1
|
Factors That Control the Force Needed to Unfold a Membrane Protein in Silico Depend on the Mode of Denaturation. Int J Mol Sci 2023; 24:ijms24032654. [PMID: 36768981 PMCID: PMC9917119 DOI: 10.3390/ijms24032654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Single-molecule force spectroscopy methods, such as AFM and magnetic tweezers, have proved extremely beneficial in elucidating folding pathways for soluble and membrane proteins. To identify factors that determine the force rupture levels in force-induced membrane protein unfolding, we applied our near-atomic-level Upside molecular dynamics package to study the vertical and lateral pulling of bacteriorhodopsin (bR) and GlpG, respectively. With our algorithm, we were able to selectively alter the magnitudes of individual interaction terms and identify that, for vertical pulling, hydrogen bond strength had the strongest effect, whereas other non-bonded protein and membrane-protein interactions had only moderate influences, except for the extraction of the last helix where the membrane-protein interactions had a stronger influence. The up-down topology of the transmembrane helices caused helices to be pulled out as pairs. The rate-limiting rupture event often was the loss of H-bonds and the ejection of the first helix, which then propagated tension to the second helix, which rapidly exited the bilayer. The pulling of the charged linkers across the membrane had minimal influence, as did changing the bilayer thickness. For the lateral pulling of GlpG, the rate-limiting rupture corresponded to the separation of the helices within the membrane, with the H-bonds generally being broken only afterward. Beyond providing a detailed picture of the rupture events, our study emphasizes that the pulling mode greatly affects the factors that determine the forces needed to unfold a membrane protein.
Collapse
|
2
|
Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA. Hot topic: Thermosensing in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2018-2033. [PMID: 33314270 PMCID: PMC8358962 DOI: 10.1111/pce.13979] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 05/13/2023]
Abstract
Plants alter their morphology and cellular homeostasis to promote resilience under a variety of heat regimes. Molecular processes that underlie these responses have been intensively studied and found to encompass diverse mechanisms operating across a broad range of cellular components, timescales and temperatures. This review explores recent progress throughout this landscape with a particular focus on thermosensing in the model plant Arabidopsis. Direct temperature sensors include the photosensors phytochrome B and phototropin, the clock component ELF3 and an RNA switch. In addition, there are heat-regulated processes mediated by ion channels, lipids and lipid-modifying enzymes, taking place at the plasma membrane and the chloroplast. In some cases, the mechanism of temperature perception is well understood but in others, this remains an open question. Potential novel thermosensing mechanisms are based on lipid and liquid-liquid phase separation. Finally, future research directions of high temperature perception and signalling pathways are discussed.
Collapse
Affiliation(s)
- Scott Hayes
- Laboratory of Plant PhysiologyWageningen University & ResearchWageningenThe Netherlands
| | - Joëlle Schachtschabel
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| | - Michael Mishkind
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
- IOSNational Science FoundationAlexandriaVirginiaUSA
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| | - Steven A. Arisz
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Basu D, Shoots JM, Haswell ES. Interactions between the N- and C-termini of the mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4020-4032. [PMID: 32280992 DOI: 10.1093/jxb/eraa192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Although a growing number of mechanosensitive ion channels are being identified in plant systems, the molecular mechanisms by which they function are still under investigation. Overexpression of the mechanosensitive ion channel MSL (MscS-Like)10 fused to green fluorescent protein (GFP) triggers a number of developmental and cellular phenotypes including the induction of cell death, and this function is influenced by seven phosphorylation sites in its soluble N-terminus. Here, we show that these and other phenotypes required neither overexpression nor a tag, and could also be induced by a previously identified point mutation in the soluble C-terminus (S640L). The promotion of cell death and hyperaccumulation of H2O2 in 35S:MSL10S640L-GFP overexpression lines was suppressed by N-terminal phosphomimetic substitutions, and the soluble N- and C-terminal domains of MSL10 physically interacted. We propose a three-step model by which tension-induced conformational changes in the C-terminus could be transmitted to the N-terminus, leading to its dephosphorylation and the induction of adaptive responses. Taken together, this work expands our understanding of the molecular mechanisms of mechanotransduction in plants.
Collapse
Affiliation(s)
- Debarati Basu
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jennette M Shoots
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
4
|
Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vásquez V, Laver DR, Martinac B. Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 2019; 132:jcs238360. [PMID: 31722978 PMCID: PMC6918743 DOI: 10.1242/jcs.238360] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022] Open
Abstract
TRP channels of the transient receptor potential ion channel superfamily are involved in a wide variety of mechanosensory processes, including touch sensation, pain, blood pressure regulation, bone loading and detection of cerebrospinal fluid flow. However, in many instances it is unclear whether TRP channels are the primary transducers of mechanical force in these processes. In this study, we tested stretch activation of eleven TRP channels from six mammalian subfamilies. We found that these TRP channels were insensitive to short membrane stretches in cellular systems. Furthermore, we purified TRPC6 and demonstrated its insensitivity to stretch in liposomes, an artificial bilayer system free from cellular components. Additionally, we demonstrated that, when expressed in C. elegans neurons, mouse TRPC6 restores the mechanoresponse of a touch insensitive mutant but requires diacylglycerol for activation. These results strongly suggest that the mammalian members of the TRP ion channel family are insensitive to tension induced by cell membrane stretching and, thus, are more likely to be activated by cytoplasmic tethers or downstream components and to act as amplifiers of cellular mechanosensory signaling cascades.
Collapse
Affiliation(s)
- Yury A Nikolaev
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- Human Physiology, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle 2308, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Pietro Ridone
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Paul R Rohde
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis 38163, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis 38163, USA
| | - Derek R Laver
- Human Physiology, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle 2308, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
5
|
Bavi N, Richardson J, Heu C, Martinac B, Poole K. PIEZO1-Mediated Currents Are Modulated by Substrate Mechanics. ACS NANO 2019; 13:13545-13559. [PMID: 31689081 DOI: 10.1021/acsnano.9b07499] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PIEZO1 is a bona fide mammalian mechanically activated channel that has recently been shown to provide instructive cues during neuronal specification, texture sensing, and cell migration where mechanical inputs arise at the interface between the cells and their substrate. Here, we have investigated whether the mechanical properties of the substrate alone can modulate PIEZO1 activity, in response to exogenously applied stimuli, using elastomeric pillar arrays as force transducers. This methodology enables application of mechanical stimuli at cell-substrate contact points by deflecting individual pili. We found that PIEZO1 is more sensitive to substrate deflections with increased spacing between pili (reducing surface roughness) but not on more stiff substrates. Cellular contractility was required for the sensitization of PIEZO1 but was not essential for PIEZO1 activation. Computational modeling suggested that the membrane tension changes generated by pillar deflections were below the membrane tension changes that arise from cellular indentation or high-speed pressure clamp assays. We conclude that the mechanics of the microenvironment can modulate PIEZO1 signaling, highlighting the importance of studying channel activation directly at the cell-substrate interface. We propose that forces arising from actin-mediated contractility and within the lipid bilayer act synergistically to regulate PIEZO1 activation by stimuli applied at contacts between cells and their surroundings.
Collapse
Affiliation(s)
- Navid Bavi
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jessica Richardson
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Celine Heu
- Biomedical Imaging Facility , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division , Victor Chang Cardiac Research Institute , Darlinghurst , NSW 2010 , Australia
- St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Darlinghurst , NSW 2010 , Australia
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
- Cellular and Systems Physiology, School of Medical Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
6
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
7
|
Khafaji M, Zamani M, Golizadeh M, Bavi O. Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. Biophys Rev 2019; 11:335-352. [PMID: 31102198 PMCID: PMC6557961 DOI: 10.1007/s12551-019-00532-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard, inorganic nanostructures have been of special interest for CT-PTT, owing to their high thermal conversion efficiency, application in bio-imaging, versatility, and ease of synthesis and surface modification. In addition to being used as the first type of CT-PTT agents, they also include the most novel CT-PTT systems as the potentials of new inorganic nanomaterials are being more and more discovered. Considering the variety of inorganic nanostructures introduced for CT-PTT applications, enormous effort is needed to perform translational research on the most promising nanomaterials and to comprehensively evaluate the potentials of newly introduced ones in preclinical studies. This review provides an overview of most novel strategies used to employ inorganic nanostructures for cancer CT-PTT as well as cancer imaging and discusses current challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Mona Khafaji
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Masoud Zamani
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Mortaza Golizadeh
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
8
|
Velasco-Estevez M, Mampay M, Boutin H, Chaney A, Warn P, Sharp A, Burgess E, Moeendarbary E, Dev KK, Sheridan GK. Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes. Front Aging Neurosci 2018; 10:332. [PMID: 30405400 PMCID: PMC6204357 DOI: 10.3389/fnagi.2018.00332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023] Open
Abstract
A defining pathophysiological hallmark of Alzheimer's disease (AD) is the amyloid plaque; an extracellular deposit of aggregated fibrillar Aβ1-42 peptides. Amyloid plaques are hard, brittle structures scattered throughout the hippocampus and cerebral cortex and are thought to cause hyperphosphorylation of tau, neurofibrillary tangles, and progressive neurodegeneration. Reactive astrocytes and microglia envelop the exterior of amyloid plaques and infiltrate their inner core. Glia are highly mechanosensitive cells and can almost certainly sense the mismatch between the normally soft mechanical environment of the brain and very stiff amyloid plaques via mechanosensing ion channels. Piezo1, a non-selective cation channel, can translate extracellular mechanical forces to intracellular molecular signaling cascades through a process known as mechanotransduction. Here, we utilized an aging transgenic rat model of AD (TgF344-AD) to study expression of mechanosensing Piezo1 ion channels in amyloid plaque-reactive astrocytes. We found that Piezo1 is upregulated with age in the hippocampus and cortex of 18-month old wild-type rats. However, more striking increases in Piezo1 were measured in the hippocampus of TgF344-AD rats compared to age-matched wild-type controls. Interestingly, repeated urinary tract infections with Escherichia coli bacteria, a common comorbidity in elderly people with dementia, caused further elevations in Piezo1 channel expression in the hippocampus and cortex of TgF344-AD rats. Taken together, we report that aging and peripheral infection augment amyloid plaque-induced upregulation of mechanoresponsive ion channels, such as Piezo1, in astrocytes. Further research is required to investigate the role of astrocytic Piezo1 in the Alzheimer's brain, whether modulating channel opening will protect or exacerbate the disease state, and most importantly, if Piezo1 could prove to be a novel drug target for age-related dementia.
Collapse
Affiliation(s)
- María Velasco-Estevez
- Neuroimmulology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Myrthe Mampay
- Neuroimmulology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Hervé Boutin
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom
| | - Aisling Chaney
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Peter Warn
- Evotec (UK) Ltd., Manchester Science Park, Manchester, United Kingdom
| | - Andrew Sharp
- Evotec (UK) Ltd., Manchester Science Park, Manchester, United Kingdom
| | - Ellie Burgess
- Evotec (UK) Ltd., Manchester Science Park, Manchester, United Kingdom
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Kumlesh K. Dev
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Graham K. Sheridan
- Neuroimmulology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
9
|
Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, Rohde PR, Bavi O. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys Rev 2018; 10:1377-1384. [PMID: 30182202 DOI: 10.1007/s12551-018-0450-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 01/04/2023] Open
Abstract
Mechanical stimuli acting on the cellular membrane are linked to intracellular signaling events and downstream effectors via different mechanoreceptors. Mechanosensitive (MS) ion channels are the fastest known primary mechano-electrical transducers, which convert mechanical stimuli into meaningful intracellular signals on a submillisecond time scale. Much of our understanding of the biophysical principles that underlie and regulate conversion of mechanical force into conformational changes in MS channels comes from studies based on MS channel reconstitution into lipid bilayers. The bilayer reconstitution methods have enabled researchers to investigate the structure-function relationship in MS channels and probe their specific interactions with their membrane lipid environment. This brief review focuses on close interactions between MS channels and the lipid bilayer and emphasizes the central role that the transbilayer pressure profile plays in mechanosensitivity and gating of these fascinating membrane proteins.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, University of New South Wales, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia.
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| | - Pietro Ridone
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
| | - Yury A Nikolaev
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
- Dept. of Cellular & Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520-8026, USA
| | - Adam D Martinac
- NeuRA, Margarete Ainsworth Building, Barker St, Randwick, NSW, 2031, Australia
| | - Yoshitaka Nakayama
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
| | - Paul R Rohde
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW, 2010, Australia
| | - Omid Bavi
- Institute for Nanoscience and Nanotechnology, Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, 7155713876, Iran
| |
Collapse
|
10
|
Maksaev G, Shoots JM, Ohri S, Haswell ES. Nonpolar residues in the presumptive pore-lining helix of mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function. PLANT DIRECT 2018; 2:e00059. [PMID: 30506019 PMCID: PMC6261518 DOI: 10.1002/pld3.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mechanosensitive (MS) ion channels provide a universal mechanism for sensing and responding to increased membrane tension. MscS-like (MSL) 10 is a relatively well-studied MS ion channel from Arabidopsis thaliana that is implicated in cell death signaling. The relationship between the amino acid sequence of MSL10 and its conductance, gating tension, and opening and closing kinetics remains unstudied. Here, we identify several nonpolar residues in the presumptive pore-lining transmembrane helix of MSL10 (TM6) that contribute to these basic channel properties. F553 and I554 are essential for wild type channel conductance and the stability of the open state. G556, a glycine residue located at a predicted kink in TM6, is essential for channel conductance. The increased tension sensitivity of MSL10 compared to close homolog MSL8 may be attributed to F563, but other channel characteristics appear to be dictated by more global differences in structure. Finally, MSL10 F553V and MSL10 G556V provided the necessary tools to establish that MSL10's ability to trigger cell death is independent of its ion channel function.
Collapse
Affiliation(s)
- Grigory Maksaev
- Department of Biology and Center for Engineering MechanoBiologyWashington University in Saint LouisSaint LouisMissouri
- Present address:
Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability DiseasesWashington University School of MedicineSaint LouisMO
| | - Jennette M. Shoots
- Department of Biology and Center for Engineering MechanoBiologyWashington University in Saint LouisSaint LouisMissouri
| | - Simran Ohri
- Department of Biology and Center for Engineering MechanoBiologyWashington University in Saint LouisSaint LouisMissouri
| | - Elizabeth S. Haswell
- Department of Biology and Center for Engineering MechanoBiologyWashington University in Saint LouisSaint LouisMissouri
| |
Collapse
|
11
|
Abstract
Bacteria represent one of the most evolutionarily successful groups of organisms to inhabit Earth. Their world is awash with mechanical cues, probably the most ancient form of which are osmotic forces. As a result, they have developed highly robust mechanosensors in the form of bacterial mechanosensitive (MS) channels. These channels are essential in osmoregulation, and in this setting, provide one of the simplest paradigms for the study of mechanosensory transduction. We explore the past, present, and future of bacterial MS channels, including the alternate mechanosensory roles that they may play in complex microbial communities. Central to all of these functions is their ability to change conformation in response to mechanical stimuli. We discuss their gating according to the force-from-lipids principle and its applicability to eukaryotic MS channels. This includes the new paradigms emerging for bilayer-mediated channel mechanosensitivity and how this molecular detail may provide advances in both industry and medicine.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Navid Bavi
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|