1
|
Kmentová N, Cruz-Laufer AJ, Pariselle A, Smeets K, Artois T, Vanhove MPM. Dactylogyridae 2022: a meta-analysis of phylogenetic studies and generic diagnoses of parasitic flatworms using published genetic and morphological data. Int J Parasitol 2022; 52:427-457. [PMID: 35245493 DOI: 10.1016/j.ijpara.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Dactylogyridae is one of the most studied families of parasitic flatworms with more than 1000 species and 166 genera described to date including ecto- and endoparasites. Dactylogyrid monogeneans were suggested as model organisms for host-parasite macroevolutionary and biogeographical studies due to the scientific and economic importance of some of their host lineages. Consequently, an array of phylogenetic research into different dactylogyrid lineages has been produced over the past years but the last family-wide study was published 16 years ago. Here, we provide a meta-analysis of the phylogenetic relationships of Dactylogyridae including representatives of all genera with available molecular data (n=67). First, we investigate the systematic informativeness of morphological characters widely used to diagnose dactylogyrid genera through a parsimony analysis of the characters, character mapping, and phylogenetic comparative methods. Second, we provide an overview of the current state of the systematics of the family and its subfamilies, and summarise potentially poly- and paraphyletic genera. Third, we elaborate on the implications of taxonomic, citation, and confirmation bias in past studies. Fourth, we discuss host range, biogeographical, and freshwater-marine patterns. We found two well-supported macroclades which we assigned to the subfamilies Dactylogyrinae and Ancyrocephalinae. These subfamilies further include 16 well-supported clades with only a few synapomorphies that could be deduced from generic diagnoses in the literature. Furthermore, few morphological characters considered systematically informative at the genus level display a strong phylogenetic signal. However, the parsimony analysis suggests that these characters provide little information on the relationships between genera. We conclude that a strong taxonomic bias and low coverage of DNA sequences and regions limit knowledge on morphological and biogeographical evolutionary patterns that can be inferred from these results. We propose addressing potential citation and confirmation biases through a 'level playing field' multiple sequence alignment as provided by this study.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Armando J Cruz-Laufer
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Antoine Pariselle
- ISEM, CNRS, Université de Montpellier, IRD, Montpellier, France; Laboratory "Biodiversity, Ecology and Genome", Mohammed V University in Rabat, Faculty of Sciences, 4 avenue Ibn Batouta, BP 1014, Rabat, Morocco
| | - Karen Smeets
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Tom Artois
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| |
Collapse
|
2
|
Soo OYM, Tan WB. Hamatopeduncularia Yamaguti, 1953 (Monogenea: Ancylodiscoididae) from catfish off Peninsular Malaysia: Description of two new species and insights on the genus. Parasitol Int 2021; 81:102282. [PMID: 33444771 DOI: 10.1016/j.parint.2021.102282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 11/28/2022]
Abstract
Hamatopeduncularia longiangusticirrata sp. nov. and H. petalumvaginata sp. nov. were collected from Arius maculatus and Nemapteryx caelata, respectively from Tanjung Karang, Peninsular Malaysia. Morphological and molecular investigations were carried out to ascertain the identity of the new species. The two new species differ from previously described Hamatopeduncularia species in the morphology of the male and female reproductive organs. Hamatopeduncularia longiangusticirrata sp. nov. possesses a long penis similar to H. elongata, H. longicopulatrix, H. brisbanensis, H. major and H. petalumvaginata sp. nov., but differs in having a thread-like tapering distal end and can be distinguished from H. brisbanensis and H. major in not having an accessory piece. Hamatopeduncularia longiangusticirrata sp. nov. is also unique in having an ornamented penis initial and a vaginal tube surrounded by fine hair-like structures. Hamatopeduncularia petalumvaginata sp. nov. possesses a simple penis without an accessory piece and a petaloid vaginal opening that resembles the arrangement of petals on a flower. Maximum likelihood trees were constructed from partial 28S and 18S rDNA sequences of the two new species and other ancylodiscoidids to reveal a strongly supported monophyletic branch consisting of the two new species for both markers. According to Lim's classification in 1996 of Hamatopeduncularia species penis type, H. petalumvaginata sp. nov. has been classified within the elegans-type and H. longiangusticirrata sp. nov. is proposed as the longiangusticirrata-type.
Collapse
Affiliation(s)
- O Y M Soo
- UCSI University KL, No.1, Jalan Menara Gading, Taman Connaught 56000 Cheras, Kuala Lumpur, Malaysia.
| | - W B Tan
- School of Science, Monash University, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Dmitrieva EV, Sanna D, Piras MC, Garippa G, Merella P. Xenoligophoroides cobitis (Ergens, 1963) n. g., n. comb. (Monogenea: Ancyrocephalidae), a parasite of Gobius cobitis Pallas (Perciformes: Gobiidae) from the Mediterranean and Black seas. Syst Parasitol 2018; 95:625-643. [PMID: 29998414 DOI: 10.1007/s11230-018-9805-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/20/2018] [Indexed: 11/26/2022]
Abstract
Based on an integrative taxonomic approach, combining morphological characters and partial sequences of the nuclear 28S rRNA gene, a new genus and combination for the species Xenoligophoroides cobitis (Ergens, 1963) is proposed, to accommodate ancyrocephalid monogeneans, parasites on the gills of Gobius cobitis Pallas (Gobiidae) from the western Mediterranean Sea and the northern Black Sea. A morphological comparison of newly collected material with the descriptions of Ancyrocephalus cobitis Ergens, 1963 and Haliotrema cupensis Sasal, Pages & Euzet, 1998, recently synonymised and named as Haliotrema cobitis (Ergens, 1963), confirms their similarity and belonging to the same species. However, characters of this species, as the vas deferens not looping the caecal branch, the bilobed base of the male copulatory organ and the marginal hooks with an upright thumb, do not correspond to the diagnosis of Haliotrema Johnston & Tiegs, 1922. Morphologically, this species is close to members of Ligophorus Euzet & Suriano, 1977 and Kriboetrema Sarabeev, Rubtsova, Yang & Balbuena, 2013, but differs from the former in the accessory piece articulated with MCO and two prostatic reservoirs, and from the latter in the uncoiled MCO with bilobed base and the dextral vaginal pore. Moreover, all species of Ligophorus and Kriboetrema are parasites of grey mullets. A 28S rDNA-based phylogenetic analysis of sequences derived from specimens of X. cobitis from the Mediterranean and Black seas, along with sequences from several closely related genera of the Ancyrocephalidae, suggested the occurrence of a new taxonomic unit, which corresponded to the X. cobitis specimens. This finding supports the establishment of the new genus for the ancyrocephalid parasites on the gills of G. cobitis from the western Mediterranean Sea and the northern Black Sea.
Collapse
Affiliation(s)
- Evgenija V Dmitrieva
- Department of Ecological Parasitology, A.O. Kovalevsky Institute of Marine Biological Research, 2 Nakhimov Ave., 299011, Sevastopol, Crimea.
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - M Cristina Piras
- Dipartimento di Medicina Veterinaria, Università di Sassari, via Vienna 2, 07100, Sassari, Italy
| | - Giovanni Garippa
- Dipartimento di Medicina Veterinaria, Università di Sassari, via Vienna 2, 07100, Sassari, Italy
| | - Paolo Merella
- Dipartimento di Medicina Veterinaria, Università di Sassari, via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
4
|
Aguiar JC, Maia AA, Silva MR, Ceccarelli PS, Domingues MV, Adriano EA. An integrative taxonomic study of Pavanelliella spp. (Monogenoidea, Dactylogyridae) with the description of a new species from the nasal cavities of an Amazon pimelodid catfish. Parasitol Int 2017; 66:777-788. [DOI: 10.1016/j.parint.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
5
|
Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang GT, Li WX. Sequencing of the complete mitochondrial genome of a fish-parasitic flatworm Paratetraonchoides inermis (Platyhelminthes: Monogenea): tRNA gene arrangement reshuffling and implications for phylogeny. Parasit Vectors 2017; 10:462. [PMID: 29017532 PMCID: PMC5633893 DOI: 10.1186/s13071-017-2404-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paratetraonchoides inermis (Monogenea: Tetraonchoididae) is a flatworm parasitising the gills of uranoscopid fishes. Its morphological characteristics are ambiguous, and molecular data have never been used to study its phylogenetic relationships, which makes its taxonomic classification controversial. Also, several decades of unsuccessful attempts to resolve the relationships within the Monogenea present a strong indication that morphological datasets may not be robust enough to be used to infer evolutionary histories. As the use of molecular data is currently severely limited by their scarcity, we have sequenced and characterized the complete mitochondrial (mt) genome of P. inermis. To investigate its phylogenetic position, we performed phylogenetic analyses using Bayesian inference and maximum likelihood approaches using concatenated amino acid sequences of all 12 protein-coding genes on a dataset containing all available monogenean mt genomes. RESULTS The circular mt genome of P. inermis (14,654 bp) contains the standard 36 genes: 22 tRNAs, two rRNAs, 12 protein-encoding genes (PCGs; Atp8 is missing) and a major non-coding region (mNCR). All genes are transcribed from the same strand. The A + T content of the whole genome (82.6%), as well as its elements, is the highest reported among the monogeneans thus far. Three tRNA-like cloverleaf structures were found in mNCR. Several results of the phylogenomic analysis are in disagreement with previously proposed relationships: instead of being closely related to the Gyrodactylidea, Tetraonchidea exhibit a phylogenetic affinity with the Dactylogyridea + Capsalidea clade; and the order Capsalidea is neither basal within the subclass Monopisthocotylea, nor groups with the Gyrodactylidea, but instead forms a sister clade with the Dactylogyridea. The mt genome of P. inermis exhibits a unique gene order, with an extensive reorganization of tRNAs. Monogenea exhibit exceptional gene order plasticity within the Neodermata. CONCLUSIONS This study shows that gene order within monopisthocotylid mt genomes is evolving at uneven rates, which creates misleading evolutionary signals. Furthermore, our results indicate that all previous attempts to resolve the evolutionary history of the Monogenea may have produced at least partially erroneous relationships. This further corroborates the necessity to generate more molecular data for this group of parasitic animals.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, People’s Republic of China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Petrov A, Gerasev P, Popyuk M, Dmitrieva E. Haptoral neuromusculature in two species of Dactylogyrus Diesing, 1850 (Monogenea: Dactylogyridae). Syst Parasitol 2016; 93:337-54. [DOI: 10.1007/s11230-015-9620-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
|
7
|
Leung TLF. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol Rev Camb Philos Soc 2015; 92:410-430. [PMID: 26538112 DOI: 10.1111/brv.12238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 01/20/2023]
Abstract
Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite-host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free-living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite-host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism-induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re-examination, display traits which are just as (if not more) likely to be found in free-living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history.
Collapse
Affiliation(s)
- Tommy L F Leung
- Department of Zoology Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
8
|
De Baets K, Dentzien-Dias P, Upeniece I, Verneau O, Donoghue PCJ. Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence. ADVANCES IN PARASITOLOGY 2015; 90:93-135. [PMID: 26597066 DOI: 10.1016/bs.apar.2015.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms.
Collapse
Affiliation(s)
- Kenneth De Baets
- Fachgruppe PaläoUmwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paula Dentzien-Dias
- Núcleo de Oceanografia Geológica, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Ieva Upeniece
- Department of Geology, University of Latvia, Riga, Latvia
| | - Olivier Verneau
- Centre de Formation et de Recherche sur les Environnements Méditerranéens, University of Perpignan Via Domitia, Perpignan, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, Perpignan, France; Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Science Building, Bristol, UK
| |
Collapse
|
9
|
Justine JL, Rahmouni C, Gey D, Schoelinck C, Hoberg EP. The monogenean which lost its clamps. PLoS One 2013; 8:e79155. [PMID: 24278118 PMCID: PMC3838368 DOI: 10.1371/journal.pone.0079155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/25/2013] [Indexed: 11/18/2022] Open
Abstract
Ectoparasites face a daily challenge: to remain attached to their hosts. Polyopisthocotylean monogeneans usually attach to the surface of fish gills using highly specialized structures, the sclerotized clamps. In the original description of the protomicrocotylid species Lethacotyle fijiensis, described 60 years ago, the clamps were considered to be absent but few specimens were available and this observation was later questioned. In addition, genera within the family Protomicrocotylidae have either clamps of the “gastrocotylid” or the “microcotylid” types; this puzzled systematists because these clamp types are characteristic of distinct, major groups. Discovery of another, new, species of the genus Lethacotyle, has allowed us to explore the nature of the attachment structures in protomicrocotylids. Lethacotyle vera n. sp. is described from the gills of the carangid Caranx papuensis off New Caledonia. It is distinguished from Lethacotyle fijiensis, the only other species of the genus, by the length of the male copulatory spines. Sequences of 28S rDNA were used to build a tree, in which Lethacotyle vera grouped with other protomicrocotylids. The identity of the host fish was confirmed with COI barcodes. We observed that protomicrocotylids have specialized structures associated with their attachment organ, such as lateral flaps and transverse striations, which are not known in other monogeneans. We thus hypothesized that the clamps in protomicrocotylids were sequentially lost during evolution, coinciding with the development of other attachment structures. To test the hypothesis, we calculated the surfaces of clamps and body in 120 species of gastrocotylinean monogeneans, based on published descriptions. The ratio of clamp surface: body surface was the lowest in protomicrocotylids. We conclude that clamps in protomicrocotylids are vestigial organs, and that occurrence of “gastrocotylid” and simpler “microcotylid” clamps within the same family are steps in an evolutionary sequence, leading to the absence of these attributes in species of Lethacotyle.
Collapse
Affiliation(s)
- Jean-Lou Justine
- UMR 7138 “Systématique, Adaptation, Évolution”, Muséum National d'Histoire Naturelle, CP 51, Paris, France
- * E-mail:
| | - Chahrazed Rahmouni
- UMR 7138 “Systématique, Adaptation, Évolution”, Muséum National d'Histoire Naturelle, CP 51, Paris, France
| | - Delphine Gey
- UMS 2700 Service de Systématique moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | - Charlotte Schoelinck
- UMR 7138 “Systématique, Adaptation, Évolution”, Muséum National d'Histoire Naturelle, CP 51, Paris, France
- Molecular Biology, Aquatic Animal Health, Fisheries and Oceans Canada, Moncton, Canada
| | - Eric P. Hoberg
- United States National Parasite Collection, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| |
Collapse
|
10
|
Přikrylová I, Vanhove MPM, Janssens SB, Billeter PA, Huyse T. Tiny worms from a mighty continent: high diversity and new phylogenetic lineages of African monogeneans. Mol Phylogenet Evol 2012; 67:43-52. [PMID: 23287552 DOI: 10.1016/j.ympev.2012.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
The family Gyrodactylidae contains one of the most significant radiations of platyhelminth fish parasites. The so-called hyperviviparity is very rare in the animal kingdom, and the rapid generation time can lead to an explosive population growth, which can cause massive losses in farmed fish. Here we present the first molecular phylogeny including all-but-one African genera, inferred from ITS and 18S rDNA sequences. The validity of nominal genera is discussed in relation to the systematic value of morphological characters traditionally used for generic identification. New complete 18S rDNA sequences of 18 gyrodactylid species of eight genera together with ITS rDNA gene sequences of eight species representing seven genera were generated and complemented with GenBank sequences. The maximum likelihood and Bayesian analyses pointed to a paraphyletic nature of African Gyrodactylus species. They formed well-supported clades possibly indicating speciation within host taxa: (1) parasites of cichlids (Cichlidae); (2) parasites of catfishes (Siluriformes), consisting of a lineage infecting mochokids and one infecting clariids. Macrogyrodactylus spp. firmly clustered into a monophyletic group. We found that Swingleus and Fundulotrema are very closely related and clearly cluster within Gyrodactylus. This supports earlier claims as to the paraphyly of the nominal genus Gyrodactylus as it is currently defined, and necessitates a revision of Swingleus and Fundulotrema. Molecular dating estimates confirmed a relatively young, certainly post-Gondwanan, origin of gyrodactylid lineages. Building on the previously suggested South-American origin of viviparous gyrodactylids, the dataset suggests subsequent intercontinental dispersal to Africa and from there repeated colonisation of the Holarctic. Even though the African continent has been heavily under sampled, the present diversity is far greater than in the intensively studied European fauna, probably because of the high endemicity of sub-Saharan Africa.
Collapse
Affiliation(s)
- Iva Přikrylová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
11
|
VIGNON MATTHIAS, PARISELLE ANTOINE, VANHOVE MAARTENPM. Modularity in attachment organs of African Cichlidogyrus (Platyhelminthes: Monogenea: Ancyrocephalidae) reflects phylogeny rather than host specificity or geographic distribution. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2010.01607.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Vignon M, Sasal P. The use of geometric morphometrics in understanding shape variability of sclerotized haptoral structures of monogeneans (Platyhelminthes) with insights into biogeographic variability. Parasitol Int 2010; 59:183-91. [DOI: 10.1016/j.parint.2010.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 01/18/2010] [Accepted: 01/24/2010] [Indexed: 11/28/2022]
|
13
|
Řehulková E, Justine JL, Gelnar M. Five new monogenean species from the gills of Mulloidichthys vanicolensis (Perciformes: Mullidae) off New Caledonia, with the proposal of Volsellituba n. g. and Pennulituba n. g. (Monogenea: Dactylogyridae). Syst Parasitol 2010; 75:125-45. [PMID: 20119705 DOI: 10.1007/s11230-009-9225-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/16/2009] [Indexed: 10/19/2022]
|
14
|
Phenotypic plasticity of taxonomic and diagnostic structures in gyrodactylosis-causing flatworms (Monogenea, Platyhelminthes). Parasitology 2009; 136:1305-15. [DOI: 10.1017/s0031182009990680] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe present study addresses the effect of varying temperature and host species on the size and shape of the opisthaptoral hard-parts in isogenic strains of Gyrodactylus salaris and G. thymalli. Variation in shape was examined using geometric morphometrics. Since the opisthaptoral hard-parts of Gyrodactylus have few specific landmarks, their shape information mostly being represented by outlines and surfaces, a method based on sliding semi-landmarks was applied. The ventral bars of G. salaris did not follow the previously postulated negative correlation between size and temperature, and the largest hamuli and marginal hooks from G. salaris and the smallest from G. thymalli clearly overlapped in size. Consistent shape differences with temperature were detected for the hard-parts from G. thymalli but not from G. salaris. The hard-parts of G. salaris were similar in size but significantly different in shape when grown on secondary hosts rather than the primary host.
Collapse
|
15
|
Glennon V, Chisholm LA, Whittington ID. Branchotenthes octohamatus sp. n. (Monogenea: Hexabothriidae) from the gills of the southern fiddler ray, Trygonorrhina fasciata (Rhinobatidae) in South Australia: description of adult and larva. Folia Parasitol (Praha) 2005; 52:223-30. [PMID: 16270803 DOI: 10.14411/fp.2005.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Branchotenthes octohamatus sp. n. (Monogenea: Hexabothriidae) is described from the gills of the southern fiddler ray, Trygonorrhina fasciata Müller et Henle (Elasmobranchii: Rhinobatidae), off Adelaide, South Australia. It is distinguished from the type species, Branchotenthes robinoverstreeti Bullard et Dippenaar, 2003, by producing eggs that are joined end to end forming a chain, in the morphology of the male copulatory organ that has a pronounced constriction in duct diameter between proximal and distal regions, the possession of a thin muscular layer surrounding the proximal part of the male copulatory organ and distal region of the vaginae, and by the absence of a raised process on the shaft of the hamulus. An amended generic diagnosis is provided and the reliability of sperm duct number as a generic character is discussed. The oncomiracidium of B. octohamatus is also described and is the first monogenean to be described with only eight hooklets in the larval haptor. This discovery of eight hooklets may be important for higher-level monogenean evolutionary hypotheses.
Collapse
Affiliation(s)
- Vanessa Glennon
- Marine Parasitology Laboratory, School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, South Australia, Australia.
| | | | | |
Collapse
|
16
|
Lim LH, Timofeeva TA, Gibson DI. Dactylogyridean monogeneans of the siluriform fishes of the Old World. Syst Parasitol 2001; 50:159-97. [PMID: 11590306 DOI: 10.1023/a:1012237801974] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This is a catalogue and discussion of the known dactylogyridean monogenean genera of siluriform fishes of the Old World. Of a total of 38 nominal genera, only 19 are considered valid. Seventeen of these 19 genera are currently in the Ancyrocephalidae (containing the Ancyrocephalinae and Ancylodiscoidinae), whilst the other two (Neocalceostoma and Neocalceostomoides) are in the Neocalceostomatidae. The 17 genera are Anchylodiscus, Ancylodiscoides, Bagrobdella, Bifurcohaptor, Bychowskyella, Chauhanellus, Cornudiscoides, Hamatopeduncularia, Mizelleus, Paraquadriacanthus, Pseudancylodiscoides, Protoancylodiscoides, Quadriacanthus, Schilbetrema, Schilbetrematoides, Synodontella and Thaparocleidus. Clariotrema Long, 1981 and Neobychowskyella Ma, Wang & Li, 1983 are considered synonyms of Bychowskyella Akhmerov, 1952, Anacornuatus Dubey, Gupta & Agarwal, 1992 is considered a synonym of Quadriacanthus Paperna, 1961, Mizellebychowskia Gupta & Sachdeva, 1990 is considered a synonym of Neocalceostoma Tripathi, 1959 and Hargitrema Tripathi, 1959 is treated as a synonym of Hamatopeduncularia Yamaguti, 1953. It is proposed that the Ancylodiscoidinae be raised to family status within the order Dactylogyridea to accommodate these 17 'ancyrocephalid' genera from siluriforms, together with Malayanodiscoides and Notopterodiscoides from notopterids. A key and the diagnostic characteristics of the 19 recognised dactylogyridean genera from catfishes plus two from notopterids, together with a list of species and synonyms, are included. New combinations made in this work are Thaparocleidus avicularia (Chen, 1987) n. comb., T. calyciflorus (Chen, 1987) n. comb., T. choanovagina (Luo & Lang, 1981) n. comb., T. dissimilis (Chen, 1988) n. comb., T. leiocassis (Reichenbach-Klinke, 1959) n. comb., T. meticulosa (Chen, 1987) n. comb., T. parasoti (Zhao & Ma, 1999) n. comb., T. persculpus (Chen, 1987) n. comb., T. valga (Chen, 1987) n. comb. and T. wulingensis (Yao & Wang, 1997) n. comb. [all from Silurodiscoides] and Bychowskyella glyptothoraci (Ma, Wang & Li, 1983) n. comb. [from Neobychowskyella].
Collapse
Affiliation(s)
- L H Lim
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
17
|
Mollaret I, Lim LH, Justine J. Phylogenetic position of the monogeneans Sundanonchus, Thaparocleidus, and Cichlidogyrus inferred from 28S rDNA sequences. Int J Parasitol 2000; 30:659-62. [PMID: 10779582 DOI: 10.1016/s0020-7519(00)00039-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular phylogeny was inferred from newly obtained partial 28S rRNA gene sequences of Sundanonchus micropeltis (Sundanonchidae), Thaparocleidus siamensis and Cichlidogyrus sp. (Ancyrocephalidae), and other already available sequences. Although sequences are lacking for several families, the following phylogenetic relationships could be inferred. The Diplectanidae were the sister-group to a clade including Sundanonchus and the Ancyrocephalidae; Sundanonchus was the sister-group to the Ancyrocephalidae, therefore suggesting validity of the Sundanonchidae, which include this single genus; within the Ancyrocephalidae, Thaparocleidus (Ancylodiscoidinae) was the sister-group to the four other taxa, though with relatively low support, suggesting that the Ancylodiscoidinae are the sister-group to the Ancyrocephalinae.
Collapse
Affiliation(s)
- I Mollaret
- Laboratoire de Biologie parasitaire, Protistologie, Helminthologie, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
18
|
Mollaret I, Jamieson BG, Justine JL. Phylogeny of the monopisthocotylea and Polyopisthocotylea (Platyhelminthes) inferred from 28S rDNA sequences. Int J Parasitol 2000; 30:171-85. [PMID: 10704600 DOI: 10.1016/s0020-7519(99)00197-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study focuses on the phylogenetic relationships within the Polyopisthocotylea and Monopisthocotylea, two groups that are often grouped within the monogeneans, a group of disputed paraphyly. Phylogenetic analyses were conducted with multiple outgroups chosen according to two hypotheses, a paraphyletic Monogenea or a monophyletic Monogenea, and with three methods, namely maximum parsimony, neighbour joining and maximum likelihood. Sequences used were from the partial domain C1, full domain D1, and partial domain C2 (550 nucleotides, 209 unambiguously aligned sites) from the 28S ribosomal RNA gene for 16 species of monopisthocotyleans, 26 polyopisthocotyleans including six polystomatids, and other Platyhelminthes (61 species in total, 27 new sequences). Results were similar with outgroups corresponding to the two hypotheses. Within the Monopisthocotylea, relationships were: ¿[(Udonella, capsalids), monocotylids], (diplectanids, ancyrocephalids)¿; each of these families was found to be monophyletic and their monophyly was supported by high bootstrap values in neighbour joining and maximum parsimony. Within the Polyopisthocotylea, the polystomatids were the sister-group of all others. Among the latter, Hexabothrium, parasite of chondrichthyans, was the most basal, and the mazocraeids, mainly parasites of clupeomorph teleosts, were the sister-groups of all other studied polyopisthocotyleans, these, mainly parasites of euteleosts, being polytomous.
Collapse
Affiliation(s)
- I Mollaret
- Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, EP 1790 CNRS "Biologie et Evolution des Parasites", Muséum National d'Histoire Naturelle, 61 rue Buffon, F-75231, Paris, France
| | | | | |
Collapse
|
19
|
Whittington ID, Chisholm LA, Rohde K. The Larvae of Monogenea (Platyhelminthes). ADVANCES IN PARASITOLOGY 1999. [DOI: 10.1016/s0065-308x(08)60232-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Fletcher AS. A parasite-host checklist for Monogenea from freshwater fishes in Australia, with comments on biodiversity. Syst Parasitol 1998. [DOI: 10.1023/a:1006039101265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Abstract
The diversity of monogeneans from Southeast Asia was examined using information from the literature to show their diversity at different taxonomic (subclass, family, genera, species) levels. Knowledge of monogeneans is still incomplete in Southeast Asia and the present numbers of monogeneans are likely an underestimate of what is present on/in aquatic organisms in the region, since so few hosts have been examined. An estimate of the possible numbers of monogeneans that could be present on/in fishes and turtles in Peninsular Malaysia indicates that only 8% of the monogeneans are presently known. Analysis of the available data on monogenean diversity (or species richness) at different taxonomic levels will provide useful information on their distribution patterns. There is an uneven distribution of investigations on this topic and Malayan fauna is considered to be representative of the Southeast Asian fauna. Southeast Asian (Sundaland) monogeneans are related (at the generic level) to the monogenean fauna of South China, India and Africa.
Collapse
Affiliation(s)
- L H Lim
- Institute of Biological Science/Institute of Postgraduate Studies and Research, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Abstract
On the basis of six main types of protonephridial systems in the genus Gyrodactylus and results from further studies of the protonephridial systems in other gyrodactylid genera and other monogenean families, evolutionary lines within the Gyrodactylidae and the origin of the genera Ooegyrodactylus, Swingleus, Gyrdicotylus and Polyclithrum are discussed. An excretory bladder (on both sides of the body) with separate openings for the main canals of the anterior and the posterior systems, a median junction between the two anterior systems and likewise a junction between the two posterior systems, many flame bulbs and an absence of lateral flames in the main canals were found to be primitive monogenean characters. A system similar to that in the acanthocotylid larva but with secondarily evolved lateral flames in the posterior systems may have given rise to a first protogyrodactylid system, in turn giving rise to the system of Macrogyrodactylus. In a second protogyrodactylid line, the main canal of the anterior system (on both sides of the body) was connected to that of the posterior system and lateral flames were developed also in the anterior system. From this system all other described gyrodactylid systems may arise: one main line gave rise to the system of the G. (Gyrodactylus) and another to a system of G. (Mesonephrothus) type. The systems of Swingleus and Gyrdicotylus are of the latter type. Through loss of all lateral flames, the system of G. (Metanephrotus) may have evolved. Isancistrum has a system of the G. (Metanephrotus) type. From this type of system, those of Polyclithrum, G. (Neonephrotus), G. (Paranephrotus) and G. (Limnonephrotus) can be derived. The fact that the system of Ooegyrodactylus is more closely related to that of G. (Gyrodactylus) than to that of Macrogyrodactylus prompts discussion regarding the evolution of the viviparity of the family Gyrodactylidae. According to the evolutionary system presented, primitive gyrodactylids parasitise primitive fish species and the most advanced gyrodactylids parasitise the most advanced fish species. However, Anguillidae and Clupeidae may have been secondarily infected by members of G. (Metanephrotus) and G. (Neonephrotus) respectively, and Cyprinidae, Salmonidae and Esocidae may similarly have been secondarily infected by members of G. (Limnonephrotus). Isancistrum may have infected squids (Loligidae) at a medium level in the evolution within the Gyrodactylidae, while progenitors of Gyrdicotylus may have been adapted to clawed toads (Xenopidae) earlier in evolution.
Collapse
Affiliation(s)
- G Malmberg
- Department of Zoology, Stockholm University, Sweden.
| |
Collapse
|
23
|
Shinn AP, Gibson DI, Sommerville C. Chaetotaxy of members of the Gyrodactylidae (Monogenea), with comments upon their systematic relationships with the Monopisthocotylea and Polyopisthocotylea. Syst Parasitol 1998. [DOI: 10.1023/a:1005848407086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Boeger WA, Kritsky DC. Coevolution of the Monogenoidea (Platyhelminthes) based on a revised hypothesis of parasite phylogeny. Int J Parasitol 1997; 27:1495-511. [PMID: 9467734 DOI: 10.1016/s0020-7519(97)00140-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A revised hypothesis for the phylogeny of the Subclass Polyonchoinea (Monogenoidea) was constructed employing phylogenetic systematics. The Acanthocotylidae (formerly of the Order Capsalidea) is transferred to the Order Gyrodactylidea based on this analysis. The new phylogeny is used to determine coevolutionary relationships of the familial taxa of Monogenoidea with their hosts. The coevolutionary analysis suggests that the Monogenoidea apparently underwent sympatric speciation or dispersal while parasitic on ancestral Gnathostomata, resulting in two primary clades: the Polyonchoinea and the Oligonchoinea + Polystomatoinea. The two parasite clades apparently cospeciated independently with divergence of the Chondrichthyes and Osteichthyes. In the Polyonchoinea, the clade associated with Chondrichthyes experienced primary extinction within the Holocephala, but coevolved into the Loimoidae and Monocotylidae in the Galeomorphii and Squalea (Elasmobranchii), respectively. Within the Osteichthyes, polyonchoineans experienced primary extinction with the divergence of Sarcopterygii, Polypteriformes and Acipenseriformes. They demonstrate primary dispersal from the Neopterygii into the Squalea (as Amphibdellatinea), Actinistia (as Neodactylodiscinea) and Urodela (as Lagarocotylidea). Secondary dispersals of polyonchoineans occurred in the Gyrodactylidae to the Polypteriformes, Urodela and Anura; in the Acanthocotylidae to the Myxinoidea and Squalea; in the Capsalidae to the Acipenseriformes and Elasmobranchii; and in the Monocotylidae to the Holocephala. The Oligonchoinea and Polystomatoinea developed upon divergence of the Chondrichthyes and Osteichthyes. Oligonchoineans cospeciated within the Chondrichthyes, with the Chimaericolidea developing within the Holocephala and the ancestor of the Diclybothriidea + Mazocraeidea within the Elasmobranchii. Two cases of primary dispersal occurred within this clade: the Diclybothriidae to the Acipenseriformes and the ancestor of mazocraeidean families to the Neopterygii (both Osteichthyes). Secondary dispersal within the Oligonchoinea includes host switching of the common ancestor of Callorhynchocotyle (Hexabothriidae) to the Holocephala. Polystomatoineans coevolved within the Osteichthyes, but experienced primary extinctions in the Actinopterygii, Actinistia, Dipnoi and Amniota. Coevolution of the Sphyranuridae and Polystomatidae occurred with divergence of the Urodela and Anura, respectively. Secondary dispersal of Polystomatids to the Urodela, Dipnoi and Amniota is suggested. A preliminary phylogenetic analysis of the Polystomatoinea suggests that primary extinction with secondary dispersal of polystomatids to the Dipnoi may not be necessary to explain extant parasite distributions, since Concinnocotyla (Concinnocotylinae) appears to represent the sister taxon of the remaining Polystomatidae + Sphyranuridae.
Collapse
Affiliation(s)
- W A Boeger
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | | |
Collapse
|
25
|
Shinn AP, Gibson DI, Sommerville C. Argentophilic structures as a diagnostic criterion for the discrimination of species of the genus Gyrodactylus von Nordmann (Monogenea). Syst Parasitol 1997. [DOI: 10.1023/a:1005771914482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Lim LHS. Eight new species ofHamatopeduncularia Yamaguti, 1953 (Monogenea: Ancyrocephalidae) from Ariidae of Peninsular Malaysia. Syst Parasitol 1996. [DOI: 10.1007/bf01526634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Eight new species of Hamatopeduncularia Yamaguti, 1953 (Monogenea: Ancyrocephalidae) from Ariidae of Peninsular Malaysia. Syst Parasitol 1996. [DOI: 10.1007/bf00009720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Lim LHS. Two new species ofPseudodactylogyroides Ogawa, 1986 (Monogenea) from two species of eleotridid fishes of Peninsular Malaysia. Syst Parasitol 1995. [DOI: 10.1007/bf00009299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
|
30
|
Williams JB. Phylogeny of the Polystomatidae (Platyhelminthes, Monogenea), with particular reference to Polystoma integerrimum. Int J Parasitol 1995; 25:437-41. [PMID: 7635619 DOI: 10.1016/0020-7519(94)00138-e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polystome phylogeny is examined, with emphasis on the dimorphism of the frog parasite Polystoma integerrimum, which exists in a fully differentiated and a neotenic form, and the evolutionary development of exclusively neotenic genera. Protopolystoma, which infects the aquatic toad Xenopus, has essentially the same morphology as the neotenic (branchial) adult of P. integerrimum and is interpreted as a neotenic genus; however, it inhabits the bladder of its host, the infection site of the normal adult of the dimorphic species. The sphyranurid Sphyranura, ectoparasitic on the external gills of the mud puppy Necturus, resembles the two-sucker larva of P. integerrimum in possessing a single pair of haptorial suckers in place of the 6 suckers of adult polystomes, and is probably a neotenic parasite associated with a neotenic host. The neotenic animals in general are parasites of aquatic hosts, and the uterus is lost or reduced in these genera; by contrast, uterine function is greatly enhanced among polystomes infecting amphibians best adapted to terrestrial life.
Collapse
Affiliation(s)
- J B Williams
- Department of Zoology, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
31
|
Neocalceostoma Tripathi, 1957 and Neocalceostomoides Kritsky, Mizelle & Bilqees, 1978 (Monogenea: Neocalceostomatidae n. fam.) from ariid fishes of Peninsular Malaysia. Syst Parasitol 1995. [DOI: 10.1007/bf00010167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Chauhanellus Bychowsky & Nagibina, 1969 (Monogenea) from ariid fishes (Siluriformes) of Peninsular Malaysia. Syst Parasitol 1994. [DOI: 10.1007/bf00009590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Boeger WA, Kritsky DC. Phylogeny and a revised classification of the Monogenoidea Bychowsky, 1937 (Platyhelminthes). Syst Parasitol 1993. [DOI: 10.1007/bf00009644] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Kearn GC. A new species of the genusEnoplocotyle(Plateyhelminthes: Monogenea) parasitic on the skin the moray eelGymnothorax kidakoin Japan, with observations on hatching and the oncomiracidium. J Zool (1987) 1993. [DOI: 10.1111/j.1469-7998.1993.tb02654.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Justine JL, Afzelius BA, Malmberg G, Mattei X. Ultrastructure of Spermiogenesis inAcanthocotyleandMyxinidocotyle(Platyhelminthes, Monogenea, Acanthocotylidae). ACTA ZOOL-STOCKHOLM 1993. [DOI: 10.1111/j.1463-6395.1993.tb01228.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Beverley-Burton M, Chisholm LA, Allison FR. The species of Callorhynchicola Brinkmann (Monogenea: Chimaericolidae) from Callorhinchus spp. (Chimaeriformes: Callorhinchidae): adult morphology and the larval haptor. Syst Parasitol 1993. [DOI: 10.1007/bf00010533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
|
38
|
Cladistic study in the monogenea (Platyhelminthes), based upon a parsimony analysis of spermiogenetic and spermatozoal ultrastructural characters. Int J Parasitol 1991. [DOI: 10.1016/0020-7519(91)90151-v] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Xylander WER. Ultrastructure of the lycophora larva ofGyrocotyle urna (Cestoda, Gyrocotylidea). ZOOMORPHOLOGY 1991. [DOI: 10.1007/bf01632710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
MALMBERG GORAN, AFZELIUS BJORNA. Sperm ultrastructure in Myxinidocotyle and Acanthocotyle (Platyhelminthes, Monogenea, Acanthocotylidae). ZOOL SCR 1990. [DOI: 10.1111/j.1463-6409.1990.tb00245.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|