1
|
Ndlovu M, Wardjomto MB, Pori T, Nangammbi TC. Diversity and Host Specificity of Avian Haemosporidians in an Afrotropical Conservation Region. Animals (Basel) 2024; 14:2906. [PMID: 39409855 PMCID: PMC11475415 DOI: 10.3390/ani14192906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Afrotropical regions have high bird diversity, yet few studies have attempted to unravel the prevalence of avian haemosporidia in conservation areas. The diversity and host specificity of parasites in biodiversity hotspots is crucial to understanding parasite distribution and potential disease emergence. We test the hypothesis that biodiverse regions are associated with highly diverse parasites. By targeting the cytochrome b (Cytb) gene, we molecularly screened 1035 blood samples from 55 bird species for avian haemosporidia infections to determine its prevalence and diversity on sites inside and adjacent to the Kruger National Park. Overall infection prevalence was 28.41%. Haemoproteus, Leucocytozoon, and Plasmodium presented prevalences of 17.39%, 9.24%, and 4.64%, respectively. One hundred distinct parasite lineages were detected, of which 56 were new lineages. Haemoproteus also presented the highest diversity compared to Leucocytozoon and Plasmodium with varying levels of specificity. Haemoproteus lineages were found to be specialists while Plasmodium and Leucocytozoon lineages were generalists. We also found a positive relationship between avian host diversity and parasite diversity, supporting an amplification effect. These findings provide insight data for host-parasite and co-evolutionary relationship models.
Collapse
Affiliation(s)
- Mduduzi Ndlovu
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela 1201, South Africa
| | - Maliki B. Wardjomto
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela 1201, South Africa
| | - Tinotendashe Pori
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Tshifhiwa C. Nangammbi
- Department of Nature Conservation, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
2
|
Min KD, Yoo DS. Ecological drivers for poultry farms predisposed to highly pathogenic avian influenza virus infection during the initial phase of the six outbreaks between 2010-2021: a nationwide study in South Korea. Front Vet Sci 2023; 10:1278852. [PMID: 38130434 PMCID: PMC10733472 DOI: 10.3389/fvets.2023.1278852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Highly pathogenic avian influenza (HPAI) has caused substantial economic losses worldwide. An understanding of the environmental drivers that contribute to spillover transmission from wild birds to poultry farms is important for predicting areas at risk of introduction and developing risk-based surveillance strategies. We conducted an epidemiological study using data from six HPAI outbreak events in South Korea. Materials and methods An aggregate-level study design was implemented using third-level administrative units in South Korea. Only regions with high natural reservoir suitability were included. The incidence of HPAI at chicken and duck farms during the initial phase (30 and 45 days after the first case) of each outbreak event was used as the outcome variable, assuming that cross-species transmission from wild birds was the dominant exposure leading to infection. Candidate environmental drivers were meteorological factors, including temperature, precipitation, humidity, and altitude, as well as the proportion of protected area, farm density, deforestation level, and predator species richness. Logistic regression models were implemented; conditional autoregression models were used in cases of spatial autocorrelation of residuals. Results Lower temperature, higher farm density, and lower predator species richness were significantly associated with a higher risk of HPAI infection on chicken farms. Lower temperature, higher proportion of protected area, and lower predator species richness were significantly associated with a higher risk of HPAI infection on duck farms. Conclusion The predicted dominant transmission routes on chicken and duck farms were horizontal and spillover, respectively. These results reveal a potential protective effect of predator species richness against HPAI outbreaks. Further studies are required to confirm a causal relationship.
Collapse
Affiliation(s)
- Kyung-Duk Min
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dae-sung Yoo
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Taylor CL, Egan SL, Gofton AW, Irwin PJ, Oskam CL, Hochuli DF, Banks PB. An invasive human commensal and a native marsupial maintain tick populations at the urban fringe. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:460-471. [PMID: 36718907 DOI: 10.1111/mve.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Ticks (Acari: Ixodidae) are major disease vectors globally making it increasingly important to understand how altered vertebrate communities in urban areas shape tick population dynamics. In urban landscapes of Australia, little is known about which native and introduced small mammals maintain tick populations preventing host-targeted tick management and leading to human-wildlife conflict. Here, we determined (1) larval, nymphal, and adult tick burdens on host species and potential drivers, (2) the number of ticks supported by the different host populations, and (3) the proportion of medically significant tick species feeding on the different host species in Northern Sydney. We counted 3551 ticks on 241 mammals at 15 sites and found that long-nosed bandicoots (Perameles nasuta) hosted more ticks of all life stages than other small mammals but introduced black rats (Rattus rattus) were more abundant at most sites (33%-100%) and therefore important in supporting larval and nymphal ticks in our study areas. Black rats and bandicoots hosted a greater proportion of medically significant tick species including Ixodes holocyclus than other hosts. Our results show that an introduced human commensal contributes to maintaining urban tick populations and suggests ticks could be managed by controlling rat populations on urban fringes.
Collapse
Affiliation(s)
- Casey L Taylor
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Siobhon L Egan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Peter J Irwin
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Charlotte L Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Dieter F Hochuli
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Gainor K, Ghosh S. A comprehensive review of viruses in terrestrial animals from the Caribbean islands of Greater and Lesser Antilles. Transbound Emerg Dis 2022; 69:e1299-e1325. [PMID: 35578793 DOI: 10.1111/tbed.14595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Viruses pose a major threat to animal health worldwide, causing significant mortalities and morbidities in livestock, companion animals and wildlife, with adverse implications on human health, livelihoods, food safety and security, regional/national economies, and biodiversity. The Greater and Lesser Antilles consist of a cluster of islands between the North and South Americas and is habitat to a wide variety of animal species. This review is the first to put together decades of information on different viruses circulating in companion animals, livestock, and wildlife from the Caribbean islands of Greater and Lesser Antilles. Although animal viral diseases have been documented in the Caribbean region since the 1940s, we found that studies on different animal viruses are limited, inconsistent, and scattered. Furthermore, a significant number of the reports were based on serological assays, yielding preliminary data. The available information was assessed to identify knowledge gaps and limitations, and accordingly, recommendations were made, with the overall goal to improve animal health and production, and combat zoonoses in the region. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| |
Collapse
|
5
|
Zhang X, Wang G, Zhu H. Optimal control of a diffusive eco-epidemiological predator–prey model. INT J BIOMATH 2020. [DOI: 10.1142/s1793524520500655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we investigate the optimal control problem for a diffusion eco-epidemiological predator–prey model. We applied two controllers to this model. One is the separation control, which separates the uninfected prey from the infected prey population, and the other is used as a treatment control to decrease the mortality caused by the disease. Then, we propose an optimal problem to minimize the infected prey population at the final time and the cost cause by the controls. To do this, by the operator semigroup theory we prove the existence of the solution to the controlled system. Furthermore, we prove the existence of the optimal controls and obtain the first-order necessary optimality condition for the optimal controls. Finally, some numerical simulations are carried out to support the theoretical results.
Collapse
Affiliation(s)
- Xuebing Zhang
- College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
| | - Guanglan Wang
- College of Continuing Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Honglan Zhu
- Business School, Huaiyin Institute of Technology, Huaian 223001, P. R. China
| |
Collapse
|
6
|
Lacroix C, Jolles A, Seabloom EW, Power AG, Mitchell CE, Borer ET. Non-random biodiversity loss underlies predictable increases in viral disease prevalence. J R Soc Interface 2014; 11:20130947. [PMID: 24352672 PMCID: PMC3899862 DOI: 10.1098/rsif.2013.0947] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/28/2013] [Indexed: 11/12/2022] Open
Abstract
Disease dilution (reduced disease prevalence with increasing biodiversity) has been described for many different pathogens. Although the mechanisms causing this phenomenon remain unclear, the disassembly of communities to predictable subsets of species, which can be caused by changing climate, land use or invasive species, underlies one important hypothesis. In this case, infection prevalence could reflect the competence of the remaining hosts. To test this hypothesis, we measured local host species abundance and prevalence of four generalist aphid-vectored pathogens (barley and cereal yellow dwarf viruses) in a ubiquitous annual grass host at 10 sites spanning 2000 km along the North American West Coast. In laboratory and field trials, we measured viral infection as well as aphid fecundity and feeding preference on several host species. Virus prevalence increased as local host richness declined. Community disassembly was non-random: ubiquitous hosts dominating species-poor assemblages were among the most competent for vector production and virus transmission. This suggests that non-random biodiversity loss led to increased virus prevalence. Because diversity loss is occurring globally in response to anthropogenic changes, such work can inform medical, agricultural and veterinary disease research by providing insights into the dynamics of pathogens nested within a complex web of environmental forces.
Collapse
Affiliation(s)
- Christelle Lacroix
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Anna Jolles
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Alison G. Power
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Charles E. Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
7
|
Host and parasite diversity jointly control disease risk in complex communities. Proc Natl Acad Sci U S A 2013; 110:16916-21. [PMID: 24082092 DOI: 10.1073/pnas.1310557110] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Host-parasite interactions are embedded within complex communities composed of multiple host species and a cryptic assemblage of other parasites. To date, however, surprisingly few studies have explored the joint effects of host and parasite richness on disease risk, despite growing interest in the diversity-disease relationship. Here, we combined field surveys and mechanistic experiments to test how transmission of the virulent trematode Ribeiroia ondatrae was affected by the diversity of both amphibian hosts and coinfecting parasites. Within natural wetlands, host and parasite species richness correlated positively, consistent with theoretical predictions. Among sites that supported Ribeiroia, however, host and parasite richness interacted to negatively affect Ribeiroia transmission between its snail and amphibian hosts, particularly in species-poor assemblages. In laboratory and outdoor experiments designed to decouple the relative contributions of host and parasite diversity, increases in host richness decreased Ribeiroia infection by 11-65%. Host richness also tended to decrease total infections by other parasite species (four of six instances), such that more diverse host assemblages exhibited ∼40% fewer infections overall. Importantly, parasite richness further reduced both per capita and total Ribeiroia infection by 15-20%, possibly owing to intrahost competition among coinfecting species. These findings provide evidence that parasitic and free-living diversity jointly regulate disease risk, help to resolve apparent contradictions in the diversity-disease relationship, and emphasize the challenges of integrating research on coinfection and host heterogeneity to develop a community ecology-based approach to infectious diseases.
Collapse
|
8
|
Marsot M, Chapuis JL, Gasqui P, Dozières A, Masséglia S, Pisanu B, Ferquel E, Vourc’h G. Introduced Siberian chipmunks (Tamias sibiricus barberi) contribute more to lyme borreliosis risk than native reservoir rodents. PLoS One 2013; 8:e55377. [PMID: 23383170 PMCID: PMC3561227 DOI: 10.1371/journal.pone.0055377] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
The variation of the composition in species of host communities can modify the risk of disease transmission. In particular, the introduction of a new host species can increase health threats by adding a new reservoir and/or by amplifying the circulation of either exotic or native pathogens. Lyme borreliosis is a multi-host vector-borne disease caused by bacteria belonging to the Borrelia burgdorferi sensu lato complex. It is transmitted by the bite of hard ticks, especially Ixodes ricinus in Europe. Previous studies showed that the Siberian chipmunk, Tamias sibiricus barberi, an introduced ground squirrel in the Forest of Sénart (near Paris, France) was highly infested by I. ricinus, and consequently infected by B. burgdorferi sl. An index of the contribution of chipmunks to the density of infected questing nymphs on the vegetation (i.e., the acarological risk for humans) was compared to that of bank voles (Myodes glareolus) and of wood mice (Apodemus sylvaticus), two known native and sympatric competent reservoir hosts. Chipmunks produced nearly 8.5 times more infected questing nymphs than voles and mice. Furthermore, they contribute to a higher diversity of B. burgdorferi sl genospecies (B. afzelii, B. burgdorferi sensu stricto and B. garinii). The contribution of chipmunks varied between years and seasons, according to tick availability. As T. s. barberi must be a competent reservoir, it should amplify B. burgdorferi sl infection, hence increasing the risk of Lyme borreliosis in humans.
Collapse
Affiliation(s)
- Maud Marsot
- INRA, UR346 Epidémiologie animale, Saint Genès Champanelle, France
- Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, UMR 7204 Conservation des Espèces, Restauration et Suivi des Populations, MNHN-CNRS-P6, Paris, France
| | - Jean-Louis Chapuis
- Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, UMR 7204 Conservation des Espèces, Restauration et Suivi des Populations, MNHN-CNRS-P6, Paris, France
| | - Patrick Gasqui
- INRA, UR346 Epidémiologie animale, Saint Genès Champanelle, France
| | - Anne Dozières
- Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, UMR 7204 Conservation des Espèces, Restauration et Suivi des Populations, MNHN-CNRS-P6, Paris, France
| | | | - Benoit Pisanu
- Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, UMR 7204 Conservation des Espèces, Restauration et Suivi des Populations, MNHN-CNRS-P6, Paris, France
| | | | - Gwenaël Vourc’h
- INRA, UR346 Epidémiologie animale, Saint Genès Champanelle, France
| |
Collapse
|