gene has a single nucleotide polymorphism at nucleotide 404 (404A>T; SNP rs33977775). This polymorphism results in an amino acid change, Y135F. The results of an in vitro experiment demonstrated that this change alters receptor function. We investigated the effect of this variation on emotional responses to stimuli of showing human faces with four categories of emotional expressions (anger, fear, happiness, and neutral). Subjects' emotional levels on seeing these faces were rated on scales of hedonic valence, emotional arousal, and dominance (V-A-D). A significant genotype difference was observed in valence evaluation; the 404AT group perceived facial expressions more pleasantly than did the 404AA group, regardless of the category of facial expression. Statistical analysis of each combination of [V-A-D and facial expression] also showed that the 404AT group tended to feel less submissive to an angry face than did the 404AA group. Thus, a single nucleotide polymorphism of NPBWR1 seems to affect human behavior in a social context.
Collapse
Affiliation(s)
- Noriya Watanabe
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Graduate School of Engineering, Tamagawa University, Machida, Tokyo, Japan
| | - Mari Wada
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoko Irukayama-Tomobe
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- University of Tsukuba Center for Behavioral Molecular Genetics (FIRST Program), Tokyo, Japan
| | - Yousuke Ogata
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Natsuko Tsujino
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mika Suzuki
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naoki Furutani
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
- Exploratory Research for Advanced Technology Yanagisawa Orphan Receptor Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Miyuki Yamamoto
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Gamo NJ, Arnsten AFT. Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behav Neurosci 2011; 125:282-96. [PMID: 21480691 DOI: 10.1037/a0023165] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dysfunction of the prefrontal cortex (PFC) is a central feature of many psychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), schizophrenia, and bipolar disorder. Thus, understanding molecular influences on PFC function through basic research in animals is essential to rational drug development. In this review, we discuss the molecular signaling events initiated by norepinephrine and dopamine that strengthen working memory function mediated by the dorsolateral PFC under optimal conditions, and weaken working memory function during uncontrollable stress. We also discuss how these intracellular mechanisms can be compromised in psychiatric disorders, and how novel treatments based on these findings may restore a molecular environment conducive to PFC regulation of behavior, thought and emotion. Examples of successful translation from animals to humans include guanfacine for the treatment of ADHD and related PFC disorders, and prazosin for the treatment of PTSD.
Collapse
Affiliation(s)
- Nao J Gamo
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
| | | |
Collapse
|
11
|
Solís-Ortiz S, Pérez-Luque E, Morado-Crespo L, Gutiérrez-Muñoz M. Executive functions and selective attention are favored in middle-aged healthy women carriers of the Val/Val genotype of the catechol-o-methyltransferase gene: a behavioral genetic study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2010; 6:67. [PMID: 21029471 PMCID: PMC2987980 DOI: 10.1186/1744-9081-6-67] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/29/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cognitive deficits such as poor memory, the inability to concentrate, deficits in abstract reasoning, attention and set-shifting flexibility have been reported in middle-aged women. It has been suggested that cognitive decline may be due to several factors which include hormonal changes, individual differences, normal processes of aging and age-related changes in dopaminergic neurotransmission. Catechol-O-methyltransferase (COMT), a common functional polymorphism, has been related to executive performance in young healthy volunteers, old subjects and schizophrenia patients. The effect of this polymorphism on cognitive function in middle-aged healthy women is not well known. The aim of the current study was to investigate whether measures of executive function, sustained attention, selective attention and verbal fluency would be different depending on the COMT genotype and task demand. METHOD We genotyped 74 middle-aged healthy women (48 to 65 years old) for the COMT Val158Met polymorphism. We analyzed the effects of this polymorphism on executive functions (Wisconsin Card Sorting Test), selective attention (Stroop test), sustained attention (Continuous Performance Test) and word generation (Verbal Fluency test), which are cognitive functions that involve the frontal lobe. RESULTS There were 27 women with the Val/Val COMT genotype, 15 with the Met/Met genotype, and 32 with the Val/Met genotype. Women carriers of the Val/Val genotype performed better in executive functions, as indicated by a lower number of errors committed in comparison with the Met/Met or Val/Met groups. The correct responses on selective attention were higher in the Val/Val group, and the number of errors committed was higher in the Met/Met group during the incongruence trial in comparison with the Val/Val group. Performance on sustained attention and the number of words generated did not show significant differences between the three genotypes. CONCLUSION These findings indicate that middle-aged women carriers of the Val158 allele, associated with high-activity COMT, showed significant advantage over Met allele in executive processes and cognitive flexibility. These results may help to explain, at least in part, individual differences in cognitive decline in middle-aged women with dopamine-related genes.
Collapse
Affiliation(s)
- Silvia Solís-Ortiz
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, Guanajuato, México
| | - Elva Pérez-Luque
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, Guanajuato, México
| | - Lisette Morado-Crespo
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, Guanajuato, México
| | - Mayra Gutiérrez-Muñoz
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, Guanajuato, México
| |
Collapse
|
12
|
Walton ME, Behrens TEJ, Buckley MJ, Rudebeck PH, Rushworth MFS. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 2010; 65:927-39. [PMID: 20346766 PMCID: PMC3566584 DOI: 10.1016/j.neuron.2010.02.027] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2010] [Indexed: 11/29/2022]
Abstract
Orbitofrontal cortex (OFC) is widely held to be critical for flexibility in decision-making when established choice values change. OFC's role in such decision making was investigated in macaques performing dynamically changing three-armed bandit tasks. After selective OFC lesions, animals were impaired at discovering the identity of the highest value stimulus following reversals. However, this was not caused either by diminished behavioral flexibility or by insensitivity to reinforcement changes, but instead by paradoxical increases in switching between all stimuli. This pattern of choice behavior could be explained by a causal role for OFC in appropriate contingent learning, the process by which causal responsibility for a particular reward is assigned to a particular choice. After OFC lesions, animals' choice behavior no longer reflected the history of precise conjoint relationships between particular choices and particular rewards. Nonetheless, OFC-lesioned animals could still approximate choice-outcome associations using a recency-weighted history of choices and rewards.
Collapse
Affiliation(s)
- Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK.
| | | | | | | | | |
Collapse
|
13
|
Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 2010; 35:4-26. [PMID: 19812543 PMCID: PMC3055449 DOI: 10.1038/npp.2009.129] [Citation(s) in RCA: 2538] [Impact Index Per Article: 169.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 08/01/2009] [Accepted: 08/04/2009] [Indexed: 11/09/2022]
Abstract
Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system. The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the dorsal prefrontal cortex, amygdala, hippocampus, thalamus, and lateral habenular nucleus, and specific brainstem structures such as the pedunculopontine nucleus, and the raphe nucleus, are key components in regulating the reward circuit. Connectivity between these areas forms a complex neural network that mediates different aspects of reward processing. Advances in neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional and structural imaging results map increasingly close to primate anatomy.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
14
|
Dopaminergic innervation of interneurons in the rat basolateral amygdala. Neuroscience 2008; 157:850-63. [PMID: 18948174 DOI: 10.1016/j.neuroscience.2008.09.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/20/2022]
Abstract
The basolateral nuclear complex of the amygdala (BLC) receives a dense dopaminergic innervation that plays a critical role in the formation of emotional memory. Dopamine has been shown to influence the activity of BLC GABAergic interneurons, which differentially control the activity of pyramidal cells. However, little is known about how dopaminergic inputs interface with different interneuronal subpopulations in this region. To address this question, dual-labeling immunohistochemical techniques were used at the light and electron microscopic levels to examine inputs from tyrosine hydroxylase-immunoreactive (TH+) dopaminergic terminals to two different interneuronal populations in the rat basolateral nucleus labeled using antibodies to parvalbumin (PV) or calretinin (CR). The basolateral nucleus exhibited a dense innervation by TH+ axons. Partial serial section reconstruction of TH+ terminals found that at least 43-50% of these terminals formed synaptic junctions in the basolateral nucleus. All of the synapses examined were symmetrical. In both TH/PV and TH/CR preparations the main targets of TH+ terminals were spines and distal dendrites of unlabeled cells. In sections dual-labeled for TH/PV 59% of the contacts of TH+ terminals with PV+ neurons were synapses, whereas in sections dual-labeled for TH/CR only 13% of the contacts of TH+ terminals with CR+ cells were synapses. In separate preparations examined in complete serial sections for TH+ basket-like innervation of PV+ perikarya, most (76.2%) of TH+ terminal contacts with PV+ perikarya were synapses. These findings suggest that PV+ interneurons, but not CR+ interneurons, are prominent synaptic targets of dopaminergic terminals in the BLC.
Collapse
|
15
|
Furutani R. Laminar and cytoarchitectonic features of the cerebral cortex in the Risso's dolphin (Grampus griseus), striped dolphin (Stenella coeruleoalba), and bottlenose dolphin (Tursiops truncatus). J Anat 2008; 213:241-8. [PMID: 18625031 DOI: 10.1111/j.1469-7580.2008.00936.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V.
Collapse
Affiliation(s)
- Rui Furutani
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Utsunomiya City, Tochigi, Japan.
| |
Collapse
|
16
|
Benavides-Piccione R, DeFelipe J. Distribution of neurons expressing tyrosine hydroxylase in the human cerebral cortex. J Anat 2007; 211:212-22. [PMID: 17593221 PMCID: PMC2375770 DOI: 10.1111/j.1469-7580.2007.00760.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since the very first detailed description of the different types of cortical interneurons by Cajal, the tremendous variation in the morphology, physiology and neurochemical properties of these cells has become apparent. However, it still remains unclear whether all types of interneurons are present in all cortical areas and species. Here we have focused on tyrosine hydroxylase (TH)-immunoreactive cortical interneurons, which although only present in certain species, are particularly abundant in the human neocortex. We argue that this type of interneuron is more widespread in the human neocortex than in any other species examined so far and that, therefore, it is probably involved in a larger variety of cortical circuits. In addition, notable regional variation can be seen in relation to these interneurons. These differences further emphasize the variability in the design of microcircuits between cortical areas and species, and they probably reflect an evolutionary adaptation of cortical circuits to particular functions.
Collapse
|
17
|
Apud JA, Weinberger DR. Pharmacogenetic tools for the development of target-oriented cognitive-enhancing drugs. NeuroRx 2006; 3:106-16. [PMID: 16490417 PMCID: PMC3593364 DOI: 10.1016/j.nurx.2005.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The identification of the anatomical and physiological substrates involved in the regulation of the dorsolateral prefrontal cortex function in humans provided the basis for the understanding of mechanisms involved in cognitive and executive function under normal as well as pathological conditions. In this context, substantial evidence indicates that alterations in monaminergic function in the dorsolateral prefrontal cortex significantly contributes to the cognitive impairments present in schizophrenia, attention deficit disorders, and other neuropsychiatric conditions. The development of a number of compounds that selectively increase extracellular dopamine (DA) concentrations in the dorsolateral prefrontal cortex but not in subcortical areas by either blocking its metabolism or reuptake, or increasing its release, or that directly activate postsynaptic DA-1 receptor mechanisms provided powerful pharmacotherapeutic tools to mitigate the cognitive deficits brought about by the dopaminergic alterations of the prefrontal cortex. More recently, the findings that polymorphisms of the catecholamine-O-methyl-transferase gene may also modify the effect of these drugs on the prefrontal cortex points toward a more specific genotype-based neuropsychopharmacology for the treatment of cognitive deficits in schizophrenia as well as in a number of other neuropsychiatric conditions. The ability of these compounds to increase DA load selectively in the frontal cortex and not on subcortical systems allows a targeted intervention without the stimulant-like effects observed with older drugs used to treat those conditions.
Collapse
Affiliation(s)
- José A Apud
- Genes, Cognition and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Health and Human Services, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
18
|
Benavides-Piccione R, Arellano JI, DeFelipe J. Catecholaminergic innervation of pyramidal neurons in the human temporal cortex. ACTA ACUST UNITED AC 2005; 15:1584-91. [PMID: 15703259 DOI: 10.1093/cercor/bhi036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the human neocortex, catecholaminergic connections modulate the excitatory inputs of pyramidal neurons and are involved in higher cognitive functions. Catecholaminergic fibers form a dense network in which it is difficult to distinguish whether or not target specificity exists. In order to shed some light on this issue, we set out to quantify the catecholaminergic innervation of pyramidal cells in different layers of the human temporal cortex (II, IIIa, IIIb, V and VI). For this purpose, pyramidal cells were labeled in human cortical tissue by injecting them with Lucifer Yellow, and then performed immunocytochemistry for the rate limiting catecholamine synthesizing enzyme tyrosine hydroxylase (TH) to visualize catecholaminergic fibers in the same sections. Injected cells were reconstructed in three dimensions and appositions were quantified (n = 1503) in serial confocal microscopy images of each injected cell (n = 71). We found TH-immunoreactive appositions (TH-ir) in all the pyramidal cells analyzed, in both the apical and basal dendritic regions. In general, the density of TH-ir apposition was greater in layers II, V and VI than in layers IIIa and IIIb. Furthermore, TH-ir appositions showed a regular distribution in almost all dendritic compartments of the apical and basal dendritic arbors across all layers. Hence, it appears that all pyramidal neurons in the human neocortex receive catecholaminergic afferents in a rather regular pattern, independent of the layer in which they are located. Since pyramidal cells located in different layers are involved in different intrinsic and extrinsic circuits, these results suggest that catecholaminergic afferents may modify the function of a larger variety of circuits than previously thought. Thus, this aspect of human cortical organization is likely to have important implications in cortical function.
Collapse
|
19
|
Abstract
The existence of depression has been recognized for decades, but its precise neurobiological basis remains unknown. Whereas neuroimaging studies unravel the gross morphological localization of dysfunctional brain regions in depression, postmortem studies provide further insights into the cellular and neurochemical substrates of depression. Recent cell-counting studies have established that major depressive disorder and bipolar illness are characterized by alterations in the density and size of neuronal and glial cells in fronto-limbic brain regions. It remains to be fully elucidated to what extent these findings represent neurodevelopmental abnormalities or disease progression and whether the cellular changes observed in depression can be reversed by antidepressant and mood-stabilizing medications. Efforts to unravel specific groups of genes that are compromised in depression have recently been undertaken by investigators in the postmortem research field. Future studies will determine whether these genes may be novel targets of therapeutic medications.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 39216, USA.
| |
Collapse
|
20
|
Abstract
A functional polymorphism in the gene for catechol-O-methyltransferase (COMT) has been shown to affect executive cognition and the physiology of the prefrontal cortex in humans, probably by affecting prefrontal dopamine signaling. The COMT valine allele, associated with relatively poor prefrontal function, is also a gene that may increase risk for schizophrenia. Although poor performance on executive cognitive tasks and abnormal prefrontal function are characteristics of schizophrenia, so is psychosis, which has been related to excessive presynaptic dopamine activity in the striatum. Studies in animals have shown that diminished prefrontal dopamine neurotransmission leads to upregulation of striatal dopamine activity. We measured tyrosine hydroxylase (TH) mRNA in mesencephalic dopamine neurons in human brain and found that the COMT valine allele is also associated with increased TH gene expression, especially in neuronal populations that project to the striatum. This indicates that COMT genotype is a heritable aspect of dopamine regulation and it further explicates the mechanism by which the COMT valine allele increases susceptibility for psychosis.
Collapse
|
21
|
Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced impairment. J Neurosci 1997. [PMID: 8922432 DOI: 10.1523/jneurosci.16-23-07768.1996] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anxiogenic benzodiazepine inverse agonist FG7142 increases dopamine turnover in rodent prefrontal cortex but not in other dopamine terminal field areas. FG7142-induced increases in prefrontal cortical dopamine receptor stimulation impair prefrontal-dependent, but not nonprefrontal-dependent, cognitive tasks in rats and monkeys. The degree of impairment correlates with levels of prefrontal cortical dopamine turnover in rats and can be blocked in rats and monkeys with dopamine receptor antagonists, suggesting that increased dopamine turnover is directly related to the cognitive deficits. The current study examined nondopaminergic drug effects on FG7142-perturbed biochemistry and cognition. Both the noradrenergic alpha-2 agonist clonidine and the glycine/NMDA antagonist (+)HA966 prevented the FG7142-induced increase in dopamine turnover in rodent prefrontal cortex. Infusion of (+)HA966 into the ventral tegmental area (VTA) also blocked this increase in dopamine turnover, indicating that critical modulatory effects of (+)HA966 on FG7142-induced changes in dopamine turnover are occurring at the level of mesoprefrontal dopamine neuron cell bodies. Systemic (+)HA966 and clonidine, but not propranolol or D-cycloserine, prevented FG7142-associated spatial working memory deficits in rats and monkeys. These results support the idea of a critical range of dopamine turnover for optimal prefrontal cortical cognitive functioning, with excessive dopamine turnover leading to cognitive impairment. These studies also provide evidence for the regulation of prefrontal cortical dopamine turnover and cognition by multiple neurotransmitter systems and suggest that the VTA is an important regulatory site for these effects.
Collapse
|