1
|
Wei XJ, Huang YL, Chen TQ, Yang XJ. Inhibitory effect of telocyte-induced M1 macrophages on endometriosis: Targeting angiogenesis and invasion. Acta Histochem 2023; 125:152099. [PMID: 37813067 DOI: 10.1016/j.acthis.2023.152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Telocytes (TCs), a novel type of stromal cells found in tissues, induce macrophage differentiation into classically activated macrophages (M1) types and enhance their phagocytic function. The purpose of this study was to investigate the inhibitory effects of TC-induced M1 macrophages on endometriosis (EMs). METHODS mouse uterine primary TCs and endometrial stromal cells (ESCs) were isolated and identified using double immunofluorescence staining. For the in vitro study, ESCs were treated with TC-induced M1 macrophages, and the vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and nuclear factor kappa B (NF-κb) genes were identified by quantitative real-time PCR (qRT-PCR) or western blotting (WB). For the in vivo study, an EMs mouse model received TC-conditioned medium (TCM) via abdominal administration, and characterized the inhibitory effects on growth (lesion weight, volume, and pathology), tissue-resident macrophages differentiation by immunostaining, angiogenic capacity (CD31 and VEGF), invasive capacity (MMP9), and NF-κb expression within EMs lesions. RESULTS immunofluorescent staining showed that uterine TCs expressed CD34+ and vimentin+, whereas ESCs expressed vimentin+ and cytokeratin-. At the cellular level, TC-induced M1 macrophages can significantly inhibit the expression of VEGF and MMP9 in ESCs through WB or qRT-PCR, possibly by suppressing the NF-κb pathway. The in vivo study showed that macrophages switch from the alternatively activated macrophages (M2) in untreated EMs lesions to the M1 subtype after TCM exposure. Thereby, TC-induced M1 macrophages contributed to the inhibition of EMs lesions. More importantly, this effect may be achieved by suppressing the expression of NF-κb to inhibit angiogenesis (CD31 and VEGF) and invasion (MMP9) in the tissue. CONCLUSION TC-induced M1 macrophages play a prevailing role in suppressing EMs by inhibiting angiogenic and invasive capacity through the NF-κb pathway, which provides a promising therapeutic approach for EMs.
Collapse
Affiliation(s)
- Xiao-Jiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China
| | - Yue-Lin Huang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province 550000, PR China
| | - Tian-Quan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China; Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province 225000, PR China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China.
| |
Collapse
|
2
|
Rosa I, Nardini P, Fioretto BS, Guasti D, Romano E, Sgambati E, Marini M, Manetti M. Immunohistochemical and ultrastructural identification of telocytes in the lamina propria of human vaginal mucosa. Acta Histochem 2023; 125:152094. [PMID: 37757515 DOI: 10.1016/j.acthis.2023.152094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Since their relatively recent discovery, telocytes (TCs) have been described as peculiar cells strategically positioned in the stromal tissue component of multiple organ systems of the mammalian body including female reproductive organs (i.e., ovary, uterine tube, and uterus). Nevertheless, current knowledge of TCs in the vagina is very limited. The present study was therefore undertaken to investigate the existence and characteristics of TCs in the stromal tissue of human vaginal mucosa by means of immunohistochemistry, immunofluorescence confocal microscopy, and transmission electron microscopy. In the vaginal lamina propria, TCs were first identified by CD34 immunohistochemistry that revealed the presence of CD34+ stromal cells arranged in networks, especially around blood vessels. Double immunofluorescence confocal microscopy allowed to precisely distinguish the perivascular networks of CD34+ stromal cells lacking CD31 immunoreactivity from adjacent CD31+ microvessels. All the perivascular networks of TCs/CD34+ stromal cells situated in the vaginal lamina propria coexpressed platelet-derived growth factor receptor α, which strengthened their identification as TCs. Instead, vaginal mucosal TCs were immunophenotypically negative for c-kit/CD117. The ultrastructural examination confirmed the presence of TCs, namely stromal cells with characteristic cytoplasmic processes (i.e., telopodes) forming labyrinthine networks around blood vessels and releasing extracellular vesicles. Together, our morphological findings provide the first comprehensive demonstration that TCs reside in the human vaginal lamina propria, thus paving the way for further investigation of their putative functions in vaginal mucosal homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Patrizia Nardini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Guasti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Isernia, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
3
|
Wrona A, Aleksandrovych V, Bereza T, Basta P, Gil A, Ulatowska-Białas M, Mazur-Laskowska M, Pityński K, Gil K. Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes. Int J Mol Sci 2022; 23:6155. [PMID: 35682833 PMCID: PMC9181375 DOI: 10.3390/ijms23116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Oxygen balance is crucial for angiogenesis, immunity, and tissue repair. The human oviduct is essential for reproductive function, and any imbalance in homeostasis leads to fertility disturbances and might be a reason for ectopic pregnancy development. Uterine myoma is a widespread benign tumour, which is often accompanied by infertility. Telocytes have been discussed in the contexts of motility, fibrosis development, and angiogenesis. We observed the oviducts from patients with and without uterine myoma, comparing the expression of HIF-1, HO, VEGF and its receptor, NOS, oestrogen, and progesterone receptors by immunolabeling. The myometrial and oviductal telocytes were also compared in both groups. Biochemical analyses were conducted for FSH, LH, AMH, sFlt, oestrogen, and progesterone in blood samples. Patients with uterine myoma have different expressions of sex steroid receptors and an increased number of telocytes. The decreasing VEFG expression was compensated by the rise in the HIF-1 and NOS expression. Blood biochemical analyses revealed a higher progesterone level and lower AMH in patients with uterine myoma. No differences in sFlt, FSH, and LF were observed. Uterine myoma impacts oviduct oxygen homeostasis and might cause fertility disturbances (uterine and oviductal infertility factors).
Collapse
Affiliation(s)
- Anna Wrona
- Gynecology and Obstetrics Ward with Gynecologic Oncology Subdivision, J. Śniadecki’s Specialistic Hospital, 33-300 Nowy Sącz, Poland;
| | - Veronika Aleksandrovych
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| | - Tomasz Bereza
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland; (T.B.); (A.G.)
| | - Paweł Basta
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.B.); (K.P.)
| | - Anna Gil
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland; (T.B.); (A.G.)
| | | | | | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.B.); (K.P.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| |
Collapse
|
4
|
Aschacher T, Aschacher O, Schmidt K, Enzmann FK, Eichmair E, Winkler B, Arnold Z, Nagel F, Podesser BK, Mitterbauer A, Messner B, Grabenwöger M, Laufer G, Ehrlich MP, Bergmann M. The Role of Telocytes and Telocyte-Derived Exosomes in the Development of Thoracic Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms23094730. [PMID: 35563123 PMCID: PMC9099883 DOI: 10.3390/ijms23094730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022] Open
Abstract
A hallmark of thoracic aortic aneurysms (TAA) is the degenerative remodeling of aortic wall, which leads to progressive aortic dilatation and resulting in an increased risk for aortic dissection or rupture. Telocytes (TCs), a distinct type of interstitial cells described in many tissues and organs, were recently observed in the aortic wall, and studies showed the potential regulation of smooth muscle cell (SMC) homeostasis by TC-released shed vesicles. The purpose of the present work was to study the functions of TCs in medial degeneration of TAA. During aneurysmal formation an increase of aortic TCs was identified in human surgical specimens of TAA-patients, compared to healthy thoracic aortic (HTA)-tissue. We found the presence of epithelial progenitor cells in the adventitial layer, which showed increased infiltration in TAA samples. For functional analysis, HTA- and TAA-telocytes were isolated, characterized, and compared by their protein levels, mRNA- and miRNA-expression profiles. We detected TC and TC-released exosomes near SMCs. TAA-TC-exosomes showed a significant increase of the SMC-related dedifferentiation markers KLF-4-, VEGF-A-, and PDGF-A-protein levels, as well as miRNA-expression levels of miR-146a, miR-221 and miR-222. SMCs treated with TAA-TC-exosomes developed a dedifferentiation-phenotype. In conclusion, the study shows for the first time that TCs are involved in development of TAA and could play a crucial role in SMC phenotype switching by release of extracellular vesicles.
Collapse
Affiliation(s)
- Thomas Aschacher
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
- Correspondence: ; Tel.: +43-1-277-00-74316
| | - Olivia Aschacher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Florian K. Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eva Eichmair
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Zsuzsanna Arnold
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Felix Nagel
- Department of Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (F.N.); (B.K.P.)
| | - Bruno K. Podesser
- Department of Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (F.N.); (B.K.P.)
| | - Andreas Mitterbauer
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.); (M.B.)
| | - Barbara Messner
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, 1210 Vienna, Austria; (B.W.); (Z.A.); (M.G.)
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Marek P. Ehrlich
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (E.E.); (B.M.); (G.L.); (M.P.E.)
| | - Michael Bergmann
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.M.); (M.B.)
| |
Collapse
|
5
|
Zhu X, Wang Q, Pawlicki P, Wang Z, Pawlicka B, Meng X, Feng Y, Yang P. Telocytes and Their Structural Relationships With the Sperm Storage Tube and Surrounding Cell Types in the Utero-Vaginal Junction of the Chicken. Front Vet Sci 2022; 9:852407. [PMID: 35400114 PMCID: PMC8987988 DOI: 10.3389/fvets.2022.852407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Telocytes (TCs) are a new type of mesenchymal cells that have been discovered recently in many organs and tissues. However, studies of TCs in the avian reproductive system are still at the beginning. Chickens are one of the world's most popular domesticated animals, providing inexpensive but valuable proteins and nutrients from chickens and eggs to nourish the human bodies. Chickens have important scientific value; thus, understanding the reproductive system regulations seems to be important. The utero-vaginal junction is involved in the regulation of sperm storage. The sperm storage tube (SST) in the utero-vaginal junction stores sperm. The purpose of this study was to investigate the existence of TCs in the utero-vaginal junction of the chicken, and their structural relationships with the sperm storage tube and surrounding cell types. We studied the morphology, ultrastructure, and immune characterization of TCs.
Collapse
Affiliation(s)
- Xudong Zhu
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Ziyu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bernadetta Pawlicka
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Xiangfei Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongchao Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ping Yang
| |
Collapse
|
6
|
Klein M, Csöbönyeiová M, Danišovič Ľ, Lapides L, Varga I. Telocytes in the Female Reproductive System: Up-to-Date Knowledge, Challenges and Possible Clinical Applications. Life (Basel) 2022; 12:267. [PMID: 35207554 PMCID: PMC8874826 DOI: 10.3390/life12020267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
From their initial description in 2005 to this day, telocytes (TCs) have been described in the ovary, uterine tubes, uterus, vagina, mammary gland, and placenta. Their morphological features, immunophenotype, physiological functions, and roles in disease have been thoroughly documented in both animal models and human subjects. TCs, with their extremely long cytoplasmic processes called telopodes, play a pivotal role in the morphological and functional interconnection of all the components of the interstitial compartment, but also with constituents of the parenchyma. Although there is no specific immunohistochemical marker for their identification, the most cited are CD 117, CD 34, platelet-derived growth factor receptor (PDGFR), vimentin, and specific markers typical for the female reproductive system (FRS)-estrogen and progesterone receptors (ER and PR). This immunophenotype provides important clues to their physiological roles. Their main functions include the regulation of hormone-dependent processes, intercellular signaling, immune surveillance, microenvironmental maintenance, and the nursing of stem cells. In a situation where TCs are functionally or morphologically decimated, many disease entities may develop, including premature ovarian failure, endometriosis, ectopic pregnancy, infertility, preeclampsia, or even breast cancer. The common denominator of many of these conditions is that their etiopathogenesis is either partially known or completely obscure. Even though the exact role of TCs in these conditions is yet to be revealed, multiple lines of research indicate that their future clinical application may enrich diagnostic-therapeutic strategies of countless conditions. TCs are also heavily debated in terms of their possible use in regenerative medicine and tissue engineering. Some of the concepts related to TC research are strongly substantiated by experimental data, while others are highly speculative. Only future research endeavors will clearly distinguish dead-end lines of research from genuine contributions to the field.
Collapse
Affiliation(s)
- Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Mária Csöbönyeiová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Lenka Lapides
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
- ISCARE, Reproduction Clinic, Gynaecology & Urology, 821 09 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| |
Collapse
|
7
|
Wei XJ, Chen TQ, Yang XJ. Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives. Cell Transplant 2022; 31:9636897221105252. [PMID: 35748420 PMCID: PMC9235300 DOI: 10.1177/09636897221105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.
Collapse
Affiliation(s)
- Xiao-jiao Wei
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Tian-quan Chen
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Xiao-jun Yang
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| |
Collapse
|
8
|
Cardiac Telocytes 16 Years on-What Have We Learned So Far, and How Close Are We to Routine Application of the Knowledge in Cardiovascular Regenerative Medicine? Int J Mol Sci 2021; 22:ijms222010942. [PMID: 34681601 PMCID: PMC8535888 DOI: 10.3390/ijms222010942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
The regeneration of a diseased heart is one of the principal challenges of modern cardiovascular medicine. There has been ongoing research on stem-cell-based therapeutic approaches. A cell population called telocytes (TCs) described only 16 years ago largely contributed to the research area of cardiovascular regeneration. TCs are cells with small bodies and extremely long cytoplasmic projections called telopodes, described in all layers of the heart wall. Their functions include cell-to-cell signaling, stem-cell nursing, mechanical support, and immunoregulation, to name but a few. The functional derangement or quantitative loss of TCs has been implicated in the pathogenesis of myocardial infarction, heart failure, arrhythmias, and many other conditions. The exact pathomechanisms are still unknown, but the loss of regulative, integrative, and nursing functions of TCs may provide important clues. Therefore, a viable avenue in the future modern management of these conditions is TC-based cell therapy. TCs have been previously transplanted into a mouse model of myocardial infarction with promising results. Tandem transplantation with stem cells may provide additional benefit; however, many underresearched areas need to be addressed in future research before routine application of TC-based cell therapy in human subjects. These include the standardization of protocols for isolation, cultivation, and transplantation, quantitative optimization of TC transplants, cost-effectivity analysis, and many others.
Collapse
|
9
|
Aschacher T, Schmidt K, Aschacher O, Eichmair E, Baranyi U, Winkler B, Grabenwoeger M, Spittler A, Enzmann F, Messner B, Riebandt J, Laufer G, Bergmann M, Ehrlich M. Telocytes in the human ascending aorta: Characterization and exosome-related KLF-4/VEGF-A expression. J Cell Mol Med 2021; 25:9697-9709. [PMID: 34562312 PMCID: PMC8505852 DOI: 10.1111/jcmm.16919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Telocytes (TCs), a novel interstitial cell entity promoting tissue regeneration, have been described in various tissues. Their role in inter‐cellular signalling and tissue remodelling has been reported in almost all human tissues. This study hypothesizes that TC also contributes to tissue remodelling and regeneration of the human thoracic aorta (HTA). The understanding of tissue homeostasis and regenerative potential of the HTA is of high clinical interest as it plays a crucial role in pathogenesis from aortic dilatation to lethal dissection. Therefore, we obtained twenty‐five aortic specimens of heart donors during transplantation. The presence of TCs was detected in different layers of aortic tissue and characterized by immunofluorescence and transmission electron microscopy. Further, we cultivated and isolated TCs in highly differentiated form identified by positive staining for CD34 and c‐kit. Aortic‐derived TC was characterized by the expression of PDGFR‐α, PDGFR‐β, CD29/integrin β‐1 and αSMA and the stem cell markers Nanog and KLF‐4. Moreover, TC exosomes were isolated and characterized for soluble angiogenic factors by Western blot. CD34+/c‐kit+ TCs shed exosomes containing the soluble factors VEGF‐A, KLF‐4 and PDGF‐A. In summary, TC occurs in the aortic wall. Correspondingly, exosomes, derived from aortic TCs, contain vasculogenesis‐relevant proteins. Understanding the regulation of TC‐mediated aortic remodelling may be a crucial step towards designing strategies to promote aortic repair and prevent adverse remodelling.
Collapse
Affiliation(s)
- Thomas Aschacher
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Katy Schmidt
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Olivia Aschacher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Eichmair
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Winkler
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Martin Grabenwoeger
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Andreas Spittler
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek Ehrlich
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Aleksandrovych V, Wrona A, Bereza T, Pityński K, Gil K. Oviductal Telocytes in Patients with Uterine Myoma. Biomedicines 2021; 9:biomedicines9081060. [PMID: 34440264 PMCID: PMC8391874 DOI: 10.3390/biomedicines9081060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Tubal factor infertility occurs in 30–35% of infertile pairs and may be caused by impaired muscular contractility and ciliary beating as well as immunological imbalance and chronic inflammation. Newly discovered telocytes (TCs) have a wide palette of features, which play a role in oviduct physiology. We have observed tissue samples from human fallopian tubes in patients with and without uterine myoma by immunolabelling. According to the immunohistochemical co-expression of markers, it has been determined that TCs are engaged in a wide range of physiological processes, including local innervation, sensitivity to hypoxia, regulation of calcium, and sex steroid hormones balances. Due to the proximity of NOS- and ChAT-positive nerve fibers and the expression of ion channels markers, tubal TCs might be considered conductor cells. Additionally, their integration in contractions and cilia physiology in the context of fertility has been revealed. We have observed the difference in telocytes expression in the human oviduct between groups of patients and attempted to describe this population of cells specifically in the case of infertility development, a clinically relevant avenue for further studies.
Collapse
Affiliation(s)
- Veronika Aleksandrovych
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| | - Anna Wrona
- Gynecology and Obstetrics Ward with Gynecologic Oncology Subdivision, J.Śniadecki’s Specialistic Hospital, 33-300 Nowy Sącz, Poland;
| | - Tomasz Bereza
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
- Correspondence:
| |
Collapse
|
11
|
Cretoiu D, Roatesi S, Bica I, Plesca C, Stefan A, Bajenaru O, Condrat CE, Cretoiu SM. Simulation and Modeling of Telocytes Behavior in Signaling and Intercellular Communication Processes. Int J Mol Sci 2020; 21:ijms21072615. [PMID: 32283771 PMCID: PMC7177713 DOI: 10.3390/ijms21072615] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Telocytes (TCs) are unique interstitial or stromal cells of mesodermal origin, defined by long cellular extensions called telopodes (Tps) which form a network, connecting them to surrounding cells. TCs were previously found around stem and progenitor cells, and were thought to be most likely involved in local tissue metabolic equilibrium and regeneration. The roles of telocytes are still under scientific scrutiny, with existing studies suggesting they possess various functions depending on their location. Methods: Human myometrium biopsies were collected from pregnant and non-pregnant women, telocytes were then investigated in myometrial interstitial cell cultures based on morphological criteria and later prepared for time-lapse microscopy. Semi-analytical and numerical solutions were developed to highlight the geometric characteristics and the behavior of telocytes. Results: Results were gathered in a database which would further allow efficient telocyte tracking and indexing in a content-based image retrieval (CBIR) of digital medical images. Mathematical analysis revealed pivotal information regarding the homogeneity, hardness and resistance of telocytes’ structure. Cellular activity models were monitored in vitro, therefore supporting the creation of databases of telocyte images. Conclusions: The obtained images were analyzed, using segmentation techniques and mathematical models in conjunction with computer simulation, in order to depict TCs behavior in relation to surrounding cells. This paper brings an important contribution to the development of bioinformatics systems by creating software-based telocyte models that could be used both for diagnostic and educational purposes.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (S.M.C.)
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania;
| | - Simona Roatesi
- Department of Applied Informatics, Faculty of Information Systems and Cyber Security, “Ferdinand I” Military Technical Academy, 050141 Bucharest, Romania;
- Correspondence:
| | - Ion Bica
- Department of Computers and Cyber Security, Faculty of Information Systems and Cyber Security, “Ferdinand I” Military Technical Academy, 050141 Bucharest, Romania;
| | - Cezar Plesca
- Department of Applied Informatics, Faculty of Information Systems and Cyber Security, “Ferdinand I” Military Technical Academy, 050141 Bucharest, Romania;
| | - Amado Stefan
- Department of Integrated Systems of Aviation and Mechanics, Faculty of Aircraft and Military Vehicles, Technical Military Academy “Ferdinand I”, 050141 Bucharest, Romania;
| | | | - Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania;
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (S.M.C.)
| |
Collapse
|
12
|
Rusu MC, Hostiuc S, Fildan AP, Tofolean DE. Critical Review: What Cell Types Are the Lung Telocytes? Anat Rec (Hoboken) 2019; 303:1280-1292. [PMID: 31443120 DOI: 10.1002/ar.24237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Telocytes (TCs) are stromal cells defined by peculiar long, thin, moniliform prolongations known as telopodes. When isolated, their morphology often lacks the specificity for the proper definition of a particular cell type. Recent studies have linked TCs with different functions and different cell lineages. Although some authors have studied pulmonary TCs, their research has important limitations that we will attempt to summarize in this article. We will focus our analysis on the following: the culture methods used to study them, the lack of proper discrimination of TCs from lymphatic endothelial cells (LECs), whose ultrastructures are very similar, and the immune phenotype of TCs, which may appear in other cell types such as those related to the endothelial lineage or stem/progenitor cells. In conclusion, the cellular diagnosis of lung TCs should be considered with caution until properly designed studies can positively identify these cells and differentiate them from other cell types such as LECs and stem/progenitor cells. Anat Rec, 303:1280-1292, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Mugurel C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Sorin Hostiuc
- Department of Legal Medicine and Bioethics, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ariadna P Fildan
- Internal Medicine Department, Faculty of Medicine, Ovidius University of Constanţa, Constatnţa, Romania
| | - Doina E Tofolean
- Internal Medicine Department, Faculty of Medicine, Ovidius University of Constanţa, Constatnţa, Romania
| |
Collapse
|
13
|
Aleksandrovych V, Kurnik-Łucka M, Bereza T, Białas M, Pasternak A, Cretoiu D, Walocha JA, Gil K. The Autonomic Innervation and Uterine Telocyte Interplay in Leiomyoma Formation. Cell Transplant 2019; 28:619-629. [PMID: 30841718 PMCID: PMC7103609 DOI: 10.1177/0963689719833303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The autonomic innervation of the uterus is involved in multiple pathophysiological processes in both humans and animals. Pathological conditions such as adenomyosis or inflammatory pelvic disease are usually accompanied by significant alterations in uterine innervation. In the current study, we focused on autonomic innervation of uterine fibroids, the identification of recently described interstitial cells, telocytes, and the possible interplay between these structures. In this work, uterine telocytes were identified by immunopositivity for c-kit, CD34, and PDGFRα. Nerves were revealed by immunolabeling for neuronal markers: protein gene product PGP 9.5, inducible nitric oxide synthase (iNOS), choline acetyltransferase (ChAT), and tyrosine hydroxylase (TH). The gross organization of myometrial tissue has been analyzed by routine histology. The results demonstrated that the density of iNOS and ChAT-immunopositive neurons in the uterine fibroids was higher than that in the control samples. The density of telocytes in the fibrosis foci was lower than that in the normal myometrium. Our results suggest that autonomic innervation and telocytes are involved in the microenvironment imbalance characteristic of uterine leiomyoma. Since NOS-positive nerves play an important role in oxidative stress modulation, they might lead to a decrease in the number of telocytes, which are crucial components in the pathogenesis of leiomyoma formation.
Collapse
Affiliation(s)
| | - Magdalena Kurnik-Łucka
- 1 Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Bereza
- 2 Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Białas
- 3 Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Artur Pasternak
- 2 Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Dragos Cretoiu
- 4 Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,5 Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute of Mother and Child Health, Bucharest, Romania
| | - Jerzy A Walocha
- 2 Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Gil
- 1 Department of Pathophysiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
14
|
Varga I, Polák Š, Kyselovič J, Kachlík D, Danišovič Ľ, Klein M. Recently Discovered Interstitial Cell Population of Telocytes: Distinguishing Facts from Fiction Regarding Their Role in the Pathogenesis of Diverse Diseases Called "Telocytopathies". MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E56. [PMID: 30781716 PMCID: PMC6410178 DOI: 10.3390/medicina55020056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
In recent years, the interstitial cells telocytes, formerly known as interstitial Cajal-like cells, have been described in almost all organs of the human body. Although telocytes were previously thought to be localized predominantly in the organs of the digestive system, as of 2018 they have also been described in the lymphoid tissue, skin, respiratory system, urinary system, meninges and the organs of the male and female genital tracts. Since the time of eminent German pathologist Rudolf Virchow, we have known that many pathological processes originate directly from cellular changes. Even though telocytes are not widely accepted by all scientists as an individual and morphologically and functionally distinct cell population, several articles regarding telocytes have already been published in such prestigious journals as Nature and Annals of the New York Academy of Sciences. The telocyte diversity extends beyond their morphology and functions, as they have a potential role in the etiopathogenesis of different diseases. The most commonly described telocyte-associated diseases (which may be best termed "telocytopathies" in the future) are summarized in this critical review. It is difficult to imagine that a single cell population could be involved in the pathogenesis of such a wide spectrum of pathological conditions as extragastrointestinal stromal tumors ("telocytomas"), liver fibrosis, preeclampsia during pregnancy, tubal infertility, heart failure and psoriasis. In any case, future functional studies of telocytes in vivo will help to understand the mechanism by which telocytes contribute to tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Ján Kyselovič
- Fifth Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - David Kachlík
- Institute of Anatomy, Second Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic.
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| |
Collapse
|
15
|
Zhong X, Zheng Y, Li H, Huang S, Ge J. Identification of Myocardial Telocytes and Bone Marrow Mesenchymal Stem Cells in Mice. Cell Transplant 2018; 27:1515-1522. [PMID: 30203685 PMCID: PMC6180723 DOI: 10.1177/0963689718796773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare the morphology, immune phenotype, and cytokine profiles between myocardial telocytes (TCs) and bone marrow mesenchymal stem cells (MSCs), and explore the difference between those two types of interstitial cells. METHODS TCs and MSCs were cultured in vitro and cell morphology was observed with a light microscope. The expression levels of CD34, c-kit, and vimentin were detected by immunofluorescence, RT-qPCR, and Western blotting in both TCs and MSCs. The related supernatant was collected and total of 49 cytokine profiles were detected by RayBio Mice Cytokine Antibody Array. Significantly different cytokines were further confirmed by ELISA. RESULTS TCs have small cellular body and very long prolongations and they were CD34+/c-kit+/vimentin+, whereas MSCs have no telopodes and they were CD34-/c-kit- /vimentin+. Cytokine profile analysis and ELISA showed that 19 of 49 cytokines were increased dramatically in the supernatant of TCs compared with those of MSCs. Moreover, 9 of 19 cytokines were increased 2-fold at least in the supernatant of TCs compared with those of MSCs. Of 49 cytokines, 30 exhibited no significant changes in the supernatant of TCs compared with those of MSCs. CONCLUSIONS Using various technologies, we identified that myocardial TCs and MSCs are significantly different in terms of cell structure and cytokine profiles.
Collapse
Affiliation(s)
- Xin Zhong
- 1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Xin Zhong and Yonghua Zheng contributed equally to this work
| | - Yonghua Zheng
- 2 Department of Respiratory Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, China.,Xin Zhong and Yonghua Zheng contributed equally to this work
| | - Hua Li
- 1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,3 Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Steve Huang
- 1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- 1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,3 Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium. Int J Mol Sci 2018; 19:ijms19051413. [PMID: 29747396 PMCID: PMC5983827 DOI: 10.3390/ijms19051413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/14/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.
Collapse
|
17
|
Klein M, Urban L, Deckov I, Danisovic L, Polak S, Danihel L, Varga I. Distribution of telocytes in the corpus and cervix of human uterus: an immunohistochemical study. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Abstract
Telocyte (TC) is a new identified interstitial cell type with a small nuclear and one or several long and thin prolongations with enlargements on them. They were found in many mammals including humans, mouse, rats, dogs, and monkeys and play vital roles in many physiological and pathological conditions. The ultrastructure of mitochondria was observed in TCs, and the alterations were found in TCs from inflammatory ureter tissue. MtDNA is associated with mitochondria normal functions and involved in physiological and pathological processes. However, mitochondria and mtDNA in TCs were not investigated deeply. This review will introduce the origin, distribution, morphology, and functions of TCs and the distribution and functions of TC mitochondria in order to improve a better understanding of the potential functions of mtDNA in TCs.
Collapse
|