1
|
Wen Y, Shan S, Ye F, Liao W, Wu X, Chen W, Zhao C. Prospects of phycoerythrin: Structural features, antioxidation and applications in food. Food Chem 2025; 463:141425. [PMID: 39348767 DOI: 10.1016/j.foodchem.2024.141425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Phycoerythrin (PE) is a naturally occurring plant protein of algal origin. The colour, bioactivity and stability of PE are inextricably linked to its structure. PE has powerful antioxidant properties that effectively prevent oxidative stress and cellular damage, for which the chromophore structure plays a key role. However, the relationship between the chromophore and thermal stability is unclear in PE. The environmental factors affecting the thermal stability of PE are mainly light, high temperature and extreme pH. PE stability can be enhanced through various techniques, including the incorporation of additives, cross-linking processes, and the formation of complexes. Improving the stability of PE is of significant importance for its applications within the food industry. This paper outlines the structural characteristics of PE, discusses the relationship between its structure and antioxidant activity, and focuses on the application of PE in the food industry, as well as the factors affecting its stability and strategies for its improvement.
Collapse
Affiliation(s)
- Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Shuo Shan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Fangting Ye
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Liao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Wei F, Yang W, Wang H, Song S, Ji Y, Chen Z, Zhuang Y, Dai J, Shen H. Reactive oxygen species-scavenging biomaterials for neural regenerative medicine. Biomater Sci 2024. [PMID: 39620279 DOI: 10.1039/d4bm01221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Reactive oxygen species (ROS) are natural by-products of oxygen metabolism. As signaling molecules, ROS can regulate various physiological processes in the body. However excessive ROS may be a major cause of inflammatory diseases. In the field of neurological diseases, ROS cause neuronal apoptosis and neurodegeneration, which severely impede neuroregeneration. Currently, ROS-scavenging biomaterials are considered as a promising therapeutic strategy for neurological injuries due to their ability to scavenge excessive ROS at defects and modulate the oxidative stress microenvironment. This review provides an overview of the generation and sources of ROS, briefly describes the dangers of generating excessive ROS in nervous system diseases, and highlights the importance of scavenging excessive ROS for neuroregeneration. We have classified ROS-scavenging biomaterials into three categories based on the different mechanisms of ROS clearance. The applications of ROS-responsive biomaterials for neurological diseases, such as spinal cord injury, brain injury, and peripheral nerve injury, are also discussed. Our review contributes to the development of ROS-scavenging biomaterials in the field of neural regeneration.
Collapse
Affiliation(s)
- Feng Wei
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Wen Yang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| | - Huiru Wang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuxuan Ji
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Zhong Chen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing 100101, China
| | - He Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
3
|
Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol 2024; 12:1475584. [PMID: 39539690 PMCID: PMC11557333 DOI: 10.3389/fbioe.2024.1475584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic wounds present a significant clinical challenge due to their prolonged healing time and susceptibility to infection. Boron, a trace element with diverse biological functions, has emerged as a promising therapeutic agent in wound healing. This review article comprehensively investigates the mechanisms underlying the beneficial effects of boron compounds in wound healing. Boron exerts its healing properties through multiple pathways, including anti-inflammatory, antimicrobial, antioxidant, and pro-proliferative effects. Inflammation is a crucial component of the wound-healing process, and boron has been shown to modulate inflammatory responses by inhibiting pro-inflammatory cytokines and promoting the resolution of inflammation. Furthermore, boron exhibits antimicrobial activity against a wide range of pathogens commonly associated with chronic wounds, thereby reducing the risk of infection and promoting wound closure. The antioxidant properties of boron help protect cells from oxidative stress, a common feature of chronic wounds that can impair healing. Additionally, boron stimulates cell proliferation and migration, as well as essential tissue regeneration and wound closure processes. Overall, this review highlights the potential of boron as a novel therapeutic approach for treating chronic wounds, offering insights into its diverse mechanisms of action and clinical implications.
Collapse
|
4
|
Cho SH, Jones MA, Meyer K, Anderson DM, Chetyrkin S, Calcutt MW, Caprioli RM, Semenkovich CF, Boothby MR. B cell expression of the enzyme PexRAP, an intermediary in ether lipid biosynthesis, promotes antibody responses and germinal center size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618760. [PMID: 39464149 PMCID: PMC11507954 DOI: 10.1101/2024.10.17.618760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The qualities of antibody (Ab) responses provided by B lymphocytes and their plasma cell (PC) descendants are crucial facets of responses to vaccines and microbes. Metabolic processes and products regulate aspects of B cell proliferation and differentiation into germinal center (GC) and PC states as well as Ab diversification. However, there is little information about lymphoid cell-intrinsic functions of enzymes that mediate ether lipid biosynthesis, including a major class of membrane phospholipids. Imaging mass spectrometry (IMS) results had indicated that concentrations of a number of these phospholipids were substantially enhanced in GC compared to the background average in spleens. However, it was not clear if biosynthesis in B cells was a basis for this finding, or whether such cell-intrinsic biosynthesis contributes to B cell physiology or Ab responses. Ether lipid biosynthesis can involve the enzyme PexRAP, the product of the Dhrs7b gene. Using combinations of IMS and immunization experiments in mouse models with inducible Dhrs7b loss-of-function, we now show that B lineage-intrinsic expression of PexRAP promotes the magnitude and affinity maturation of a serological response. Moreover, the data revealed a Dhrs7b -dependent increase in ether phospholipids in primary follicles with a more prominent increase in GC. Mechanistically, PexRAP impacted B cell proliferation via enhanced survival associated with controlling levels of ROS and membrane peroxidation. These findings reveal a vital role of this peroxisomal enzyme in B cell homeostasis and the physiology of humoral immunity.
Collapse
|
5
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
6
|
Li D, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Shao F, Chaipanichkul P, Yoo KH, Wei W, Okoli UA, Deng S, Ke M, Cho WC, Heavey S, Feng D. Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives. Redox Biol 2024; 73:103208. [PMID: 38851002 PMCID: PMC11201350 DOI: 10.1016/j.redox.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Recently, numerous studies have reported the interaction between senescence and oxidative stress in cancer. However, there is a lack of a comprehensive understanding of the precise mechanisms involved. AIM Therefore, our review aims to summarize the current findings and elucidate by presenting specific mechanisms that encompass functional pathways, target genes, and related aspects. METHODS Pubmed and Web of Science databases were retrieved to search studies about the interaction between senescence and oxidative stress in cancer. Relevant publications in the reference list of enrolled studies were also checked. RESULTS In carcinogenesis, oxidative stress-induced cellular senescence acts as a barrier against the transformation of stimulated cells into cancer cells. However, the senescence-associated secretory phenotype (SASP) is positively linked to tumorigenesis. In the cancer progression stage, targeting specific genes or pathways that promote oxidative stress-induced cellular senescence can suppress cancer progression. In terms of treatment, many current clinical therapies combine with novel drugs to overcome resistance and reduce side effects by attenuating oxidative stress-induced senescence. Notably, emerging drugs control cancer development by enhancing oxidative stress-induced senescence. These studies highlight the complacted effects of the interplay between oxidative stress and senescence at different cancer stages and among distinct cell populations. Future research should focus on characterizing the roles of distinct senescent cell types in various tumor stages and identifying the specific components of SASP. CONCLUDSION We've summarized the mechanisms of senescence and oxidative stress in cancer and provided illustrative figures to guide future research in this area.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | | | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Shi Deng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
7
|
Zhang R, Yan Z, Zhong H, Luo R, Liu W, Xiong S, Liu Q, Liu M. Gut microbial metabolites in MASLD: Implications of mitochondrial dysfunction in the pathogenesis and treatment. Hepatol Commun 2024; 8:e0484. [PMID: 38967596 PMCID: PMC11227362 DOI: 10.1097/hc9.0000000000000484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/06/2024] Open
Abstract
With an increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has become a major global health problem. MASLD is well-known as a multifactorial disease. Mitochondrial dysfunction and alterations in the gut bacteria are 2 vital events in MASLD. Recent studies have highlighted the cross-talk between microbiota and mitochondria, and mitochondria are recognized as pivotal targets of the gut microbiota to modulate the host's physiological state. Mitochondrial dysfunction plays a vital role in MASLD and is associated with multiple pathological changes, including hepatocyte steatosis, oxidative stress, inflammation, and fibrosis. Metabolites are crucial mediators of the gut microbiota that influence extraintestinal organs. Additionally, regulation of the composition of gut bacteria may serve as a promising therapeutic strategy for MASLD. This study reviewed the potential roles of several common metabolites in MASLD, emphasizing their impact on mitochondrial function. Finally, we discuss the current treatments for MASLD, including probiotics, prebiotics, antibiotics, and fecal microbiota transplantation. These methods concentrate on restoring the gut microbiota to promote host health.
Collapse
Affiliation(s)
- Ruhan Zhang
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Zhaobo Yan
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Huan Zhong
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Rong Luo
- Department of Acupuncture and Massage Rehabilitation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Weiai Liu
- Department of Acupuncture and Massage Rehabilitation, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Shulin Xiong
- Department of Preventive Center, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Qianyan Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Mi Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|
8
|
Zhong Y, Cao H, Li W, Deng J, Li D, Deng J. An analysis of the prognostic role of reactive oxygen species-associated genes in breast cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:3055-3148. [PMID: 38319140 DOI: 10.1002/tox.24128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND This study aimed to type breast cancer in relation to reactive oxygen species (ROS), clinical indicators, single nucleotide variant (SNV) mutations, functional differences, immune infiltration, and predictive responses to immunotherapy or chemotherapy, and constructing a prognostic model. METHODS We used uniCox analysis, ConsensusClusterPlus, and the proportion of ambiguous clustering (PAC) to analyze The Cancer Genome Atlas (TCGA) data to determine optimal groupings and obtain differentially expressed ROS-related genes. Clinical indicators were then combined with the classification results and the Chi-square test was used to assess differences. We further examined SNV mutations, and functional differences using gene set enrichment analysis (GSEA) analysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, immune cell infiltration, and response to immunotherapy and chemotherapy. A prognostic model for breast cancer was constructed using these differentially expressed genes, immunotherapy or chemotherapy responses, and survival curves. RT-qPCR was used to detect the differences in the expression of LCE3D, CA1, PIRT and SMR3A in breast cancer cell lines and normal breast epithelial cell line. RESULTS We identified two distinct tumor types with significant differences in ROS-related gene expression, clinical indicators, SNV mutations, functional pathways, and immune infiltration. The response to specific chemotherapy drugs and immunotherapy treatments also documented significant differences. The prognostic model constructed with 16 genes linked to survival could efficiently divide patients into high- and low-risk groups. The high-risk group showed a poorer prognosis, higher tumor purity, distinct immune microenvironment, and lower immunotherapy response. RT-qPCR results showed that LCE3D, CA1, PIRT and SMR3A are highly expressed in breast cancer. CONCLUSION Our methodical examination presented an enhanced insight into the molecular and immunological heterogeneity of breast cancer. It can contribute to the understanding of prognosis and offer valuable insights for personalized treatment strategies. Further, the prognostic model can potentially serve as a powerful tool for risk stratification and therapeutic decision-making in clinical settings.
Collapse
Affiliation(s)
- Yangyan Zhong
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Cao
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Li
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jian Deng
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Dan Li
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junjie Deng
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
Berman-Riu M, Cunill V, Clemente A, López-Gómez A, Pons J, Ferrer JM. Dysfunctional mitochondria, disrupted levels of reactive oxygen species, and autophagy in B cells from common variable immunodeficiency patients. Front Immunol 2024; 15:1362995. [PMID: 38596676 PMCID: PMC11002182 DOI: 10.3389/fimmu.2024.1362995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Common Variable Immunodeficiency (CVID) patients are characterized by hypogammaglobulinemia and poor response to vaccination due to deficient generation of memory and antibody-secreting B cells. B lymphocytes are essential for the development of humoral immune responses, and mitochondrial function, hreactive oxygen species (ROS) production and autophagy are crucial for determining B-cell fate. However, the role of those basic cell functions in the differentiation of human B cells remains poorly investigated. Methods We used flow cytometry to evaluate mitochondrial function, ROS production and autophagy processes in human naïve and memory B-cell subpopulations in unstimulated and stimulated PBMCs cultures. We aimed to determine whether any alterations in these processes could impact B-cell fate and contribute to the lack of B-cell differentiation observed in CVID patients. Results We described that naïve CD19+CD27- and memory CD19+CD27+ B cells subpopulations from healthy controls differ in terms of their dependence on these processes for their homeostasis, and demonstrated that different stimuli exert a preferential cell type dependent effect. The evaluation of mitochondrial function, ROS production and autophagy in naïve and memory B cells from CVID patients disclosed subpopulation specific alterations. Dysfunctional mitochondria and autophagy were more prominent in unstimulated CVID CD19+CD27- and CD19+CD27+ B cells than in their healthy counterparts. Although naïve CD19+CD27- B cells from CVID patients had higher basal ROS levels than controls, their ROS increase after stimulation was lower, suggesting a disruption in ROS homeostasis. On the other hand, memory CD19+CD27+ B cells from CVID patients had both lower ROS basal levels and a diminished ROS production after stimulation with anti-B cell receptor (BCR) and IL-21. Conclusion The failure in ROS cell signalling could impair CVID naïve B cell activation and differentiation to memory B cells. Decreased levels of ROS in CVID memory CD19+CD27+ B cells, which negatively correlate with their in vitro cell death and autophagy, could be detrimental and lead to their previously demonstrated premature death. The final consequence would be the failure to generate a functional B cell compartment in CVID patients.
Collapse
Affiliation(s)
- Maria Berman-Riu
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Vanesa Cunill
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio López-Gómez
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jaime Pons
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Joana M. Ferrer
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Wei M, He X, Liu N, Deng H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div 2024; 19:1. [PMID: 38217019 PMCID: PMC10787507 DOI: 10.1186/s13008-024-00107-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Reactive oxygen species (ROS), such as superoxides (O2 •-) and hydroxyl groups (OH·), are short-lived molecules containing unpaired electrons. Intracellular ROS are believed to be mainly produced by the mitochondria and NADPH oxidase (NOX) and can be associated with various physiological processes, such as proliferation, cell signaling, and oxygen homeostasis. In recent years, many studies have indicated that ROS play crucial roles in regulating ultraviolet (UV)-induced photodamage of the skin, including exogenous aging, which accounts for 80% of aging. However, to the best of our knowledge, the detailed signaling pathways, especially those related to the mechanisms underlying apoptosis in which ROS are involved have not been reviewed previously. In this review, we elaborate on the biological characteristics of ROS and its role in regulating UV-induced photodamage of the skin.
Collapse
Affiliation(s)
- Min Wei
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin He
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Na Liu
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Deng
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
12
|
Co-Targeting of BTK and TrxR as a Therapeutic Approach to the Treatment of Lymphoma. Antioxidants (Basel) 2023; 12:antiox12020529. [PMID: 36830087 PMCID: PMC9952695 DOI: 10.3390/antiox12020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a haematological malignancy representing the most diagnosed non-Hodgkin's lymphoma (NHL) subtype. Despite the approved chemotherapies available in clinics, some patients still suffer from side effects and relapsed disease. Recently, studies have reported the role of the Trx system and the BCR signalling pathway in cancer development and drug resistance. In this regard, we assessed a potential link between the two systems and evaluated the effects of [Au(d2pype)2]Cl (TrxR inhibitor) and ibrutinib (BTK inhibitor) alone and in combination on the cell growth of two DLBCL lymphoma cell lines, SUDHL2 and SUDHL4. In this study, we show higher expression levels of the Trx system and BCR signalling pathway in the DLBCL patient samples compared to the healthy samples. The knockdown of TrxR using siRNA reduced BTK mRNA and protein expression. A combination treatment with [Au(d2pype)2]Cl and ibrutinib had a synergistic effect on the inhibition of lymphoma cell proliferation, the activation of apoptosis, and, depending on lymphoma cell subtype, ferroptosis. Decreased BTK expression and the cytoplasmic accumulation of p65 were observed after the combination treatment in the DLBCL cells, indicating the inhibition of the NF-κB pathway. Thus, the co-targeting of BTK and TrxR may be an effective therapeutic strategy to consider for DLBCL treatment.
Collapse
|
13
|
Gao Y, Zhang J, Wang C, Han K, Hu L, Niu T, Yang Y, Chang Y, Xie J. Exogenous Proline Enhances Systemic Defense against Salt Stress in Celery by Regulating Photosystem, Phenolic Compounds, and Antioxidant System. PLANTS (BASEL, SWITZERLAND) 2023; 12:928. [PMID: 36840277 PMCID: PMC9963348 DOI: 10.3390/plants12040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress and no proline spraying as control. The results showed that proline-treated plants exhibited a significant increase in plant biomass due to improved growth physiology, supported by gas exchange parameters, chlorophyll fluorescence, and Calvin cycle enzyme activity (Ketosasaccharide-1,5-diphosphate carboxylase and Fructose-1,6-diphosphate aldolase) results. Also, proline spraying significantly suppressed the increase in relative conductivity and malondialdehyde content caused by salt stress, suggesting a reduction in biological membrane damage. Moreover, salt stress resulted in hydrogen peroxide, superoxide anions and 4-coumaric acid accumulation in celery, and their contents were reduced after foliar spraying of proline. Furthermore, proline increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the content of non-enzymatic antioxidants (reduced ascorbic acid, glutathione, caffeic acid, chlorogenic acid, total phenolic acids, and total flavonoids). Additionally, proline increased the activity of key enzymes (ascorbate oxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase) in the ascorbic acid-glutathione cycle, activating it to counteract salt stress. In summary, exogenous proline promoted celery growth under salt stress, enhanced photosynthesis, increased total phenolic acid and flavonoid contents, and improved antioxidant capacity, thereby improving salt tolerance in celery.
Collapse
|
14
|
Ulbricht C, Leben R, Cao Y, Niesner RA, Hauser AE. Combined FRET-FLIM and NAD(P)H FLIM to Analyze B Cell Receptor Signaling Induced Metabolic Activity of Germinal Center B Cells In Vivo. Methods Mol Biol 2023; 2654:91-111. [PMID: 37106177 DOI: 10.1007/978-1-0716-3135-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Affinity maturation of B cell clones within germinal centers constitutes an important mechanism for immune memory. During this process, B cell receptor signaling capacity is tested in multiple rounds of positive selection. Antigen stimulation and co-stimulatory signals mobilize calcium to switch on gene expression leading to proliferation and survival and to differentiation into memory B cells and plasma cells. Additionally, all these processes require adaption of B cell metabolism, and calcium signaling and metabolic pathways are closely interlinked. Mitochondrial adaption, ROS production, and NADPH oxidase activation are involved in cell fate decisions, but it remains elusive to what extent, especially because the analysis of these dynamic processes in germinal centers has to take place in vivo. Here, we introduce a quantitative intravital imaging method for combined measurement of cytoplasmic calcium concentration and enzymatic fingerprinting in germinal center B cells as a possible tool in order to further examine the relationship of calcium signaling and immunometabolism.
Collapse
Affiliation(s)
- Carolin Ulbricht
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ruth Leben
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and functional in vivo imaging, Freie Universität Berlin, Veterinary Medicine, Berlin, Germany
| | - Yu Cao
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and functional in vivo imaging, Freie Universität Berlin, Veterinary Medicine, Berlin, Germany
| | - Anja E Hauser
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany.
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
15
|
Yang W, Zeng Q, Pan Q, Huang W, Hu H, Shao Z. Application and prospect of ROS-related nanomaterials for orthopaedic related diseases treatment. Front Chem 2022; 10:1035144. [PMID: 36277336 PMCID: PMC9581401 DOI: 10.3389/fchem.2022.1035144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of reactive oxygen species (ROS) in the occurrence and development of orthopaedic related diseases is becoming increasingly prominent. ROS regulation has become a new method to treat orthopaedic related diseases. In recent years, the application of nanomaterials has become a new hope for precision and efficient treatment. However, there is a lack of reviews on ROS-regulated nanomaterials for orthopaedic related diseases. Based on the key significance of nanomaterials for the treatment of orthopaedic related diseases, we searched the latest related studies and reviewed the nanomaterials that regulate ROS in the treatment of orthopaedic related diseases. According to the function of nanomaterials, we describe the scavenging of ROS related nanomaterials and the generation of ROS related nanomaterials. In this review, we closely integrated nanomaterials with the treatment of orthopaedic related diseases such as arthritis, osteoporosis, wound infection and osteosarcoma, etc., and highlighted the advantages and disadvantages of existing nanomaterials. We also looked forward to the design of ROS-regulated nanomaterials for the treatment of orthopaedic related diseases in the future.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Zeng
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Pan
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| | - Hongzhi Hu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| | - Zengwu Shao
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| |
Collapse
|
16
|
Essential Protective Role of Catalytically Active Antibodies (Abzymes) with Redox Antioxidant Functions in Animals and Humans. Int J Mol Sci 2022; 23:ijms23073898. [PMID: 35409256 PMCID: PMC8999700 DOI: 10.3390/ijms23073898] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
During the life of aerobic organisms, the oxygen resulting from numerous reactions is converted into reactive oxygen species (ROS). Many ROS are dangerous due to their high reactivity; they are strong oxidants, and react with various cell components, leading to their damage. To protect against ROS overproduction, enzymatic and non-enzymatic systems are evolved in aerobic cells. Several known non-enzymatic antioxidants have a relatively low specific antioxidant activity. Superoxide dismutases, catalase, glutathione peroxidase, glutathione S-transferase, thioredoxin, and the peroxiredoxin families are the most important enzyme antioxidants. Artificial antibodies catalyzing redox reactions using different approaches have been created. During the past several decades, it has been shown that the blood and various biological fluids of humans and animals contain natural antibodies that catalyze different redox reactions, such as classical enzymes. This review, for the first time, summarizes data on existing non-enzymatic antioxidants, canonical enzymes, and artificial or natural antibodies (abzymes) with redox functions. Comparing abzymes with superoxide dismutase, catalase, peroxide-dependent peroxidase, and H2O2-independent oxidoreductase activities with the same activities as classical enzymes was carried out. The features of abzymes with the redox activities are described, including their exceptional diversity in the optimal pH values, dependency and independence on various metal ions, and the reaction rate constants for healthy donors and patients with different autoimmune diseases. The entire body of evidence indicates that abzymes with redox antioxidant activities existing in the blood for a long time compared to enzymes are an essential part of the protection system of humans and animals from oxidative stress.
Collapse
|
17
|
Ethyl pyruvate, a versatile protector in inflammation and autoimmunity. Inflamm Res 2022; 71:169-182. [PMID: 34999919 PMCID: PMC8742706 DOI: 10.1007/s00011-021-01529-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Ethyl pyruvate (EP) has potent influence on redox processes, cellular metabolism, and inflammation. It has been intensively studied in numerous animal models of systemic and organ-specific disorders whose pathogenesis involves a strong immune component. Here, basic chemical and biological properties of EP are discussed, with an emphasis on its redox and metabolic activity. Further, its influence on myeloid and T cells is considered, as well as on intracellular signaling beyond its effect on immune cells. Also, the effects of EP on animal models of chronic inflammatory and autoimmune disorders are presented. Finally, a possibility to apply EP as a treatment for such diseases in humans is discussed. Scientific papers cited in this review were identified using the PubMed search engine that relies on the MEDLINE database. The reference list covers the most important findings in the field in the past twenty years.
Collapse
|
18
|
Ma L, Lu Y, Li Y, Yang Z, Mao Y, Wang Y, Man S. A novel halogenated adenosine analog 5'-BrDA displays potent toxicity against colon cancer cells in vivo and in vitro. Toxicol Appl Pharmacol 2021; 436:115857. [PMID: 34979143 DOI: 10.1016/j.taap.2021.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023]
Abstract
Adenosine, as a naturally occurring nucleoside, plays an important role in human health maintenance. In recent years, many studies have shown that adenosine has the effect of cancer inhibition, and some of its analogs have been successfully marketed as anticancer drugs. This report mainly describes the anti-colon cancer activities and mechanism of a novel halogenated adenosine analog named 5'-bromodeoxyadenosine (5'-BrDA). As a result, 5'-BrDA concentration-dependently inhibited colon cancer cells proliferation, induced autophagy without disruption of lysosomal stability, and promoted autophagy-independently cellular mitochondrial apoptosis by increasing the accumulation of reactive oxygen species. Furthermore, 5'-BrDA inhibited the tumor growth of colon cancer in CT26 inbred mice without affecting the body weight in vivo. Collectively, the above-mentioned mechanisms contributed to the anticancer activity of 5'-BrDA. It is rare to discover novel anticancer adenosine analogs during the past couple of decades. We believe that our work will enrich the understanding of adenosine analogs, also, pave the way for adenosine analogs product based anticancer drug development.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaqin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhizhen Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Mao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
19
|
Jia G, Mao H, Zhang Y, Ni Y, Chen Y. Apigenin alleviates neomycin-induced oxidative damage via the Nrf2 signaling pathway in cochlear hair cells. Front Med 2021; 16:637-650. [PMID: 34921675 DOI: 10.1007/s11684-021-0864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of aminoglycoside-induced hearing loss and represents a promising target for treatment. We tested the potential effect of apigenin, a natural flavonoid with anticancer, anti-inflammatory, and antioxidant activities, on neomycin-induced ototoxicity in cochlear hair cells in vitro. Results showed that apigenin significantly ameliorated the loss of hair cells and the accumulation of reactive oxygen species upon neomycin injury. Further evidence suggested that the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was activated by apigenin treatment. Disruption of the Nrf2 axis abolished the effects of apigenin on the alleviation of oxidative stress and subsequent apoptosis of hair cells. This study provided evidence of the protective effect of apigenin on cochlear hair cells and its underlying mechanism.
Collapse
Affiliation(s)
- Gaogan Jia
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yanping Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yusu Ni
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
20
|
Hong Y, Zhou Z, Yu L, Jiang K, Xia J, Mi Y, Zhang C, Li J. Lactobacillus salivarius and Lactobacillus agilis feeding regulates intestinal stem cells activity by modulating crypt niche in hens. Appl Microbiol Biotechnol 2021; 105:8823-8835. [PMID: 34708278 DOI: 10.1007/s00253-021-11606-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022]
Abstract
Previously, we found that Lactobacillus salivarius, Lactobacillus agilis, and Lactobacillus aviarius were associated with excellent egg nutrition in native chicken. Next, the optimal Lactobacillus combination is worth studying. Here, a total of 120 HyLine hens (30 hens per group contained 3 replicate cells, 10 hens/cell) in the laying peak period were randomly divided into (1) control, (2) L. salivarius + L. agilis, (3) L. salivarius + L. aviarius, and (4) L. agilis + L. aviarius groups, fed with diet only or with corresponding Lactobacilli (108 colony-forming units/hen/day) for 30 days. As a result, L. salivarius + L. agilis feeding could (1) improve egg-laying rate, egg weight, and albumen's amino acid levels; (2) increase Lactobacillus abundance, decrease Escherichia coli abundance, upregulate the tryptophan metabolism pathway-related molecules, and downregulate the primary bile acid biosynthesis pathway-related molecules in intestinal contents; and (3) upregulate oxidative-phosphorylation pathway-related genes, reactive oxygen species levels, and mRNA abundance of Wnt3a, Dll1, Lgr5, CCDN1, and CDK2 in the crypt. Collectively, L. salivarius + L. agilis feeding in hens could improve intestinal microflora and metabolism profile, promote crypt's local energy metabolism and reactive oxygen species levels, and thus enhance Paneth cells and intestinal stem cells activity.Key points• Lactobacilli co-feeding could improve laying performance and egg nutrition.• Lactobacilli co-feeding could improve intestinal microflora and metabolism profile.• Lactobacilli co-feeding could enhance Paneth cells and intestinal stem cells activity.
Collapse
Affiliation(s)
- Yi Hong
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Zhou Zhou
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Lingzi Yu
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Keyang Jiang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jiamiao Xia
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yuling Mi
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jian Li
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
21
|
Kamarauskaite J, Baniene R, Raudone L, Vilkickyte G, Vainoriene R, Motiekaityte V, Trumbeckaite S. Antioxidant and Mitochondria-Targeted Activity of Caffeoylquinic-Acid-Rich Fractions of Wormwood ( Artemisia absinthium L.) and Silver Wormwood ( Artemisia ludoviciana Nutt.). Antioxidants (Basel) 2021; 10:antiox10091405. [PMID: 34573037 PMCID: PMC8469600 DOI: 10.3390/antiox10091405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Caffeoylquinic acids are some of the chemophenetically significant specialized metabolites found in plants of the family Asteraceae Dumort., possessing a broad spectrum of biological activities. As they might be potential mitochondria-targeted antioxidants, effective preparation methods—including extraction, isolation, and purification of caffeoylquinic acids from plant sources—are in great demand. The aim of this study was to fractionate the caffeoylquinic acids from cultivated wormwood (Artemisia absinthium L.) and silver wormwood (Artemisia ludoviciana Nutt.) herb acetone extracts and evaluate their phytochemical profiles, antioxidant activity (radical scavenging and reducing activities), effects on kidney mitochondrial functions, and cytochrome-c-reducing properties. The main findings of our study are as follows: (1) Aqueous fractions purified from wormwood and silver wormwood herb acetone extracts are rich in monocaffeoylquinic acids (chlorogenic acid, neochlorogenic acid, 4-O-caffeoylquinic acid), while methanolic fractions purified from wormwood and silver wormwood herb acetone extracts are rich in dicaffeoylquinic acids (4,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid). Aqueous fractions purified from wormwood and silver wormwood herb acetone extracts were solely composed of monocaffeoylquinic acids. Methanolic fractions purified from wormwood and silver wormwood herb acetone extracts contained only dicaffeoylquinic acids. (2) Fractions purified from silver wormwood herb acetone extracts stood out as having the greatest content of caffeoylquinic acids. (3) The greatest radical scavenging activity was determined in the dicaffeoylquinic-acid-rich fraction purified from silver wormwood herb acetone extract; the greatest reducing activity was determined in the dicaffeoylquinic-acid-rich fraction purified from wormwood herb acetone extract. (4) The effect of both fractions on mitochondrial functions was dose-dependent; lower concentrations of caffeoylquinic-acid-rich fractions had no effect on mitochondrial functions, whereas higher concentrations of caffeoylquinic-acid-rich fractions reduced the state 3 respiration rate (with the complex-I-dependent substrate glutamate/malate). (5) Both monocaffeoylquinic- and dicaffeoylquinic-acid-rich fractions possessed cytochrome-c-reducing properties; the greatest cytochrome c reduction properties were determined in the dicaffeoylquinic-acid-rich fraction purified from wormwood herb acetone extract. In summary, these findings show that caffeoylquinic acids might be beneficial as promising antioxidant and cytochrome-c-reducing agents for the modulation of mitochondria and treatment of various mitochondrial-pathway-associated pathologies.
Collapse
Affiliation(s)
- Justina Kamarauskaite
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (L.R.); (S.T.)
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Correspondence: ; Tel.: +370-62663418
| | - Rasa Baniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50161 Kaunas, Lithuania
| | - Lina Raudone
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (L.R.); (S.T.)
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Rimanta Vainoriene
- Institute of Regional Development, Vilnius University Siauliai Academy, Vytauto Str. 84, LT-76352 Siauliai, Lithuania;
| | - Vida Motiekaityte
- Faculty of Public Governance and Business, Mykolas Romeris University, Ateities Str. 20, LT-08303 Vilnius, Lithuania;
| | - Sonata Trumbeckaite
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (L.R.); (S.T.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| |
Collapse
|
22
|
Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes (Basel) 2020. [DOI: 10.3390/pr8111424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important oxidizing molecule that regulates the metabolisms of aerobic organisms. Redox signaling comprises physiological oxidative stress (eustress), while excessive oxidative stress causes damage to molecules. The main enzymatic generators of H2O2 are nicotinamide adenine dinucleotide phosphate oxidases or NADPH oxidases (NOXs) and mitochondrial respiratory chains, as well as various oxidases. The NOX family is constituted of seven enzyme isoforms that produce a superoxide anion (O2−), which can be converted to H2O2 by superoxide dismutase or spontaneously. H2O2 passes through the membranes by some aquaporins (AQPs), known as peroxyporins. It diffuses through cells and tissues to initiate cellular effects, such as proliferation, the recruitment of immune cells, and cell shape changes. Therefore, it has been proposed that H2O2 has the same importance as Ca2+ or adenosine triphosphate (ATP) to act as modulators in signaling and the metabolism. The present overview focuses on the metabolic processes of liver and adipose tissue, regulated by the H2O2 generated by NOXs.
Collapse
|
23
|
Johnson IRD, Nguyen CT, Wise P, Grimm D. Implications of Altered Endosome and Lysosome Biology in Space Environments. Int J Mol Sci 2020; 21:ijms21218205. [PMID: 33147843 PMCID: PMC7663135 DOI: 10.3390/ijms21218205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.
Collapse
Affiliation(s)
- Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Catherine T. Nguyen
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Petra Wise
- Department of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|