1
|
Eravci Yalin E, Gündemir O, Günay E, Vatansever Çelik EC, Duro S, Szara T, Blagojevic M, Sönmez B, Spataru MC. Carapace Morphology Variations in Captive Tortoises: Insights from Three-Dimensional Analysis. Animals (Basel) 2024; 14:2664. [PMID: 39335254 PMCID: PMC11428744 DOI: 10.3390/ani14182664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The carapace morphology of tortoises is a crucial characteristic used for species identification, with features such as shell shape, roughness, and color patterns varying among species. Understanding this morphological diversity is valuable not only for taxonomic classification but also for more specialized clinical approaches. This study investigated the morphological differences in the shells of Leopard tortoises (Stigmochelys pardalis), African spurred tortoises (Centrochelys sulcata), and Greek tortoises (spur-thighed tortoises; Testudo graeca) raised in captivity. Using 3D scanners, the carapaces were modeled, and a 3D geometric morphometric method was employed to analyze shape variations and dimensional features, with landmarks applied automatically. Among the species studied, African spurred tortoises had the largest carapace size. Principal component analysis (PCA) identified PC1 and PC3 as critical factors in distinguishing between species based on morphological characteristics. Positive PC1 values, associated with a shorter carapace height, indicated a flatter or more compact shell shape. A higher PC3 value corresponded to a raised shape at the back of the shell, while a lower PC3 value indicated a raised shape at the front. Specifically, Leopard tortoises exhibited a higher carapace shape than the other species, while African spurred tortoises had shorter carapaces. An allometric effect was observed in the carapaces, where smaller specimens tended to be proportionately higher-domed, whereas larger shells displayed a lower height in shape. These findings highlight the significance of shape variations in tortoise shells, which emerge during adaptation and have important implications for taxonomy and clinical practice. Such differences should be carefully considered in veterinary care and species identification.
Collapse
Affiliation(s)
- Ebru Eravci Yalin
- Department of Surgery, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye;
| | - Ozan Gündemir
- Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye
| | - Ebuderda Günay
- Department of Wild Animal Diseases and Ecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye;
| | | | - Sokol Duro
- Department of Morphofunctional Modules, Faculty of Veterinary Medicine, Agricultural University, 1000 Tirana, Albania;
| | - Tomasz Szara
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Milos Blagojevic
- Department of Anatomy, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bektaş Sönmez
- Suşehri Timur Karabal Vocational School, Sivas Cumhuriyet University, Sivas 58600, Türkiye;
| | - Mihaela-Claudia Spataru
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700489 Iasi, Romania;
| |
Collapse
|
2
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
3
|
Foth C, Evers SW, Joyce WG, Volpato VS, Benson RBJ. Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology. J Anat 2019; 235:1078-1097. [PMID: 31373396 DOI: 10.1111/joa.13071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
The middle ear of turtles differs from other reptiles in being separated into two distinct compartments. Several ideas have been proposed as to why the middle ear is compartmentalized in turtles, most suggesting a relationship with underwater hearing. Extant turtle species span fully marine to strictly terrestrial habitats, and ecomorphological hypotheses of turtle hearing predict that this should correlate with variation in the structure of the middle ear due to differences in the fluid properties of water and air. We investigate the shape and size of the air-filled middle ear cavity of 56 extant turtles using 3D data and phylogenetic comparative analysis to test for correlations between habitat preferences and the shape and size of the middle ear cavity. Only weak correlations are found between middle ear cavity size and ecology, with aquatic taxa having proportionally smaller cavity volumes. The middle ear cavity of turtles exhibits high shape diversity among species, but we found no relationship between this shape variation and ecology. Surprisingly, the estimated acoustic transformer ratio, a key functional parameter of impedance-matching ears in vertebrates, also shows no relation to habitat preferences (aquatic/terrestrial) in turtles. We suggest that middle ear cavity shape may be controlled by factors unrelated to hearing, such as the spatial demands of surrounding cranial structures. A review of the fossil record suggests that the modern turtle ear evolved during the Early to Middle Jurassic in stem turtles broadly adapted to freshwater and terrestrial settings. This, combined with our finding that evolutionary transitions between habitats caused only weak evolutionary changes in middle ear structure, suggests that tympanic hearing in turtles evolved as a compromise between subaerial and underwater hearing.
Collapse
Affiliation(s)
- Christian Foth
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland.,Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Walter G Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Virginie S Volpato
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
4
|
Schoch RR, Klein N, Scheyer TM, Sues HD. Microanatomy of the stem-turtle Pappochelys rosinae indicates a predominantly fossorial mode of life and clarifies early steps in the evolution of the shell. Sci Rep 2019; 9:10430. [PMID: 31320733 PMCID: PMC6639533 DOI: 10.1038/s41598-019-46762-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/04/2019] [Indexed: 11/09/2022] Open
Abstract
Unlike any other tetrapod, turtles form their dorsal bony shell (carapace) not from osteoderms, but by contribution of the ribs and vertebrae that expand into the dermis to form plate-like shell components. Although this was known from embryological studies in extant turtles, important steps in this evolutionary sequence have recently been highlighted by the Triassic taxa Pappochelys, Eorhynchochelys and Odontochelys, and the Permian Eunotosaurus. The discovery of Pappochelys shed light on the origin of the ventral bony shell (plastron), which formed from enlarged gastralia. A major question is whether the turtle shell evolved in the context of a terrestrial or aquatic environment. Whereas Odontochelys was controversially interpreted as aquatic, a terrestrial origin of turtles was proposed based on evidence of fossorial adaptations in Eunotosaurus. We report palaeohistological data for Pappochelys, a taxon that exemplifies earlier evolutionary stages in the formation of the bony shell than Odontochelys. Bone histological evidence reveals (1) evolutionary changes in bone microstructure in ribs and gastralia approaching the turtle condition and (2) evidence for a predominantly amphibious or fossorial mode of life in Pappochelys, which support the hypothesis that crucial steps in the evolution of the shell occurred in a terrestrial rather than fully aquatic environment.
Collapse
Affiliation(s)
- Rainer R Schoch
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191, Stuttgart, Germany.
| | - Nicole Klein
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191, Stuttgart, Germany
- Institut für Geowissenschaften, Abteilung Paläontologie, Nussallee 8, 53115, Bonn, Germany
| | - Torsten M Scheyer
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Strasse 4, CH-8006, Zurich, Switzerland.
| | - Hans-Dieter Sues
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, Washington, DC, 20560, USA
| |
Collapse
|
5
|
Smales I. A Review of Neurals in Chelidae (Testudines: Pleurodira) with Reference to Phylogeny of the Family. CHELONIAN CONSERVATION AND BIOLOGY 2019. [DOI: 10.2744/ccb-1265.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ian Smales
- 6 Jenner Street, Birregurra, Victoria 3242, Australia []
| |
Collapse
|
6
|
Dickson BV, Pierce SE. Functional performance of turtle humerus shape across an ecological adaptive landscape. Evolution 2019; 73:1265-1277. [PMID: 31008517 DOI: 10.1111/evo.13747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 01/24/2023]
Abstract
The concept of the adaptive landscape has been invaluable to evolutionary biologists for visualizing the dynamics of selection and adaptation, and is increasingly being used to study morpho-functional data. Here, we construct adaptive landscapes to explore functional trade-offs associated with variation in humerus morphology among turtles adapted to three different locomotor environments: marine, semiaquatic, and terrestrial. Humerus shape from 40 species of cryptodire turtles was quantified using a pseudolandmark approach. Hypothetical shapes were extracted in a grid across morphospace and four functional traits (strength, stride length, mechanical advantage, and hydrodynamics) measured on those shapes. Quantitative trait modeling was used to construct adaptive landscapes that optimize the functional traits for each of the three locomotor ecologies. Our data show that turtles living in different environments have statistically different humeral shapes. The optimum adaptive landscape for each ecology is defined by a different combination of performance trade-offs, with turtle species clustering around their respective adaptive peak. Further, species adhere to pareto fronts between marine-semiaquatic and semiaquatic-terrestrial optima, but not between marine-terrestrial. Our study demonstrates the utility of adaptive landscapes in informing the link between form, function, and ecological adaptation, and establishes a framework for reconstructing turtle ecological evolution using isolated humeri from the fossil record.
Collapse
Affiliation(s)
- Blake V Dickson
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| |
Collapse
|
7
|
Gentry AD. Prionochelys matutina Zangerl, 1953 (Testudines: Pan-Cheloniidae) from the Late Cretaceous of the United States and the evolution of epithecal ossifications in marine turtles. PeerJ 2018; 6:e5876. [PMID: 30402356 PMCID: PMC6215699 DOI: 10.7717/peerj.5876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022] Open
Abstract
Background Many neritic to nearshore species of marine adapted turtle from the Late Cretaceous of North America are thought to represent the stem lineage of Cheloniidae but due to fragmentary holotypes, low total specimen counts, and resultantly incomplete morphological character suites, are routinely placed either within or outside of crown group Chelonioidea leaving their precise cladistic affinities uncertain. Despite this systematic ambiguity, the referral of these species to either the stem of Cheloniidae or Chelonioidea belies the critical importance of these taxa in any investigation into the origins of extant marine turtles. The adequate incorporation of these species into phylogenetic studies requires the formal description of relatively complete specimens, particularly those possessing associated cranial and post-cranial material. Methods Remarkably complete fossil specimens of several adult and juvenile marine turtles from the Mooreville Chalk and Eutaw Formations (Alabama, USA) are formally described and assigned to Prionochelys matutina. This material provides new information into the anatomy, ontogeny, and cladistic affinities of the species. A phylogenetic hypothesis for Late Cretaceous marine turtles is then generated through the consilience of stratigraphic, morphological, and molecular data. Results Phylogenetic analysis places Prionochelys matutina on the stem of Cheloniidae as a member of a monophyletic clade with other putative pan-cheloniids, including Ctenochelys stenoporus, Ctenochelys acris, Peritresius martini, and Peritresius ornatus. The members of this clade possess incipient secondary palates, pronounced carapacial and plastral fontanelles at all stages of development, and are characterized by the presence of superficial ossifications at the apices of the neural keel elevations along the dorsal midline of the carapace. Discussion The epithecal osteoderms dorsal to the neural series (epineurals) found in Ctenochelyidae are unique among turtles. The presence of epineurals in ctenochelyid turtles shows that epithecal ossifications arose independently in both leatherback (Dermochelyidae) and hard-shelled (Cheloniidae) marine turtles. Whether or not the epineurals of Ctenochelyidae are homologous with the dermal ossicles comprising the carapace of Dermochelys coriacea remains untested however, histological thin sectioning of dermochelyid and ctenochelyd epithecal elements may reveal meaningful information in future studies.
Collapse
Affiliation(s)
- Andrew D Gentry
- Department of Biological Sciences, University of Alabama at Birmingham, Birmingham, AL, United States of America.,McWane Science Center, Birmingham, AL, United States of America
| |
Collapse
|
8
|
Li C, Fraser NC, Rieppel O, Wu XC. A Triassic stem turtle with an edentulous beak. Nature 2018; 560:476-479. [DOI: 10.1038/s41586-018-0419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022]
|
9
|
Lautenschlager S, Ferreira GS, Werneburg I. Sensory Evolution and Ecology of Early Turtles Revealed by Digital Endocranial Reconstructions. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
10
|
Schoch RR, Sues HD. A Middle Triassic stem-turtle and the evolution of the turtle body plan. Nature 2015; 523:584-7. [DOI: 10.1038/nature14472] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023]
|
11
|
Rice R, Riccio P, Gilbert SF, Cebra-Thomas J. Emerging from the rib: resolving the turtle controversies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:208-20. [PMID: 25675951 DOI: 10.1002/jez.b.22600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes.
Collapse
Affiliation(s)
- Ritva Rice
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
12
|
MacCord K, Caniglia G, Moustakas-Verho JE, Burke AC. The dawn of chelonian research: Turtles between comparative anatomy and embryology in the 19th century. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:169-80. [DOI: 10.1002/jez.b.22587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Kate MacCord
- Center for Biology and Society; Arizona State University; Tempe Arizona
| | - Guido Caniglia
- Center for Biology and Society; Arizona State University; Tempe Arizona
| | | | - Ann C. Burke
- Department of Biology; Wesleyan University; Middletown Connecticut
| |
Collapse
|
13
|
Nagashima H, Sugahara F, Takechi M, Sato N, Kuratani S. On the homology of the shoulder girdle in turtles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:244-54. [PMID: 25052382 DOI: 10.1002/jez.b.22584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 12/15/2022]
Abstract
The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | |
Collapse
|
14
|
Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S. The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:194-207. [PMID: 24898540 DOI: 10.1002/jez.b.22579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Abstract
Turtles are characterized by their possession of a shell with dorsal and ventral moieties: the carapace and the plastron, respectively. In this review, we try to provide answers to the question of the evolutionary origin of the carapace, by revising morphological, developmental, and paleontological comparative analyses. The turtle carapace is formed through modification of the thoracic ribs and vertebrae, which undergo extensive ossification to form a solid bony structure. Except for peripheral dermal elements, there are no signs of exoskeletal components ontogenetically added to the costal and neural bones, and thus the carapace is predominantly of endoskeletal nature. Due to the axial arrest of turtle rib growth, the axial part of the embryo expands laterally and the shoulder girdle becomes encapsulated in the rib cage, together with the inward folding of the lateral body wall in the late phase of embryogenesis. Along the line of this folding develops a ridge called the carapacial ridge (CR), a turtle-specific embryonic structure. The CR functions in the marginal growth of the carapacial primordium, in which Wnt signaling pathway might play a crucial role. Both paleontological and genomic evidence suggest that the axial arrest is the first step toward acquisition of the turtle body plan, which is estimated to have taken place after the divergence of a clade including turtles from archosaurs. The developmental relationship between the CR and the axial arrest remains a central issue to be solved in future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Lyson TR, Bhullar BAS, Bever GS, Joyce WG, de Queiroz K, Abzhanov A, Gauthier JA. Homology of the enigmatic nuchal bone reveals novel reorganization of the shoulder girdle in the evolution of the turtle shell. Evol Dev 2013; 15:317-25. [DOI: 10.1111/ede.12041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tyler R. Lyson
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
- Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington DC 20560 USA
| | - Bhart-Anjan S. Bhullar
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Gabe S. Bever
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Department of Anatomy; New York Institute of Technology, College of Osteopathic Medicine; New York NY USA
- Division of Paleontology; American Museum of Natural History; New York NY USA
| | - Walter G. Joyce
- Department of Geosciences; University of Tübingen; 72074 Tübingen Germany
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington DC 20560 USA
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Jacques A. Gauthier
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
| |
Collapse
|