1
|
Huang Z, Xu Z, Liu X, Chen G, Hu C, Chen M, Liu Y. Exploring the Role of the Processing Body in Plant Abiotic Stress Response. Curr Issues Mol Biol 2024; 46:9844-9855. [PMID: 39329937 PMCID: PMC11430669 DOI: 10.3390/cimb46090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
The processing body (P-Body) is a membrane-less organelle with stress-resistant functions. Under stress conditions, cells preferentially translate mRNA that favors the stress response, resulting in a large number of transcripts unfavorable to the stress response in the cytoplasm. These non-translating mRNAs aggregate with specific proteins to form P-Bodies, where they are either stored or degraded. The protein composition of P-Bodies varies depending on cell type, developmental stage, and external environmental conditions. This review primarily elucidates the protein composition in plants and the assembly of P-Bodies, and focuses on the mechanisms by which various proteins within the P-Bodies of plants regulate mRNA decapping, degradation, translational repression, and storage at the post-transcriptional level in response to ethylene signaling and abiotic stresses such as drought, high salinity, or extreme temperatures. This overview provides insights into the role of the P-Body in plant abiotic stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Guo L, Wang S, Jiao X, Ye X, Deng D, Liu H, Li Y, Van de Peer Y, Wu W. Convergent and/or parallel evolution of RNA-binding proteins in angiosperms after polyploidization. THE NEW PHYTOLOGIST 2024; 242:1377-1393. [PMID: 38436132 DOI: 10.1111/nph.19656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Increasing studies suggest that the biased retention of stress-related transcription factors (TFs) after whole-genome duplications (WGDs) could rewire gene transcriptional networks, facilitating plant adaptation to challenging environments. However, the role of posttranscriptional factors (e.g. RNA-binding proteins, RBPs) following WGDs has been largely ignored. Uncovering thousands of RBPs in 21 representative angiosperm species, we integrate genomic, transcriptomic, regulatomic, and paleotemperature datasets to unravel their evolutionary trajectories and roles in adapting to challenging environments. We reveal functional enrichments of RBP genes in stress responses and identify their convergent retention across diverse angiosperms from independent WGDs, coinciding with global cooling periods. Numerous RBP duplicates derived from WGDs are then identified as cold-induced. A significant overlap of 29 orthogroups between WGD-derived and cold-induced RBP genes across diverse angiosperms highlights a correlation between WGD and cold stress. Notably, we unveil an orthogroup (Glycine-rich RNA-binding Proteins 7/8, GRP7/8) and relevant TF duplicates (CCA1/LHY, RVE4/8, CBF2/4, etc.), co-retained in different angiosperms post-WGDs. Finally, we illustrate their roles in rewiring circadian and cold-regulatory networks at both transcriptional and posttranscriptional levels during global cooling. Altogether, we underline the adaptive evolution of RBPs in angiosperms after WGDs during global cooling, improving our understanding of plants surviving periods of environmental turmoil.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xi Jiao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB - UGent Center for Plant Systems Biology, Ghent University, B-9052, Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
3
|
Reinoso Moreno J, Pinna-Hernández M, Sánchez Molina J, Fernández Fernández M, López Hernández J, Acién Fernández F. Carbon capture from biomass flue gases for CO 2 enrichment in greenhouses. Heliyon 2024; 10:e23274. [PMID: 38173476 PMCID: PMC10761358 DOI: 10.1016/j.heliyon.2023.e23274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/10/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Heating and CO2 enrichment systems can improve yields in intensive greenhouse agriculture Combining both techniques, which are currently applied commercially, can potentially enhance their effect. The CO2 must be separated from the other noxious gases present (such as CO, NOX, and SO2) to avoid them becoming part of the supply. The CO2 is then provided to the greenhouse on demand in the same way as the heating. In this work, we show that an improved food productivity of a pilot-scale greenhouse system combined with CO2 capture by adsorption using activated carbon and heating with alternative fuel. The proposed system's overall performance was evaluated and optimized. The best values were 46.7 g/kg of CO2 storage capacity on the adsorbent bed, 99.99 % removal rate harmful gases from the gas supplied to the greenhouse, CO2 levels of 1851.0 ± 262.8 mg/Nm3 of the CO2 levels in the greenhouse, and an enrichment time of 2.18 ± 0.92 h/day. The system's effective performance over extended periods (November-February) was confirmed and the productivity of a crop species (tomato) was compared to a control, showing an increment of 18 %. The results indicate that this is a valuable option for increasing the crop yield. By integrating this combined system with advanced climate control strategies, it is possible to maximize the CO2 provided per day, leading to higher yields. The system proved to be stable under real pilot-scale conditions over winter periods (four months).
Collapse
Affiliation(s)
- J.V. Reinoso Moreno
- Department of Chemical Engineering, University of Almería, Carretera de Sacramento s/n, 04120, La Cañada de San Urbano, Almería, Spain
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Almería, 04120, Spain
| | - M.G. Pinna-Hernández
- Department of Chemical Engineering, University of Almería, Carretera de Sacramento s/n, 04120, La Cañada de San Urbano, Almería, Spain
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Almería, 04120, Spain
| | - J.A. Sánchez Molina
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Almería, 04120, Spain
- Automatic Control, Robotics and Mechatronic Research Group (TEP 197), Department of Informatics, University of Almería, 04120 Almería, Spain
| | | | - J.C. López Hernández
- Las Palmerillas Experimental Station, Cajamar Caja Rural Foundation, 04710 Almería, Spain
| | - F.G. Acién Fernández
- Department of Chemical Engineering, University of Almería, Carretera de Sacramento s/n, 04120, La Cañada de San Urbano, Almería, Spain
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Almería, 04120, Spain
| |
Collapse
|
4
|
Vicente AM, Manavski N, Rohn PT, Schmid LM, Garcia-Molina A, Leister D, Seydel C, Bellin L, Möhlmann T, Ammann G, Kaiser S, Meurer J. The plant cytosolic m 6A RNA methylome stabilizes photosynthesis in the cold. PLANT COMMUNICATIONS 2023; 4:100634. [PMID: 37287225 PMCID: PMC10721483 DOI: 10.1016/j.xplc.2023.100634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes. Chloroplast dysfunctions, particularly those induced by the oxidative stress-inducing norflurazon in a largely GENOME UNCOUPLED-independent manner, triggered retrograde signals to remodel chloroplast-associated epitranscriptomic expression patterns. N6-methyladenosine (m6A) is known as the most prevalent RNA modification and impacts numerous developmental and physiological functions in living organisms. During cold treatment, expression of components of the primary nuclear m6A methyltransferase complex was upregulated, accompanied by a significant increase in cellular m6A mRNA marks. In the cold, the presence of FIP37, a core component of the writer complex, played an important role in positive regulation of thylakoid structure, photosynthetic functions, and accumulation of photosystem I, the Cytb6f complex, cyclic electron transport proteins, and Curvature Thylakoid1 but not that of photosystem II components and the chloroplast ATP synthase. Downregulation of FIP37 affected abundance, polysomal loading, and translation of cytosolic transcripts related to photosynthesis in the cold, suggesting m6A-dependent translational regulation of chloroplast functions. In summary, we identified multifaceted roles of the cellular m6A RNA methylome in coping with cold; these were predominantly associated with chloroplasts and served to stabilize photosynthesis.
Collapse
Affiliation(s)
- Alexandre Magno Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Paul Torben Rohn
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Charlotte Seydel
- Plant Development, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Leo Bellin
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Gregor Ammann
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Stefanie Kaiser
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
5
|
Mateos JL, Sanchez SE, Legris M, Esteve-Bruna D, Torchio JC, Petrillo E, Goretti D, Blanco-Touriñán N, Seymour DK, Schmid M, Weigel D, Alabadí D, Yanovsky MJ. PICLN modulates alternative splicing and light/temperature responses in plants. PLANT PHYSIOLOGY 2023; 191:1036-1051. [PMID: 36423226 PMCID: PMC9922395 DOI: 10.1093/plphys/kiac527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Plants undergo transcriptome reprograming to adapt to daily and seasonal fluctuations in light and temperature conditions. While most efforts have focused on the role of master transcription factors, the importance of splicing factors modulating these processes is now emerging. Efficient pre-mRNA splicing depends on proper spliceosome assembly, which in plants and animals requires the methylosome complex. Ion Chloride nucleotide-sensitive protein (PICLN) is part of the methylosome complex in both humans and Arabidopsis (Arabidopsis thaliana), and we show here that the human PICLN ortholog rescues phenotypes of Arabidopsis picln mutants. Altered photomorphogenic and photoperiodic responses in Arabidopsis picln mutants are associated with changes in pre-mRNA splicing that partially overlap with those in PROTEIN ARGININE METHYL TRANSFERASE5 (prmt5) mutants. Mammalian PICLN also acts in concert with the Survival Motor Neuron (SMN) complex component GEMIN2 to modulate the late steps of UsnRNP assembly, and many alternative splicing events regulated by PICLN but not PRMT5, the main protein of the methylosome, are controlled by Arabidopsis GEMIN2. As with GEMIN2 and SM PROTEIN E1/PORCUPINE (SME1/PCP), low temperature, which increases PICLN expression, aggravates morphological and molecular defects of picln mutants. Taken together, these results establish a key role for PICLN in the regulation of pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions.
Collapse
Affiliation(s)
- Julieta L Mateos
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Biele-feld 33615, Germany
| | - Sabrina E Sanchez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
| | - Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - David Esteve-Bruna
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politecnica de Valencia), Valencia 46022, Spain
| | - Jeanette C Torchio
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
| | - Ezequiel Petrillo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Daniela Goretti
- Department of Plant Physiology, Umea Plant Science Centre, Umea University, Umea SE-901 87, Sweden
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politecnica de Valencia), Valencia 46022, Spain
| | - Danelle K Seymour
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - Markus Schmid
- Department of Plant Physiology, Umea Plant Science Centre, Umea University, Umea SE-901 87, Sweden
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politecnica de Valencia), Valencia 46022, Spain
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1405BWE, Argentina
| |
Collapse
|
6
|
Ye K, Teng T, Yang T, Zhao D, Zhao Y. Transcriptome analysis reveals the effect of grafting on gossypol biosynthesis and gland formation in cotton. BMC PLANT BIOLOGY 2023; 23:37. [PMID: 36642721 PMCID: PMC9841644 DOI: 10.1186/s12870-022-04010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gossypol is a unique secondary metabolite and sesquiterpene in cotton, which is mainly synthesized in the root system of cotton and exhibits many biological activities. Previous research found that grafting affected the density of pigment glands and the gossypol content in cotton. RESULTS This study performed a transcriptome analysis on cotton rootstocks and scions of four grafting methods. The gene expression of mutual grafting and self-grafting was compared to explore the potential genes involved in gossypol biosynthesis. A total of six differentially expressed enzymes were found in the main pathway of gossypol synthesis-sesquiterpene and triterpene biosynthesis (map00909): lupeol synthase (LUP1, EC:5.4.99.41), beta-amyrin synthase (LUP2, EC:5.4.99.39), squalene monooxygenase (SQLE, EC:1.14.14.17), squalene synthase (FDFT1, EC:2.5.1.21), (-)-germacrene D synthase (GERD, EC:4.2.3.75), ( +)-delta-cadinene synthase (CADS, EC:4.2.3.13). By comparing the results of the gossypol content and the density of the pigment gland, we speculated that these six enzymes might affect the biosynthesis of gossypol. It was verified by qRT-PCR analysis that grafting could influence gene expression of scion and stock. After suppressing the expression of the LUP1, FDFT1, and CAD genes by VIGS technology, the gossypol content in plants was significantly down-regulated. CONCLUSIONS These results indicate the potential molecular mechanism of gossypol synthesis during the grafting process and provide a theoretical foundation for further research on gossypol biosynthesis.
Collapse
Affiliation(s)
- Kun Ye
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Teng Teng
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Teng Yang
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Degang Zhao
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yichen Zhao
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Wang Z, Hong Y, Yao J, Huang H, Qian B, Liu X, Chen Y, Pang J, Zhan X, Zhu JK, Zhu J. Modulation of plant development and chilling stress responses by alternative splicing events under control of the spliceosome protein SmEb in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:2762-2779. [PMID: 35770732 DOI: 10.1111/pce.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Cold stress resulting from chilling and freezing temperatures substantially inhibits plant growth and reduces crop production worldwide. Tremendous research efforts have been focused on elucidating the molecular mechanisms of freezing tolerance in plants. However, little is known about the molecular nature of chilling stress responses in plants. Here we found that two allelic mutants in a spliceosome component gene SmEb (smeb-1 and smeb-2) are defective in development and responses to chilling stress. RNA-seq analysis revealed that SmEb controls the splicing of many pre-messenger RNAs (mRNAs) under chilling stress. Our results suggest that SmEb is important to maintain proper ratio of the two COP1 splicing variants (COP1a/COP1b) to fine tune the level of HY5. In addition, the transcription factor BES1 shows a dramatic defect in pre-mRNA splicing in the smeb mutants. Ectopic expression of the two BES1 splicing variants enhances the chilling sensitivity of the smeb-1 mutant. Furthermore, biochemical and genetic analysis showed that CBFs act as negative upstream regulators of SmEb by directly suppressing its transcription. Together, our results demonstrate that proper alternative splicing of pre-mRNAs controlled by the spliceosome component SmEb is critical for plant development and chilling stress responses.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Juanjuan Yao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Huang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bilian Qian
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Xue Liu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunjuan Chen
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Pang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
8
|
Liu J, Wang T, Weng Y, Liu B, Gao Q, Ji W, Wang Z, Wang Y, Ma X. Identification and Characterization of Regulatory Pathways Controlling Dormancy Under Lower Temperature in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:872839. [PMID: 35720528 PMCID: PMC9201922 DOI: 10.3389/fpls.2022.872839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 06/03/2023]
Abstract
Alfalfa (Medicago sativa L.), a kind of high-quality perennial legume forage, is widely distributed in the northern regions of China. In recent years, low temperatures have frequently occurred and limited alfalfa productivity and survival in early spring and late fall. However, the underlying molecular mechanisms of alfalfa response to cold tolerance are not well-documented. In this study, dormancy and non-dormancy alfalfa standard varieties were characterized under low-temperature stress. Our analysis revealed that plant height of the dormancy genotype was strongly inhibited by low temperature; flavonoids content, and higher expression of flavonoids biosynthesis genes (chalcone synthase, leucoanthocyanidin dioxygenase, and flavonoid 3'-monooxygenase) may play essential roles in response to low-temperature stress in dormancy genotype alfalfa. Further analyses revealed that receptor-like kinase family genes (such as cysteine-rich RLK10, lectin protein kinase, and S-locus glycoprotein like kinase), RNA and protein synthesis genes (RNA polymerases, ribosomal protein, and protein phosphatase 2C family protein), and proteasome degradation pathway genes (such as F-box family protein, RING/U-box superfamily protein, and zinc finger family protein) also highly upregulated and contributed to cold tolerance phenotype in dormancy genotype alfalfa. This will provide new insights into future studies for cold tolerance in alfalfa and offer new target genes for further functional characterization and genetic improvement of alfalfa.
Collapse
Affiliation(s)
- Jingfu Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Tiemei Wang
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yinyin Weng
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Bei Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qiu Gao
- National Animal Husbandry Service, Beijing, China
| | - Wei Ji
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhuanling Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yingwei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiqing Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lin P, Bai HR, He L, Huang QX, Zeng QH, Pan YZ, Jiang BB, Zhang F, Zhang L, Liu QL. Proteome-wide and lysine crotonylation profiling reveals the importance of crotonylation in chrysanthemum (Dendranthema grandiforum) under low-temperature. BMC Genomics 2021; 22:51. [PMID: 33446097 PMCID: PMC7809856 DOI: 10.1186/s12864-020-07365-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/30/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Low-temperature severely affects the growth and development of chrysanthemum which is one kind of ornamental plant well-known and widely used in the world. Lysine crotonylation is a recently identified post-translational modification (PTM) with multiple cellular functions. However, lysine crotonylation under low-temperature stress has not been studied. RESULTS Proteome-wide and lysine crotonylation of chrysanthemum at low-temperature was analyzed using TMT (Tandem Mass Tag) labeling, sensitive immuno-precipitation, and high-resolution LC-MS/MS. The results showed that 2017 crotonylation sites were identified in 1199 proteins. Treatment at 4 °C for 24 h and - 4 °C for 4 h resulted in 393 upregulated proteins and 500 downregulated proteins (1.2-fold threshold and P < 0.05). Analysis of biological information showed that lysine crotonylation was involved in photosynthesis, ribosomes, and antioxidant systems. The crotonylated proteins and motifs in chrysanthemum were compared with other plants to obtain orthologous proteins and conserved motifs. To further understand how lysine crotonylation at K136 affected APX (ascorbate peroxidase), we performed a site-directed mutation at K136 in APX. Site-directed crotonylation showed that lysine decrotonylation at K136 reduced APX activity, and lysine complete crotonylation at K136 increased APX activity. CONCLUSION In summary, our study comparatively analyzed proteome-wide and crotonylation in chrysanthemum under low-temperature stress and provided insights into the mechanisms of crotonylation in positively regulated APX activity to reduce the oxidative damage caused by low-temperature stress. These data provided an important basis for studying crotonylation to regulate antioxidant enzyme activity in response to low-temperature stress and a new research ideas for chilling-tolerance and freezing-tolerance chrysanthemum molecular breeding.
Collapse
Affiliation(s)
- Ping Lin
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hui-Ru Bai
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ling He
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qiu-Xiang Huang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qin-Han Zeng
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuan-Zhi Pan
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bei-Bei Jiang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qing-Lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|