1
|
Carrier M, Robert MÈ, St-Pierre MK, Ibáñez FG, Gonçalves de Andrade E, Laroche A, Picard K, Vecchiarelli HA, Savage JC, Boilard É, Desjardins M, Tremblay MÈ. Bone marrow-derived myeloid cells transiently colonize the brain during postnatal development and interact with glutamatergic synapses. iScience 2024; 27:110037. [PMID: 39021809 PMCID: PMC11253522 DOI: 10.1016/j.isci.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024] Open
Abstract
Although the roles of embryonic yolk sac-derived, resident microglia in neurodevelopment were extensively studied, the possible involvement of bone marrow-derived cells remains elusive. In this work, we used a fate-mapping strategy to selectively label bone marrow-derived cells and their progeny in the brain (FLT3+IBA1+). FLT3+IBA1+ cells were confirmed to be transiently present in the healthy brain during early postnatal development. FLT3+IBA1+ cells have a distinct morphology index at postnatal day(P)0, P7, and P14 compared with neighboring microglia. FLT3+IBA1+ cells also express the microglial markers P2RY12 and TMEM119 and interact with VGLUT1 synapses at P14. Scanning electron microscopy indeed showed that FLT3+ cells contact and engulf pre-synaptic elements. Our findings suggest FLT3+IBA1+ cells might assist microglia in their physiological functions in the developing brain including synaptic pruning which is performed using their purinergic sensors. Our findings stimulate further investigation on the involvement of peripheral macrophages during homeostatic and pathological development.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Marie-Ève Robert
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Fernando González Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Audrée Laroche
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | | | - Julie C. Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Éric Boilard
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC G1V 0A6, Canada
- Oncology Division, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
2
|
Chen H, Zeng Y, Wang D, Li Y, Xing J, Zeng Y, Liu Z, Zhou X, Fan H. Neuroinflammation of Microglial Regulation in Alzheimer's Disease: Therapeutic Approaches. Molecules 2024; 29:1478. [PMID: 38611758 PMCID: PMC11013124 DOI: 10.3390/molecules29071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.
Collapse
Affiliation(s)
- Haiyun Chen
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuhan Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Dan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China;
| | - Jieyu Xing
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuejia Zeng
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China;
| | - Xinhua Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
3
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
4
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
5
|
Salvi J, Andreoletti P, Audinat E, Balland E, Ben Fradj S, Cherkaoui-Malki M, Heurtaux T, Liénard F, Nédélec E, Rovère C, Savary S, Véjux A, Trompier D, Benani A. Microgliosis: a double-edged sword in the control of food intake. FEBS J 2024; 291:615-631. [PMID: 35880408 DOI: 10.1111/febs.16583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 02/16/2024]
Abstract
Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it.
Collapse
Affiliation(s)
- Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre Andreoletti
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Audinat
- IGF, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Eglantine Balland
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, Australia
| | - Selma Ben Fradj
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | | | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fabienne Liénard
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Anne Véjux
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
6
|
Tremblay MÈ, Verkhratsky A. General Pathophysiology of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:3-14. [PMID: 39207683 DOI: 10.1007/978-3-031-55529-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, which are the resident innate immune cells of the central nervous system (CNS), have emerged as critical for maintaining health by not only ensuring proper development, activity, and plasticity of neurones and glial cells but also maintaining and restoring homeostasis when faced with various challenges across the lifespan. This chapter is dedicated to the current understanding of microglia, including their beneficial versus detrimental roles, which are highly complex, rely on various microglial states, and intimately depend on their spatiotemporal context. Microglia are first contextualized within the perspective of finding therapeutic strategies to cure diseases in the twenty-first century-the overall functions of neuroglia with relation one to another and to neurones, and their shared CNS environment. A historical framework is provided, and the main principles of glial neuropathology are enunciated. The current view of microglial nomenclature is then covered, notably by discussing the rejected concepts of microglial activation, their polarisation into M1 and M2 phenotypes, and neuroinflammation. The transformation of the microglial population through the addition, migration, and elimination of individual members, as well as their dynamic metamorphosis between a wide variety of structural and functional states, based on the experienced physiological and pathological stimuli, is subsequently discussed. Lastly, the perspective of microglia as a cell type endowed with a health status determining their outcomes on adaptive CNS plasticity as well as disease pathology is proposed for twenty-first-century approaches to disease prevention and treatment.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences,University of the Basque Country,, Leioa, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
7
|
Vecchiarelli HA, Tremblay MÈ. Microglial Transcriptional Signatures in the Central Nervous System: Toward A Future of Unraveling Their Function in Health and Disease. Annu Rev Genet 2023; 57:65-86. [PMID: 37384734 DOI: 10.1146/annurev-genet-022223-093643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are primarily derived from the embryonic yolk sac and make their way to the CNS during early development. They play key physiological and immunological roles across the life span, throughout health, injury, and disease. Recent transcriptomic studies have identified gene transcript signatures expressed by microglia that may provide the foundation for unprecedented insights into their functions. Microglial gene expression signatures can help distinguish them from macrophage cell types to a reasonable degree of certainty, depending on the context. Microglial expression patterns further suggest a heterogeneous population comprised of many states that vary according to the spatiotemporal context. Microglial diversity is most pronounced during development, when extensive CNS remodeling takes place, and following disease or injury. A next step of importance for the field will be to identify the functional roles performed by these various microglial states, with the perspective of targeting them therapeutically.
Collapse
Affiliation(s)
- Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, British Columbia, Canada; ,
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, British Columbia, Canada; ,
- Centre for Advanced Materials and Related Technology and Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
- Département de Médecine Moléculaire and Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Quebec, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
8
|
Ni H, Liao Y, Zhang Y, Lu H, Huang Z, Huang F, Zhang Z, Dong Y, Wang Z, Huang Y. Levistilide A ameliorates neuroinflammation via inhibiting JAK2/STAT3 signaling for neuroprotection and cognitive improvement in scopolamine-induced Alzheimer's disease mouse model. Int Immunopharmacol 2023; 124:110783. [PMID: 37619415 DOI: 10.1016/j.intimp.2023.110783] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with cognitive impairment and dementia, which has become a major public health problem. There are no effective therapeutic agents used to treat AD in clinic for the extremely complex pathogenesis. Here we identify Levistilide A (LA), one of the major active natural terpene lactone constituents from Chinese herbal medicine Angelicae sinensis and Chuanxiong Rhizoma, as a potent neuroinflammation inhibitor for neuroprotection and cognitive improvement of AD. We show that LA suppresses neuronal apoptosis, restores cholinergic system function, and lowers neuroinflammation in vivo to improve scopolamine (SCOP)-induced learning and memory deficits. In addition, LA inhibits the release of IL-1β, IL-6 and TNF-α, while increasing the production of IL-4 and IL-10 for anti-inflammatory effects in LPS or Aβ-induced BV2 and HMC3 cells. Furthermore, the conditioned medium (CM) from LA-treated BV2 or HMC3 cells enhances the viability of SH-SY5Y and HT-22 cells, and LA reverses M1 to M2 phenotype transformation of BV2 and HMC3 cells accompanied by the inhibited Iba-1 expression and mRNA level of IL-1β, IL-6, TNF-α and NOS2, and the increased expression of ARG1, CD206 and CD163. Mechanistically, we analyze JAK2/STAT3 signaling as possible targets of LA using network pharmacology approaches, and further experimentally validate that LA inhibits the phosphorylation of JAK2 and STAT3, and STAT3 expression within nucleus both in vitro and in vivo. Collectively, we identify LA as a potential neuroinflammation inhibitor for neuroprotection and cognitive improvement, which is expected to be a candidate for AD therapy.
Collapse
Affiliation(s)
- Haojie Ni
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yifan Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huinian Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhiju Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Fengming Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhende Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zihao Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yujie Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
9
|
Chu CH, Chen JS, Chan YL, Lu WJ, Huang YT, Mao PC, Sze CI, Sun HS. TIAM2S-positive microglia enhance inflammation and neurotoxicity through soluble ICAM-1-mediated immune priming. FASEB J 2023; 37:e23242. [PMID: 37801065 DOI: 10.1096/fj.202300462rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
TIAM Rac1-associated GEF 2 short form (TIAM2S) as an oncoprotein alters the immunity of peripheral immune cells to construct an inflammatory tumor microenvironment. However, its role in the activation of microglia, the primary innate immune cells of the brain, and neuroinflammation remains unknown. This study investigated the mechanism underlying TIAM2S shapes immune properties of microglia to facilitate neuron damage. Human microglial clone 3 cell line (HMC3) and human brain samples were applied to determine the presence of TIAM2S in microglia by western blots and double immunostaining. Furthermore, TIAM2S transgenic mice combined with multiple reconstituted primary neuron-glial culture systems and a cytokine array were performed to explore how TIAM2S shaped immune priming of microglia and participated in lipopolysaccharide (LPS)-induced neuron damage. TIAM2S protein was detectable in HMC3 cells and presented in a small portion (~11.1%) of microglia in human brains referred to as TIAM2S-positive microglia. With the property of secreted soluble factor-mediated immune priming, TIAM2S-positive microglia enhanced LPS-induced neuroinflammation and neural damage in vivo and in vitro. The gain- and loss-of-function experiments showed soluble intercellular adhesion molecule-1 (sICAM-1) participated in neurotoxic immune priming of TIAM2S+ microglia. Together, this study demonstrated a novel TIAM2S-positive microglia subpopulation enhances inflammation and neurotoxicity through sICAM-1-mediated immune priming.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Shing Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Ling Chan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jen Lu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Te Huang
- Department of Geriatrics and Gerontology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Cheng Mao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Huang X, Wang B, Yang J, Lian YJ, Yu HZ, Wang YX. HMGB1 in depression: An overview of microglial HMBG1 in the pathogenesis of depression. Brain Behav Immun Health 2023; 30:100641. [PMID: 37288063 PMCID: PMC10242493 DOI: 10.1016/j.bbih.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Depression is a prevalent psychiatric disorder with elusive pathogenesis. Studies have proposed that enhancement and persistence of aseptic inflammation in the central nervous system (CNS) may be closely associated with the development of depressive disorder. High mobility group box 1 (HMGB1) has obtained significant attention as an evoking and regulating factor in various inflammation-related diseases. It is a non-histone DNA-binding protein that can be released as a pro-inflammatory cytokine by glial cells and neurons in the CNS. Microglia, as the immune cell of the brain, interacts with HMGB1 and induces neuroinflammation and neurodegeneration in the CNS. Therefore, in the current review, we aim to investigate the role of microglial HMGB1 in the pathogenetic process of depression.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yong-Jie Lian
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong-Zhang Yu
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
11
|
Quagliato LA, Nardi AE. The interplay between sexual abuse and inflammation, oxidative stress, and DNA damage in drug-naïve panic disorder patients. Mol Psychiatry 2023; 28:2995-3001. [PMID: 37131075 DOI: 10.1038/s41380-023-02086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Although accumulating evidence suggests an interplay between child abuse and inflammatory processes and the pathophysiology of mental disorders, few studies have investigated the cellular mechanisms related to this matter. Furthermore, no studies to date have evaluated cytokine, oxidative stress, and DNA damage levels in drug-naïve panic disorder (PD) patients and their possible association with childhood trauma. The aim of the present study was to determine the levels of the proinflammatory interleukin (IL)-1B, the oxidative stress marker TBARS, and 8-hydroxy-2' -deoxyguanosine (8-OHdG; representing DNA damage) in drug-naïve PD patients compared to controls. Furthermore, this investigation aimed to determine whether early-life trauma could predict peripheral levels of the previously mentioned markers in unmedicated PD patients. This work showed that drug-naïve PD patients presented elevated levels of TBARS and IL-1B but not 8-OHdG compared to healthy controls. In addition, sexual abuse during childhood was associated with increased levels of IL-1B in PD patients. Our findings suggest that the microglial NLRP3 inflammasome complex might be activated in drug-naïve PD patients. This study is the first to associated sexual abuse with increased levels of IL-1B in drug-naïve PD patients and to demonstrate that this population presents high concentrations of oxidative stress and inflammation markers but not DNA damage markers when compared to healthy controls. Independent replication of these findings would support further clinical trials of inflammasome inhibitory drugs in PD patients, which could lead to effective novel treatments for people with PD and contribute to elucidating pathophysiological differences depending on trauma exposure in the immune disturbances accompanying PD.
Collapse
Affiliation(s)
- Laiana A Quagliato
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Av. Venceslau Bras 71, zip code: 22270-902, Rio de Janeiro, Brazil.
| | - Antonio E Nardi
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Av. Venceslau Bras 71, zip code: 22270-902, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Caruso G, Di Pietro L, Caraci F. Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules 2023; 13:biom13030505. [PMID: 36979440 PMCID: PMC10046203 DOI: 10.3390/biom13030505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Microglia represent the immune system of the brain. Their role is central in two phenomena, neuroinflammation and oxidative stress, which are at the roots of different pathologies related to the central nervous system (CNS). In order to maintain the homeostasis of the brain and re-establish the equilibrium after a threatening imbalance, microglia communicate with each other and other cells within the CNS by receiving specific signals through membrane-bound receptors and then releasing neurotrophic factors into either the extracellular milieu or directly into the cytoplasm of nearby cells, such as astrocytes and neurons. These last two mechanisms rely on the activity of protein structures that enable the formation of channels in the membrane, namely, connexins and pannexins, that group and form gap junctions, hemichannels, and pannexons. These channels allow the release of gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, together with calcium ion (Ca2+), that seem to play a pivotal role in inter-cellular communication. The aim of the present review is focused on the physiology of channel protein complexes and their contribution to neuroinflammatory and oxidative stress-related phenomena, which play a central role in neurodegenerative disorders. We will then discuss how pharmacological modulation of these channels can impact neuroinflammatory phenomena and hypothesize that currently available nutraceuticals, such as carnosine and N-acetylcysteine, can modulate the activity of connexins and pannexins in microglial cells and reduce oxidative stress in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
13
|
Wang Z, Song Y, Bai S, Xiang W, Zhou X, Han L, Zhu D, Guan Y. Imaging of microglia in post-stroke inflammation. Nucl Med Biol 2023; 118-119:108336. [PMID: 37028196 DOI: 10.1016/j.nucmedbio.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Microglia constantly survey the central nervous system microenvironment and maintain brain homeostasis. Microglia activation, polarization and inflammatory response are of great importance in the pathophysiology of ischemic stroke. For exploring biochemical processes in vivo, positron emission tomography (PET) is a superior imaging tool. Translocator protein 18 kDa (TSPO), is a validated neuroinflammatory biomarker which is widely used to evaluate various central nervous system (CNS) pathologies in both preclinical and clinical studies. TSPO level can be elevated due to peripheral inflammatory cells infiltration and glial cells activation. Therefore, a clear understanding of the dynamic changes between microglia and TSPO is critical for interpreting PET studies and understanding the pathophysiology after ischemic stroke. Our review discusses alternative biological targets that have attracted considerable interest for the imaging of microglia activation in recent years, and the potential value of imaging of microglia in the assessment of stroke therapies.
Collapse
|
14
|
Hu J, Wang P, Wang Z, Xu Y, Peng W, Chen X, Fang Y, Zhu L, Wang D, Wang X, Lin L, Ruan L. Fibroblast-Conditioned Media Enhance the Yield of Microglia Isolated from Mixed Glial Cultures. Cell Mol Neurobiol 2023; 43:395-408. [PMID: 35152327 DOI: 10.1007/s10571-022-01193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/09/2022] [Indexed: 01/07/2023]
Abstract
Microglia are the main immune cells of the central nervous system (CNS) and comprise various model systems used to investigate inflammatory mechanisms in CNS disorders. Currently, shaking and mild trypsinization are widely used microglial culture methods; however, the problems with culturing microglia include low yield and a time-consuming process. In this study, we replaced normal culture media (NM) with media containing 25% fibroblast-conditioned media (F-CM) to culture mixed glia and compared microglia obtained by these two methods. We found that F-CM significantly improved the yield and purity of microglia and reduced the total culture time of mixed glia. The microglia obtained from the F-CM group showed longer ramified morphology than those from the NM group, but no difference was observed in cell size. Microglia from the two groups had similar phagocytic function and baseline phenotype markers. Both methods yielded microglia were responsive to various stimuli such as lipopolysaccharide (LPS), interferon-γ (IFN-γ), and interleukin-4 (IL-4). The current results suggest that F-CM affect the growth of primary microglia in mixed glia culture. This method can produce a high yield of primary microglia within a short time and may be a convenient method for researchers to investigate inflammatory mechanisms and some CNS disorders.
Collapse
Affiliation(s)
- Jian Hu
- Pingyang Affiliated Hospital of Wenzhou Medical University, No. 555 Kunao Dadao, Kunyang Town, Wenzhou, 325400, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Zhengyi Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Yuyun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Wenshuo Peng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Higher Education Park, Wenzhou, 325035, Zhejiang, China.
| | - Lixin Ruan
- Pingyang Affiliated Hospital of Wenzhou Medical University, No. 555 Kunao Dadao, Kunyang Town, Wenzhou, 325400, Zhejiang, China.
| |
Collapse
|
15
|
Mo Y, Xu W, Fu K, Chen H, Wen J, Huang Q, Guo F, Mo L, Yan J. The dual function of microglial polarization and its treatment targets in ischemic stroke. Front Neurol 2022; 13:921705. [PMID: 36212660 PMCID: PMC9538667 DOI: 10.3389/fneur.2022.921705] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the leading cause of disability and death worldwide, with ischemic stroke occurring in ~5% of the global population every year. Recently, many studies have been conducted on the inflammatory response after stroke. Microglial/macrophage polarization has a dual function and is critical to the pathology of ischemic stroke. Microglial/macrophage activation is important in reducing neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after ischemic stroke. In this review, we investigate the physiological characteristics and functions of microglia in the brain, the activation and phenotypic polarization of microglia and macrophages after stroke, the signaling mechanisms of polarization states, and the contribution of microglia to brain pathology and repair. We summarize recent advances in stroke-related microglia research, highlighting breakthroughs in therapeutic strategies for microglial responses after stroke, thereby providing new ideas for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hainan Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ligen Mo
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jun Yan
| |
Collapse
|
16
|
Autoimmune Encephalitis in COVID-19 Infection: Our Experience and Systematic Review of the Literature. Biomedicines 2022; 10:biomedicines10040774. [PMID: 35453524 PMCID: PMC9024859 DOI: 10.3390/biomedicines10040774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
The neurologic complications of COVID-19 infection are frequent in hospitalized patients; a high percentage of them present neurologic manifestations at some point during the course of their disease. Headache, muscle pain, encephalopathy and dizziness are among the most common complications. Encephalitis is an inflammatory condition with many etiologies. There are several forms of encephalitis associated with antibodies against intracellular neuronal proteins, cell surfaces or synaptic proteins, referred to as autoimmune encephalitis. Several case reports published in the literature document autoimmune encephalitis cases triggered by COVID-19 infection. Our paper first presents our experience in this issue and then systematically reviews the literature on autoimmune encephalitis that developed in the background of SARS-CoV-2 infections and also discusses the possible pathophysiological mechanisms of auto-immune-mediated damage to the nervous system. This review contributes to improve the management and prognosis of COVID-19-related autoimmune encephalitis.
Collapse
|
17
|
Alghamdi SS, Suliman RS, Aljammaz NA, Kahtani KM, Aljatli DA, Albadrani GM. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. PLANTS (BASEL, SWITZERLAND) 2022; 11:549. [PMID: 35214883 PMCID: PMC8878483 DOI: 10.3390/plants11040549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases (NDs) are one of the most challenging public health issues. Despite tremendous advances in our understanding of NDs, little progress has been made in establishing effective treatments. Natural products may have enormous potential in preventing and treating NDs by targeting microglia; yet, there have been several clinical concerns about their usage, primarily due to a lack of scientific evidence for their efficacy, molecular targets, physicochemical properties, and safety. To solve this problem, the secondary bioactive metabolites derived from neuroprotective medicinal plants were identified and selected for computational predictions for anti-inflammatory activity, possible molecular targets, physicochemical properties, and safety evaluation using PASS online, Molinspiration, SwissADME, and ProTox-II, respectively. Most of the phytochemicals were active as anti-inflammatory agents as predicted using the PASS online webserver. Moreover, the molecular target predictions for some phytochemicals were similar to the reported experimental targets. Moreover, the phytochemicals that did not violate important physicochemical properties, including blood-brain barrier penetration, GI absorption, molecular weight, and lipophilicity, were selected for further safety evaluation. After screening 54 neuroprotective phytochemicals, our findings suggest that Aromatic-turmerone, Apocynin, and Matrine are the most promising compounds that could be considered when designing novel neuroprotective agents to treat neurodegenerative diseases via modulating microglial polarization.
Collapse
Affiliation(s)
- Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
- King Abdullah International Medical Research Centre (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Norah Abdulaziz Aljammaz
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Khawla Mohammed Kahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Dimah Abdulqader Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (R.S.S.); (N.A.A.); (K.M.K.); (D.A.A.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| |
Collapse
|
18
|
Qu XX, He JH, Cui ZQ, Yang T, Sun XH. PPAR-α Agonist GW7647 Protects Against Oxidative Stress and Iron Deposit via GPx4 in a Transgenic Mouse Model of Alzheimer's Diseases. ACS Chem Neurosci 2022; 13:207-216. [PMID: 34965724 DOI: 10.1021/acschemneuro.1c00516] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease caused by lipid peroxidation and iron hemostasis of the brain. PPAR-α is regarded as the most encouraging therapeutic approach of several neurodegenerative and metabolic disorders, due to its potent regulatory effects. In this study, we examined the ameliorative effect and the mechanisms of a PPAR-α agonist, GW7647, on the established AD models using APP/PS1 mice and APPsw/SH-SY5Y cells. Through Aβ quantification and behavioral test, we found that GW7647 reduced Aβ burden and improved cognitive defect in APP/PS1 mice. Liquid chromatography-mass spectrometry analysis indicated that GW7647 could enter the brain after oral administration. Neuronal cell death and iron deposit were inhibited, accompanied by decreased lipid peroxidation and inflammation. In an in vitro study of APPsw cells, we found that PPAR-α directly bound with GPx4 intron3 to promote GPx4 transcription and reduced the iron transport capability. Our data suggested that activation of PPAR-α by GW7647 improved the disruption of iron homeostasis in the brain of APP/PS1 mice and alleviated neuronal inflammation and lipid peroxidation, which was possibly related to the upregulated transcription of GPx4 mediated by the interaction of GPx4 noncoding region and the PPAR-α.
Collapse
Affiliation(s)
- Xiao-Xia Qu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalia, Liaoning 116000, P.R. China
| | - Jia-Huan He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
| | - Zhi-Qiang Cui
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
| |
Collapse
|
19
|
Bo RX, Li YY, Zhou TT, Chen NH, Yuan YH. The neuroinflammatory role of glucocerebrosidase in Parkinson's disease. Neuropharmacology 2022; 207:108964. [PMID: 35065083 DOI: 10.1016/j.neuropharm.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
The lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene, is a membrane-associated protein catalyzing the cleavage of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Homologous GBA1 mutations cause Gaucher disease (GD) and heterologous mutations cause Parkinson's disease (PD). Importantly, heterologous GBA1 mutations are recognized as the second risk factor of PD. The pathological features of PD are Lewy neurites (LNs) and Lewy bodies (LBs) composed of pathological α-synuclein. Oxidative stress, inflammatory response, autophagic impairment, and α-synuclein accumulation play critical roles in PD pathogenic cascades, but the pathogenesis of PD has not yet been fully elucidated. What's more, PD treatment drugs can only relieve symptoms to a certain extent, but cannot alleviate neurodegenerative progression. Therefore, it's urgent to explore new targets that can alleviate the neurodegenerative process. Deficient GCase can cause lysosomal dysfunction, obstructing the metabolism of α-synuclein. Meanwhile, GCase dysfunction causes accumulation of its substrates, leading to lipid metabolism disorders. Subsequently, astrocytes and microglia are activated, releasing amounts of pro-inflammatory mediators and causing extensive neuroinflammation. All these cascades can induce neuron damage and death, eventually promoting PD pathology. This review aims to summarize these points and the potential of GCase as an original target to provide some ideas for elucidating the pathogenesis of PD.
Collapse
Affiliation(s)
- Ru-Xue Bo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tian-Tian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
20
|
Carrier M, Šimončičová E, St-Pierre MK, McKee C, Tremblay MÈ. Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Front Mol Neurosci 2021; 14:749737. [PMID: 34803607 PMCID: PMC8599581 DOI: 10.3389/fnmol.2021.749737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The relationship between the central nervous system (CNS) and microglia is lifelong. Microglia originate in the embryonic yolk sac during development and populate the CNS before the blood-brain barrier forms. In the CNS, they constitute a self-renewing population. Although they represent up to 10% of all brain cells, we are only beginning to understand how much brain homeostasis relies on their physiological functions. Often compared to a double-edged sword, microglia hold the potential to exert neuroprotective roles that can also exacerbate neurodegeneration once compromised. Microglia can promote synaptic growth in addition to eliminating synapses that are less active. Synaptic loss, which is considered one of the best pathological correlates of cognitive decline, is a distinctive feature of major depressive disorder (MDD) and cognitive aging. Long-term psychological stress accelerates cellular aging and predisposes to various diseases, including MDD, and cognitive decline. Among the underlying mechanisms, stress-induced neuroinflammation alters microglial interactions with the surrounding parenchymal cells and exacerbates oxidative burden and cellular damage, hence inducing changes in microglia and neurons typical of cognitive aging. Focusing on microglial interactions with neurons and their synapses, this review discusses the disrupted communication between these cells, notably involving fractalkine signaling and the triggering receptor expressed on myeloid cells (TREM). Overall, chronic stress emerges as a key player in cellular aging by altering the microglial sensome, notably via fractalkine signaling deficiency. To study cellular aging, novel positron emission tomography radiotracers for TREM and the purinergic family of receptors show interest for human study.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Kim St-Pierre
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111677. [PMID: 34769106 PMCID: PMC8584169 DOI: 10.3390/ijms222111677] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer’s disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia–neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.
Collapse
|
22
|
De Meij J, Alfanek Z, Morel L, Decoeur F, Leyrolle Q, Picard K, Carrier M, Aubert A, Séré A, Lucas C, Laforest G, Helbling JC, Tremblay ME, Cota D, Moisan MP, Marsicano G, Layé S, Nadjar A. Microglial Cannabinoid Type 1 Receptor Regulates Brain Inflammation in a Sex-Specific Manner. Cannabis Cannabinoid Res 2021; 6:488-507. [PMID: 34591647 DOI: 10.1089/can.2020.0170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Neuroinflammation is a key feature shared by most, if not all, neuropathologies. It involves complex biological processes that act as a protective mechanism to fight against the injurious stimuli, but it can lead to tissue damage if self-perpetuating. In this context, microglia, the main cellular actor of neuroinflammation in the brain, are seen as a double-edged sword. By phagocyting neuronal debris, these cells can not only provide tissue repair but can also contribute to neuronal damage by releasing harmful substances, including inflammatory cytokines. The mechanisms guiding these apparent opposing actions are poorly known. The endocannabinoid system modulates the release of inflammatory factors such as cytokines and could represent a functional link between microglia and neuroinflammatory processes. According to transcriptomic databases and in vitro studies, microglia, the main source of cytokines in pathological conditions, express the cannabinoid type 1 receptor (CB1R). Methods: We thus developed a conditional mouse model of CB1R deletion specifically in microglia, which was subjected to an immune challenge (peripheral lipopolysaccharide injection). Results: Our results reveal that microglial CB1R differentially controls sickness behavior in males and females. Conclusion: These findings add to the comprehension of neuroinflammatory processes and might be of great interest for future studies aimed at developing therapeutic strategies for brain disorders with higher prevalence in men.
Collapse
Affiliation(s)
- Julia De Meij
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Zain Alfanek
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Lydie Morel
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Fanny Decoeur
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Quentin Leyrolle
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Canada.,Division of Medical Sciences, University of Victoria, Victoria, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Canada
| | - Micael Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Canada.,Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - Agnes Aubert
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Alexandra Séré
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Céline Lucas
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Gerald Laforest
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | | | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Canada.,Division of Medical Sciences, University of Victoria, Victoria, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | | | - Giovanni Marsicano
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Sophie Layé
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Agnès Nadjar
- NutriNeuro, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France.,INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| |
Collapse
|
23
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
24
|
Augusto-Oliveira M, Verkhratsky A. Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 2021; 16:12. [PMID: 34353376 PMCID: PMC8340437 DOI: 10.1186/s13062-021-00297-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
25
|
Acharjee S, Gordon PMK, Lee BH, Read J, Workentine ML, Sharkey KA, Pittman QJ. Characterization of microglial transcriptomes in the brain and spinal cord of mice in early and late experimental autoimmune encephalomyelitis using a RiboTag strategy. Sci Rep 2021; 11:14319. [PMID: 34253764 PMCID: PMC8275680 DOI: 10.1038/s41598-021-93590-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
Microglia play an important role in the pathogenesis of multiple sclerosis and the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). To more fully understand the role of microglia in EAE we characterized microglial transcriptomes before the onset of motor symptoms (pre-onset) and during symptomatic EAE. We compared the transcriptome in brain, where behavioral changes are initiated, and spinal cord, where damage is revealed as motor and sensory deficits. We used a RiboTag strategy to characterize ribosome-bound mRNA only in microglia without incurring possible transcriptional changes after cell isolation. Brain and spinal cord samples clustered separately at both stages of EAE, indicating regional heterogeneity. Differences in gene expression were observed in the brain and spinal cord of pre-onset and symptomatic animals with most profound effects in the spinal cord of symptomatic animals. Canonical pathway analysis revealed changes in neuroinflammatory pathways, immune functions and enhanced cell division in both pre-onset and symptomatic brain and spinal cord. We also observed a continuum of many pathways at pre-onset stage that continue into the symptomatic stage of EAE. Our results provide additional evidence of regional and temporal heterogeneity in microglial gene expression patterns that may help in understanding mechanisms underlying various symptomology in MS.
Collapse
Affiliation(s)
- Shaona Acharjee
- Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Benjamin H Lee
- Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Justin Read
- Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Matthew L Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
26
|
Autophagy in vascular dementia and natural products with autophagy regulating activity. Pharmacol Res 2021; 170:105756. [PMID: 34237440 DOI: 10.1016/j.phrs.2021.105756] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023]
Abstract
Chronic Cerebral Hypoperfusion(CCH)-induced vascular dementia(VD) is a common neurodegenerative disease which seriously affects the patient's quality of life. Therefore, it is critical to find an effective treatment of VD. Autophagy is a natural regulated mechanism that can remove dysfunctional proteins and organelles, however, over-activation or under-activation can of autophagy can induce the apoptosis of cells. Although autophagy plays a role in the central nervous system is unquestionable, the effects of autophagy in the ischemic brain are still controversial. Some autophagy regulators have been tested, suggesting that both activation and inhibition of autophagy can improve the cognitive function. This article reviews the role of autophagy in CCH-induced VD to discuss whether autophagy has the potential to become a target for drug development and provides several potential compounds for treating vascular dementia.
Collapse
|
27
|
Wang C, Wang L, Gu Y. Microglia, synaptic dynamics and forgetting. Brain Res Bull 2021; 174:173-183. [PMID: 34129917 DOI: 10.1016/j.brainresbull.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023]
Abstract
Microglia are the major immune cells in the brain parenchyma. Besides their immune functions, microglia are important in regulating the dynamics of synapses. It is believed that the stability of synapses is essential for long-term storage and retrieval of memories, whereas microglial regulation of synaptic dynamics could affect the stability of memories, thus providing a potential mechanism for forgetting. In this review, we focus on the regulation of synaptic dynamics by microglia, as well as the subsequent effects on memory and forgetting, under physiological and pathological conditions. Revealing microglial regulation of synaptic dynamics will not only illuminate the physiological functions of microglia in the brain, but also provide us a new perspective to study the molecular and cellular mechanisms underlying forgetting. In addition, this will also improve our understanding of the process of memory encoding, storage and retrieval in the brain. Furthermore, uncovering the mechanisms through which microglia act on synaptic dynamics in pathological conditions will provide new strategies for the prevention and treatment of memory impairment in diseases.
Collapse
Affiliation(s)
- Chao Wang
- Center of Stem Cell and Regenerative Medicine, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Parellada E, Gassó P. Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry 2021; 11:271. [PMID: 33958577 PMCID: PMC8102516 DOI: 10.1038/s41398-021-01385-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Schizophrenia disorder remains an unsolved puzzle. However, the integration of recent findings from genetics, molecular biology, neuroimaging, animal models and translational clinical research offers evidence that the synaptic overpruning hypothesis of schizophrenia needs to be reassessed. During a critical period of neurodevelopment and owing to an imbalance of excitatory glutamatergic pyramidal neurons and inhibitory GABAergic interneurons, a regionally-located glutamate storm might occur, triggering excessive dendritic pruning with the activation of local dendritic apoptosis machinery. The apoptotic loss of dendritic spines would be aggravated by microglia activation through a recently described signaling system from complement abnormalities and proteins of the MHC, thus implicating the immune system in schizophrenia. Overpruning of dendritic spines coupled with aberrant synaptic plasticity, an essential function for learning and memory, would lead to brain misconnections and synaptic inefficiency underlying the primary negative symptoms and cognitive deficits of schizophrenia. This driving hypothesis has relevant therapeutic implications, including the importance of pharmacological interventions during the prodromal phase or the transition to psychosis, targeting apoptosis, microglia cells or the glutamate storm. Future research on apoptosis and brain integrity should combine brain imaging, CSF biomarkers, animal models and cell biology.
Collapse
Affiliation(s)
- Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU). Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Catalonia, Spain.
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Patricia Gassó
- Barcelona Clínic Schizophrenia Unit (BCSU). Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
29
|
Abstract
Microglia, the main immune cell of the central nervous system (CNS), categorized into M1-like phenotype and M2-like phenotype, play important roles in phagocytosis, cell migration, antigen presentation, and cytokine production. As a part of CNS, retinal microglial cells (RMC) play an important role in retinal diseases. Diabetic retinopathy (DR) is one of the most common complications of diabetes. Recent studies have demonstrated that DR is not only a microvascular disease but also retinal neurodegeneration. RMC was regarded as a central role in neurodegeneration and neuroinflammation. Therefore, in this review, we will discuss RMC polarization and its possible regulatory factors in early DR, which will provide new targets and insights for early intervention of DR.
Collapse
|
30
|
Rienecker KDA, Paladini MS, Grue K, Krukowski K, Rosi S. Microglia: Ally and Enemy in Deep Space. Neurosci Biobehav Rev 2021; 126:509-514. [PMID: 33862064 DOI: 10.1016/j.neubiorev.2021.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
In 2024 the first female astronaut will land on the moon, advancing our preparations for human missions to Mars. While on Earth we are protected from space radiation by our planet's magnetic field, on such deep space voyages astronauts will be exposed to high energy particles from solar flares and galactic cosmic rays (GCR). This exposure carries risks to the central nervous system (CNS) that could jeopardize the mission and astronaut health. Earth-bound studies have employed a variety of single-beam and sequential radiation exposures to simulate the effects of GCR exposure in rodents. Multiple studies have shown that GCR simulation induces a maladaptive activation of microglia - the brain-resident immune cells. GCR simulation also induced synaptic changes resulting in lasting cognitive and behavioral defects. Female and male mice show different susceptibilities to GCR exposure, and evidence suggests this sexually dimorphic response is linked to microglia. Manipulating microglia can prevent the development of cognitive deficits in male mice exposed to components of GCR. This discovery may provide clues towards how to protect astronauts' cognitive and behavioral health both during deep space missions and upon return to Earth.
Collapse
Affiliation(s)
- Kira D A Rienecker
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA
| | - Maria Serena Paladini
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA
| | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA
| | - Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, University of California at San Francisco, San Francisco, CA, USA; Kavli Institute of Fundamental Neuroscience, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Costanza A, Radomska M, Bondolfi G, Zenga F, Amerio A, Aguglia A, Serafini G, Amore M, Berardelli I, Pompili M, Nguyen KD. Suicidality Associated With Deep Brain Stimulation in Extrapyramidal Diseases: A Critical Review and Hypotheses on Neuroanatomical and Neuroimmune Mechanisms. Front Integr Neurosci 2021; 15:632249. [PMID: 33897384 PMCID: PMC8060445 DOI: 10.3389/fnint.2021.632249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Deep brain stimulation (DBS) is a very well-established and effective treatment for patients with extrapyramidal diseases. Despite its generally favorable clinical efficacy, some undesirable outcomes associated with DBS have been reported. Among such complications are incidences of suicidal ideation (SI) and behavior (SB) in patients undergoing this neurosurgical procedure. However, causal associations between DBS and increased suicide risk are not demonstrated and they constitute a debated issue. In light of these observations, the main objective of this work is to provide a comprehensive and unbiased overview of the literature on suicide risk in patients who received subthalamic nucleus (STN) and internal part of globus pallidum (GPi) DBS treatment. Additionally, putative mechanisms that might be involved in the development of SI and SB in these patients as well as caveats associated with these hypotheses are introduced. Finally, we briefly propose some clinical implications, including therapeutic strategies addressing these potential disease mechanisms. While a mechanistic connection between DBS and suicidality remains a controversial topic that requires further investigation, it is of critical importance to consider suicide risk as an integral component of candidate selection and post-operative care in DBS.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland.,Department of Psychiatry, ASO Santi Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Michalina Radomska
- Faculty of Psychology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Guido Bondolfi
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland.,Department of Psychiatry, Service of Liaison Psychiatry and Crisis Intervention (SPLIC), Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Francesco Zenga
- Department of Neurosurgery, University and City of Health and Science Hospital, Turin, Italy
| | - Andrea Amerio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Mood Disorders Program, Tufts Medical Center, Boston, MA, United States
| | - Andrea Aguglia
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy.,Department of Psychiatry, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Khoa D Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, United States.,Tranquis Therapeutics, Palo Alto, CA, United States.,Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
32
|
Eshraghi M, Adlimoghaddam A, Mahmoodzadeh A, Sharifzad F, Yasavoli-Sharahi H, Lorzadeh S, Albensi BC, Ghavami S. Alzheimer's Disease Pathogenesis: Role of Autophagy and Mitophagy Focusing in Microglia. Int J Mol Sci 2021; 22:3330. [PMID: 33805142 PMCID: PMC8036323 DOI: 10.3390/ijms22073330] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including amyloid plaques (Aβ) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA;
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Aida Adlimoghaddam
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; (A.A.); (B.C.A.)
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Farzaneh Sharifzad
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (F.S.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (F.S.); (H.Y.-S.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Benedict C. Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; (A.A.); (B.C.A.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| |
Collapse
|
33
|
Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomed Pharmacother 2021; 137:111065. [PMID: 33540138 DOI: 10.1016/j.biopha.2020.111065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The occurrence, progression and recurrence of psoriasis are thought to be related to mood and psychological disorders such as depression. Psoriasis can lead to depression, and depression, in turn, exacerbates psoriasis. No specific mechanism can explain the association between psoriasis and depression. The gut-brain-skin axis has been used to explain correlations among the gut microbiota, emotional states and systemic and skin inflammation, and this axis may be associated with overlapping mechanisms between psoriasis and depression. Therefore, in the context of the gut-brain-skin axis, we systematically summarized and comparatively analysed the inflammatory and immune mechanisms of psoriasis and depression and illustrated the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and the gut microbiota. This review provides a theoretical basis and new targets for the treatment of psoriasis and depression.
Collapse
|
34
|
Verkhratsky A, Sun D, Tanaka J. Snapshot of microglial physiological functions. Neurochem Int 2021; 144:104960. [PMID: 33460721 DOI: 10.1016/j.neuint.2021.104960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
Microglia as a defensive arm of the nervous system emerged early in evolution. The surveilling microglia with motile and ramified processes are the main phenotype in the healthy CNS; the surveilling microglial patrol neuronal somata, dendrites, dendritic spines and axons. Increasing evidence suggests that microglia play fundamental roles in development, maturation and ageing of the brain, as well as contribute to a variety of physiological brain processes including sleep and circadian rhythm. Physiological state of microglia is tightly regulated by brain microenvironment and controlled by a sophisticated system of receptors and signalling cascades including ionotropic and metabotropic purinoceptors, pattern-recognition receptors, and receptors for chemokines and cytokines. Microglia also utilise ion channels and transporters in regulating ionic homeostasis and various aspects of microglial function. The major ion transporters expressed by microglia include Na+/H+ exchanger 1 and Na+/Ca2+ exchangers, which are involved in regulation of pHi and Ca2+ homeostasis during microglial physiological responses. Microglial cells control development, maturation and plasticity of neuronal ensembles through controlled physiological phagocytosis of synapses or synaptic fragments - processes known as synaptic pruning and trogocytosis. This special issue on "Physiological roles of microglia" is an assembly of papers written by the leading experts in this research field. We start this special issue with this snapshot of microglial physiological functions as a prelude to the indepth discussion of microglia in physiological processes in the nervous system.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Dandan Sun
- Department of Neurology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Ehime, 791-0295, Japan.
| |
Collapse
|
35
|
Abstract
In the twentieth century, neuropsychiatric disorders have been perceived solely from a neurone-centric point of view, which considers neurones as the key cellular elements of pathological processes. This dogma has been challenged thanks to the better comprehension of the brain functioning, which, even if far from being complete, has revealed the complexity of interactions that exist between neurones and neuroglia. Glial cells represent a highly heterogeneous population of cells of neural (astroglia and oligodendroglia) and non-neural (microglia) origin populating the central nervous system. The variety of glia reflects the innumerable functions that glial cells perform to support functions of the nervous system. Aberrant execution of glial functions contributes to the development of neuropsychiatric pathologies. Arguably, all types of glial cells are implicated in the neuropathology; however, astrocytes have received particular attention in recent years because of their pleiotropic functions that make them decisive in maintaining cerebral homeostasis. This chapter describes the multiple roles of astrocytes in the healthy central nervous system and discusses the diversity of astroglial responses in neuropsychiatric disorders suggesting that targeting astrocytes may represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
36
|
Limbic Encephalitis Brain Damage Induced by Cocal Virus in Adult Mice Is Reduced by Environmental Enrichment: Neuropathological and Behavioral Studies. Viruses 2020; 13:v13010048. [PMID: 33396704 PMCID: PMC7824630 DOI: 10.3390/v13010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
We previously demonstrated, using the Piry virus model, that environmental enrichment promotes higher T-cell infiltration, fewer microglial changes, and faster central nervous system (CNS) virus clearance in adult mice. However, little is known about disease progression, behavioral changes, CNS cytokine concentration, and neuropathology in limbic encephalitis in experimental models. Using Cocal virus, we infected C57Bl6 adult mice and studied the neuroanatomical distribution of viral antigens in correlation with the microglial morphological response, measured the CNS cytokine concentration, and assessed behavioral changes. C57Bl6 adult mice were maintained in an impoverished environment (IE) or enriched environment (EE) for four months and then subjected to the open field test. Afterwards, an equal volume of normal or virus-infected brain homogenate was nasally instilled. The brains were processed to detect viral antigens and microglial morphological changes using selective immunolabeling. We demonstrated earlier significant weight loss and higher mortality in IE mice. Additionally, behavioral analysis revealed a significant influence of the environment on locomotor and exploratory activity that was associated with less neuroinvasion and a reduced microglial response. Thus, environmental enrichment was associated with a more effective immune response in a mouse model of limbic encephalitis, allowing faster viral clearance/decreased viral dissemination, reduced disease progression, and less CNS damage.
Collapse
|
37
|
Deurveilher S, Golovin T, Hall S, Semba K. Microglia dynamics in sleep/wake states and in response to sleep loss. Neurochem Int 2020; 143:104944. [PMID: 33359188 DOI: 10.1016/j.neuint.2020.104944] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022]
Abstract
Sleep has an essential role for optimal brain function, but the cellular substrates for sleep regulation are not fully understood. Microglia, the immune cells of the brain, have gained increasingly more attention over the last two decades for their important roles in various brain functions that extend beyond their well-known immune function, including brain development, neuronal protection, and synaptic plasticity. Here we review recent advances in understanding: i) morphological and phenotypic dynamics of microglia including process motility/growth and gene/protein expression, and ii) microglia-neuron interactions including phagocytosis and contact at synapses which alters neuronal circuit activity, both under physiological state in the adult brain. We discuss how the microglia-neuron interactions particularly at synapses could influence microglia and neuronal activities across circadian cycles and sleep/wake states. We also review recent findings on how microglia respond to sleep loss. We conclude by pointing out key questions and proposing suggestions for future research to better understand the role of microglia in sleep regulation, sleep homeostasis, and the function of sleep.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tatjana Golovin
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon Hall
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
38
|
Konishi H, Kiyama H. Non-pathological roles of microglial TREM2/DAP12: TREM2/DAP12 regulates the physiological functions of microglia from development to aging. Neurochem Int 2020; 141:104878. [DOI: 10.1016/j.neuint.2020.104878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/01/2023]
|
39
|
Huang J, Huang N, Xu S, Luo Y, Li Y, Jin H, Yu C, Shi J, Jin F. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J Nutr Biochem 2020; 88:108552. [PMID: 33220405 DOI: 10.1016/j.jnutbio.2020.108552] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), and Parkinson's disease (PD), are characterized by the progressive loss of the structure and function of neurons and most commonly occur in the elderly population. Microglia are resident macrophages of the central nervous system (CNS). The neuroinflammation caused by excessive microglial activation is closely related to the onset and progression of many NDs. Therefore, inhibiting excessive microglial activation is a potential drug target for controlling neuroinflammation. In recent years, natural products as modulators of microglial polarization have attracted considerable attention in the field of NDs therapy. Furthermore, resveratrol (RES) has been found to have a protective effect in NDs through the inhibition of microglial activation and the regulation of neuroinflammation. In this review, we mainly summarize the therapeutic potential of RES and its various molecular mechanisms in the treatment of NDs through the modulation of microglial activation.
Collapse
Affiliation(s)
- Juan Huang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China; School of Public Health, Zunyi Medical University, Guizhou, China
| | - Nanqu Huang
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Yong Luo
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Yan Li
- School of Public Health, Zunyi Medical University, Guizhou, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Zunyi Medical University, Guizhou, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China.
| |
Collapse
|
40
|
Tremblay ME, Madore C, Bordeleau M, Tian L, Verkhratsky A. Neuropathobiology of COVID-19: The Role for Glia. Front Cell Neurosci 2020; 14:592214. [PMID: 33304243 PMCID: PMC7693550 DOI: 10.3389/fncel.2020.592214] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2, which causes the Coronavirus Disease 2019 (COVID-19) pandemic, has a brain neurotropism through binding to the receptor angiotensin-converting enzyme 2 expressed by neurones and glial cells, including astrocytes and microglia. Systemic infection which accompanies severe cases of COVID-19 also triggers substantial increase in circulating levels of chemokines and interleukins that compromise the blood-brain barrier, enter the brain parenchyma and affect its defensive systems, astrocytes and microglia. Brain areas devoid of a blood-brain barrier such as the circumventricular organs are particularly vulnerable to circulating inflammatory mediators. The performance of astrocytes and microglia, as well as of immune cells required for brain health, is considered critical in defining the neurological damage and neurological outcome of COVID-19. In this review, we discuss the neurotropism of SARS-CoV-2, the implication of neuroinflammation, adaptive and innate immunity, autoimmunity, as well as astrocytic and microglial immune and homeostatic functions in the neurological and psychiatric aspects of COVID-19. The consequences of SARS-CoV-2 infection during ageing, in the presence of systemic comorbidities, and for the exposed pregnant mother and foetus are also covered.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Charlotte Madore
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Research Centre, Peking University Health Science Center, Beijing Huilongguan Hospital, Beijing, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Neurosciences, University of the Basque Country Universidad del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| |
Collapse
|
41
|
Carrier M, Robert MÈ, González Ibáñez F, Desjardins M, Tremblay MÈ. Imaging the Neuroimmune Dynamics Across Space and Time. Front Neurosci 2020; 14:903. [PMID: 33071723 PMCID: PMC7539119 DOI: 10.3389/fnins.2020.00903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The immune system is essential for maintaining homeostasis, as well as promoting growth and healing throughout the brain and body. Considering that immune cells respond rapidly to changes in their microenvironment, they are very difficult to study without affecting their structure and function. The advancement of non-invasive imaging methods greatly contributed to elucidating the physiological roles performed by immune cells in the brain across stages of the lifespan and contexts of health and disease. For instance, techniques like two-photon in vivo microscopy were pivotal for studying microglial functional dynamics in the healthy brain. Through these observations, their interactions with neurons, astrocytes, blood vessels and synapses were uncovered. High-resolution electron microscopy with immunostaining and 3D-reconstruction, as well as super-resolution fluorescence microscopy, provided complementary insights by revealing microglial interventions at synapses (phagocytosis, trogocytosis, synaptic stripping, etc.). In addition, serial block-face scanning electron microscopy has provided the first 3D reconstruction of a microglial cell at nanoscale resolution. This review will discuss the technical toolbox that currently allows to study microglia and other immune cells in the brain, as well as introduce emerging methods that were developed and could be used to increase the spatial and temporal resolution of neuroimmune imaging. A special attention will also be placed on positron emission tomography and the development of selective functional radiotracers for microglia and peripheral macrophages, considering their strong potential for research translation between animals and humans, notably when paired with other imaging modalities such as magnetic resonance imaging.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Robert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Michèle Desjardins
- Axe Oncologie, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
42
|
Chounchay S, Noctor SC, Chutabhakdikul N. Microglia enhances proliferation of neural progenitor cells in an in vitro model of hypoxic-ischemic injury. EXCLI JOURNAL 2020; 19:950-961. [PMID: 32788909 PMCID: PMC7415932 DOI: 10.17179/excli2020-2249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Microglial cells are the primary immune cells in the central nervous system. In the mature brain, microglia perform functions that include eliminating pathogens and clearing dead/dying cells and cellular debris through phagocytosis. In the immature brain, microglia perform functions that include synapse development and the regulation of cell production through extensive contact with and phagocytosis of neural progenitor cells (NPCs). However, the functional role of microglia in the proliferation and differentiation of NPCs under hypoxic-ischemic (HI) injury is not clear. Here, we tested the hypothesis that microglia enhance NPCs proliferation following HI insult. Primary NPCs cultures were divided into four treatment groups: 1) normoxic NPCs (NN); 2) normoxic NPCs cocultured with microglia (NN+M); 3) hypoxic NPCs (HN); and 4) hypoxic NPCs cocultured with microglia (HN+M). Hypoxic-ischemic injury was induced by pretreatment of the cell cultures with 100 µM deferoxamine mesylate (DFO). NPCs treated with 100 µM DFO (HN groups) for 24 hours had significantly increased expression of hypoxia-inducible factor 1 alpha (HIF-1α), a marker of hypoxic cells. Cell number, protein expression, mitosis, and cell cycle phase were examined, and the data were compared between the four groups. We found that the number of cells expressing the NPCs marker Sox2 increased significantly in the HN+M group and that the number of PH3-positive cells increased in the HN+M group; flow cytometry analysis showed a significant increase in the percentage of cells in the G2/M phase in the HN+M group. In summary, these results support the concept that microglia enhance the survival of NPCs under HI injury by increasing NPCs proliferation, survival, and differentiation. These results further suggest that microglia may induce neuroprotective effects after hypoxic injury that can be explored to develop novel therapeutic strategies for the treatment of HI injury in the immature brain.
Collapse
Affiliation(s)
- Supanee Chounchay
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand.,Faculty of Physical Therapy, Huachiew Chalermprakiet University, Samut Prakan, 10540, Thailand
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, 95817, USA.,MIND Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Nuanchan Chutabhakdikul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand
| |
Collapse
|
43
|
Arivazhagan L, Ruiz HH, Wilson R, Manigrasso M, Gugger PF, Fisher EA, Moore KJ, Ramasamy R, Schmidt AM. An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circ Res 2020; 126:1565-1589. [PMID: 32437306 PMCID: PMC7250004 DOI: 10.1161/circresaha.120.315900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The escalating problem of obesity and its multiple metabolic and cardiovascular complications threatens the health and longevity of humans throughout the world. The cause of obesity and one of its chief complications, insulin resistance, involves the participation of multiple distinct organs and cell types. From the brain to the periphery, cell-intrinsic and intercellular networks converge to stimulate and propagate increases in body mass and adiposity, as well as disturbances of insulin sensitivity. This review focuses on the roles of the cadre of innate immune cells, both those that are resident in metabolic organs and those that are recruited into these organs in response to cues elicited by stressors such as overnutrition and reduced physical activity. Beyond the typical cast of innate immune characters invoked in the mechanisms of metabolic perturbation in these settings, such as neutrophils and monocytes/macrophages, these actors are joined by bone marrow-derived cells, such as eosinophils and mast cells and the intriguing innate lymphoid cells, which are present in the circulation and in metabolic organ depots. Upon high-fat feeding or reduced physical activity, phenotypic modulation of the cast of plastic innate immune cells ensues, leading to the production of mediators that affect inflammation, lipid handling, and metabolic signaling. Furthermore, their consequent interactions with adaptive immune cells, including myriad T-cell and B-cell subsets, compound these complexities. Notably, many of these innate immune cell-elicited signals in overnutrition may be modulated by weight loss, such as that induced by bariatric surgery. Recently, exciting insights into the biology and pathobiology of these cell type-specific niches are being uncovered by state-of-the-art techniques such as single-cell RNA-sequencing. This review considers the evolution of this field of research on innate immunity in obesity and metabolic perturbation, as well as future directions.
Collapse
Affiliation(s)
- Lakshmi Arivazhagan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Henry H. Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Robin Wilson
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Michaele Manigrasso
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Edward A. Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Langone Medical Center, New York 10016
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, New York 10016
| | - Kathryn J. Moore
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Langone Medical Center, New York 10016
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, New York 10016
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
44
|
Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology 2020; 40:121-137. [PMID: 32037635 PMCID: PMC7187297 DOI: 10.1111/neup.12639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
Astroglia or astrocytes, the most abundant cells in the brain, are interposed between neuronal synapses and microvasculature in the brain gray matter. They play a pivotal role in brain metabolism as well as in the regulation of cerebral blood flow, taking advantage of their unique anatomical location. In particular, the astroglial cellular metabolic compartment exerts supportive roles in dedicating neurons to the generation of action potentials and protects them against oxidative stress associated with their high energy consumption. An impairment of normal astroglial function, therefore, can lead to numerous neurological disorders including stroke, neurodegenerative diseases, and neuroimmunological diseases, in which metabolic derangements accelerate neuronal damage. The neurovascular unit (NVU), the major components of which include neurons, microvessels, and astroglia, is a conceptual framework that was originally used to better understand the pathophysiology of cerebral ischemia. At present, the NVU is a tool for understanding normal brain physiology as well as the pathophysiology of numerous neurological disorders. The metabolic responses of astroglia in the NVU can be either protective or deleterious. This review focuses on three major metabolic compartments: (i) glucose and lactate; (ii) fatty acid and ketone bodies; and (iii) D- and L-serine. Both the beneficial and the detrimental roles of compartmentalization between neurons and astroglia will be discussed. A better understanding of the astroglial metabolic response in the NVU is expected to lead to the development of novel therapeutic strategies for diverse neurological diseases.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and StrokeSaitama Medical University International Medical CenterSaitamaJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
45
|
Morrice JR, Gregory-Evans CY, Shaw CA. Investigating microglia during motor neuron degeneration using a zebrafish model. Micron 2020; 133:102852. [PMID: 32203887 DOI: 10.1016/j.micron.2020.102852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Many different types of pathologies can arise in the central nervous system (CNS), such as neurodegeneration. The incidence of neurodegenerative diseases continues to increase, yet the pathogenesis underlying most neurodegenerative diseases, notably in amyotrophic lateral sclerosis (ALS), remains elusive. Neuronal support cells, or glia, are known to play a crucial role in ALS. Microglia are the resident immune cells of the CNS and also have neurotrophic support functions. These cells have a disease-modifying function in ALS, yet this role is not well understood. A likely reason for this is that the intact CNS is particularly challenging to access for investigation in patients and in most animal models, which has impeded research in this field. The zebrafish is emerging as a robust model system to investigate cells in vivo, and offer distinct advantages over other vertebrate models for investigating neurodegenerative diseases. Live imaging in vivo is a powerful technique to characterize the role of dynamic cells such as microglia during neurodegeneration, and zebrafish provide a convenient means for live imaging. Here, we discuss the zebrafish as a model for live imaging, provide a brief overview of available high resolution imaging platforms that accommodate zebrafish, and describe our own in vivo studies on the role of microglia during motor neuron degeneration. Live in vivo imaging is anticipated to provide invaluable advancements to defining the pathogenesis underlying neurodegenerative diseases, which may in turn allow for more specifically targeted therapeutics.
Collapse
Affiliation(s)
- Jessica R Morrice
- Experimental Medicine Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Cheryl Y Gregory-Evans
- Experimental Medicine Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Department of Ophthalmology and Visual Sciences, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Christopher A Shaw
- Experimental Medicine Program, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada; Department of Ophthalmology and Visual Sciences, University of British Columbia, 2329 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|