1
|
Su J, Li M, Yang H, Shu H, Yu K, Cao H, Xu G, Wang M, Zhu Y, Zhu Y, Ma C, Shao J. Enrichment of grape berries and tomato fruit with health-promoting tartaric acid by expression of the Vitis vinifera transketolase VvTK2 gene. Int J Biol Macromol 2024; 257:128734. [PMID: 38086429 DOI: 10.1016/j.ijbiomac.2023.128734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Tartaric acid (TA) is a major non-fermentable plant soluble acid that abundantly occur in grapes and wines, imparting low pH and tart flavour to berries thereby regulating numerous quality attributes of wine, such as flavour, microbial stability, and aging potential. Evaluation of acidity in mature fruits of 21 wine grape (Vitis vinifera) varieties revealed significant variation between 'Beichun' and 'Gewürztraminer', which was correlated with TA content. RNA-seq analysis of fruits from the two cultivars at different developmental stages revealed that a transketolase gene, VvTK2, was significantly dominantly expressed in the high TA phenotype 'Beichun' variety. Subcellular localization assay showed that VvTK2 protein was located in the chloroplast. Virus-induced VvTK2 gene silencing significantly decreased the expression of 2-keto-L-gulonic acid reductase (Vv2-KGR) as well as L-idonate dehydrogenase (VvL-IdnDH3) and inhibited TA accumulation, while its transient over-expression in grape showed the opposite results. Heterologous VvTK2 over-expression in tomato demonstrated its obvious capacity to induce TA synthesis. Overall, these results highlights a novel role of VvTK2 in modulating TA biosynthesis, which could be an excellent strategy for future genetic improvement of grape flavour.
Collapse
Affiliation(s)
- Jing Su
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Menghan Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Huanqi Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Helin Shu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kunmiao Yu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Huiling Cao
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Gezhe Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Minghui Wang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yifan Zhu
- College of Plant protection, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yingan Zhu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Chunhua Ma
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Jianhui Shao
- College of Plant protection, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
2
|
Nauton L, Hecquet L, Théry V. QM/MM Study of Human Transketolase: Thiamine Diphosphate Activation Mechanism and Complete Catalytic Cycle. J Chem Inf Model 2021; 61:3502-3515. [PMID: 34161071 DOI: 10.1021/acs.jcim.1c00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational model for human transketolase was proposed, showing that thiamine diphosphate activation was based on His110 in place of His481 reported in yeast transketolase. In addition, a complete catalytic reaction pathway was investigated using d-xylulose-5-phosphate and d-ribose-5-phosphate as substrates, showing at every step a perfect superimposition of our model with high-resolution crystallographic structures 3MOS, 4KXV, and 4KXX. This study shows that H2N4' of the active thiamine diphosphate "V form" no longer has a self-activating role but allows self-stabilization of the cofactor and of the Breslow intermediate. These advances in our knowledge of the human transketolase mechanism offer interesting prospects for the design of new drugs, this enzyme being involved in several diseases, and for a better understanding of the reactions catalyzed by transketolases from other sources.
Collapse
Affiliation(s)
- Lionel Nauton
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Vincent Théry
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Patterson EL, Saski CA, Sloan DB, Tranel PJ, Westra P, Gaines TA. The Draft Genome of Kochia scoparia and the Mechanism of Glyphosate Resistance via Transposon-Mediated EPSPS Tandem Gene Duplication. Genome Biol Evol 2019; 11:2927-2940. [PMID: 31518388 PMCID: PMC6808082 DOI: 10.1093/gbe/evz198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Increased copy number of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene confers resistance to glyphosate, the world's most-used herbicide. There are typically three to eight EPSPS copies arranged in tandem in glyphosate-resistant populations of the weed kochia (Kochia scoparia). Here, we report a draft genome assembly from a glyphosate-susceptible kochia individual. Additionally, we assembled the EPSPS locus from a glyphosate-resistant kochia plant by sequencing select bacterial artificial chromosomes from a kochia bacterial artificial chromosome library. Comparing the resistant and susceptible EPSPS locus allowed us to reconstruct the history of duplication in the structurally complex EPSPS locus and uncover the genes that are coduplicated with EPSPS, several of which have a corresponding change in transcription. The comparison between the susceptible and resistant assemblies revealed two dominant repeat types. Additionally, we discovered a mobile genetic element with a FHY3/FAR1-like gene predicted in its sequence that is associated with the duplicated EPSPS gene copies in the resistant line. We present a hypothetical model based on unequal crossing over that implicates this mobile element as responsible for the origin of the EPSPS gene duplication event and the evolution of herbicide resistance in this system. These findings add to our understanding of stress resistance evolution and provide an example of rapid resistance evolution to high levels of environmental stress.
Collapse
Affiliation(s)
- Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
- Department of Genetics and Biochemistry, Clemson University
| | | | | | | | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| |
Collapse
|
4
|
Chapagain S, Park YC, Kim JH, Jang CS. Oryza sativa salt-induced RING E3 ligase 2 (OsSIRP2) acts as a positive regulator of transketolase in plant response to salinity and osmotic stress. PLANTA 2018; 247:925-939. [PMID: 29285618 DOI: 10.1007/s00425-017-2838-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 05/13/2023]
Abstract
A rice gene (OsSIRP2) encoding the RING Ub E3 ligase was highly induced under salinity stress and physically interacted with a transketolase (OsTKL1). Overexpression of OsSIRP2 conferred salinity and osmotic stress tolerance in plants. The RING E3 ligases play a vital role in post transitional modification through ubiquitination-mediated protein degradation that mediate plants responses during abiotic stresses and signal transduction. In this study, we report an Oryza sativa salt induced Really Interesting New Gene (RING) finger protein 2 gene (OsSIRP2) and elucidate its role under salinity and osmotic stress. The transcript levels of OsSIRP2 in rice leaves were induced in response to different abiotic stresses, such as salt, drought, heat, and abscisic acid (ABA) exposure. In vitro ubiquitination revealed that the OsSIRP2 protein formed poly-ubiquitin products, whereas a single amino acid substitution in OsSIRP2 (OsSIRP2C149A) in the RING domain did not form ubiquitinated substrates, supporting the hypothesis that E3 ligase activity requires the functional RING domain. Using the yeast two-hybrid (Y2H) assay, O. sativa transketolase 1 (OsTKL1) was identified as an interacting partner. OsSIRP2 was localized in the nucleus, whereas its interacting partner (OsTKL1) was localized in the cytosol and plastids in the rice protoplasts. Fluorescence signals between OsSIRP2 and OsTKL1 were observed in the cytosol. The pull-down assay confirmed the physical interaction between OsSIRP2 and OsTKL1. In vitro ubiquitination assay and in vitro protein degradation assay revealed that OsSIRP2 ubiquitinates OsTKL1 and enhances the degradation of OsTKL1 through the 26S proteasomal pathway. Heterogeneous overexpression of OsSIRP2 resulted in conferring tolerance against salinity and osmotic stress. Overall, our findings suggest that OsSIRP2 may be associated with plant responses to abiotic stresses and act as a positive regulator of salt and osmotic stress tolerance.
Collapse
Affiliation(s)
- Sandeep Chapagain
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Yong Chan Park
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Ju Hee Kim
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
5
|
Zhao P, Gu W, Huang A, Wu S, Liu C, Huan L, Gao S, Xie X, Wang G. Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis. JOURNAL OF PHYCOLOGY 2018; 54:34-43. [PMID: 29159944 DOI: 10.1111/jpy.12607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Iron is a limiting factor that controls the phytoplankton biomass in the modern ocean, and iron fertilization of the ocean could lead to blooms dominated by diatoms. Thus, iron plays an important role in controlling the distribution of diatoms. In this study, we measured the growth rate and photosynthetic activity of the model diatom Phaeodactylum tricornutum cultured under different iron concentrations and found that it grew more rapidly and had a much higher photosynthetic efficiency under higher iron concentrations. In order to explore the unique mechanism of the response of diatoms to iron, a proteomic analysis was carried out, and the results indicated that iron promotes the Calvin cycle of P. tricornutum. Diatoms can tolerate the pressure of iron limitation by replacing iron-rich proteins with flavodoxin, and so on. Moreover, we found that the photosystem I (PSI) activity of iron-limited algae that were treated by N',N',N',N'-tetramethyl-p-phenylenediamine (TMPD) was increased significantly. As TMPD plays the role of a cytochrome b6 /f complex that transfers electrons from photosystem II to PSI, the cytochrome b6 /f complex is the key to photosynthesis regulation. Iron could influence the growth of P. tricornutum by regulating its biosynthesis. All of the results suggest that iron might affect the growth of diatoms through the Calvin cycle and the cytochrome b6 /f complex.
Collapse
Affiliation(s)
- Peipei Zhao
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
- Biology Institute of Shandong Academy of Sciences, Jinan, 250014, China
| | - Wenhui Gu
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Aiyou Huang
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Songcui Wu
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Changheng Liu
- Biology Institute of Shandong Academy of Sciences, Jinan, 250014, China
| | - Li Huan
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Shan Gao
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Xiujun Xie
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| | - Guangce Wang
- Institute of Oceanology, Key Laboratory of Experimental Biology, Chinese Academy of Sciences, Qingdao, 266071, China
- Qingdao National Lab for Marine Science and Technology, Qingdao, 266200, China
| |
Collapse
|
6
|
Chaki M, Álvarez de Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. ANNALS OF BOTANY 2015; 116:637-47. [PMID: 25814060 PMCID: PMC4577987 DOI: 10.1093/aob/mcv016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. METHODS The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. KEY RESULTS Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. CONCLUSIONS The RNS profile reported here indicates that ripening of pepper fruit is characterized by an enhancement of S-nitrosothiols and protein tyrosine nitration. The nitrated proteins identified have important functions in photosynthesis, generation of NADPH, proteolysis, amino acid biosynthesis and oxidative metabolism. The decrease of catalase in red fruit implies a lower capacity to scavenge H2O2, which would promote lipid peroxidation, as has already been reported in ripe pepper fruit.
Collapse
Affiliation(s)
- Mounira Chaki
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| | - Paz Álvarez de Morales
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| | - Carmelo Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide. Department of Biochemistry and Molecular Biology, University of Jaén, 23071 Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide. Department of Biochemistry and Molecular Biology, University of Jaén, 23071 Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| |
Collapse
|
7
|
Lopes Júnior CA, Barbosa HDS, Moretto Galazzi R, Ferreira Koolen HH, Gozzo FC, Arruda MAZ. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 119:170-7. [PMID: 26004357 DOI: 10.1016/j.ecoenv.2015.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 05/15/2023]
Abstract
The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characterized using nESI-LC-MS/MS. The protein content decreases by approximately 41% in plants treated with 700mg Cd compared with control plants. By comparing all groups of plants evaluated in this study (Control vs. Cd-lower, Control vs. Cd-higher and Cd-lower vs. Cd-higher), 39 proteins are found differential and 18 accurately identified; the control vs. Cd-higher treatment is that presenting the most differential proteins. From identified proteins, those involved in energy and disease/defense (including stress), are the ribulose bisphosphate carboxylase large chain, transketolase, and heat shock proteins are the most differential abundant proteins. Thus, at the present study, photosynthesis is the main process affected by Cd in sunflowers, although these plants are highly tolerant to Cd.
Collapse
Affiliation(s)
- Cícero Alves Lopes Júnior
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Herbert de Sousa Barbosa
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; Department of Chemistry, Federal University of Piauí - UFPI, P.O. Box 6154, 64049-550 Teresina, PI, Brazil
| | - Rodrigo Moretto Galazzi
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Hector Henrique Ferreira Koolen
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; Dalton Mass Spectrometry Group, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fábio Cesar Gozzo
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; Dalton Mass Spectrometry Group, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
8
|
Hochmal AK, Schulze S, Trompelt K, Hippler M. Calcium-dependent regulation of photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:993-1003. [PMID: 25687895 DOI: 10.1016/j.bbabio.2015.02.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 01/03/2023]
Abstract
The understanding of calcium as a second messenger in plants has been growing intensively over the last decades. Recently, attention has been drawn to the organelles, especially the chloroplast but focused on the stromal Ca2+ transients in response to environmental stresses. Herein we will expand this view and discuss the role of Ca2+ in photosynthesis. Moreover we address of how Ca2+ is delivered to chloroplast stroma and thylakoids. Thereby, new light is shed on the regulation of photosynthetic electron flow and light-dependent metabolism by the interplay of Ca2+, thylakoid acidification and redox status. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Ana Karina Hochmal
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Stefan Schulze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany.
| |
Collapse
|
9
|
Bi H, Dong X, Wu G, Wang M, Ai X. Decreased TK activity alters growth, yield and tolerance to low temperature and low light intensity in transgenic cucumber plants. PLANT CELL REPORTS 2015; 34:345-54. [PMID: 25471346 DOI: 10.1007/s00299-014-1713-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 11/20/2014] [Indexed: 05/20/2023]
Abstract
Four CsTK antisense transgenic cucumber plants were obtained. Decreased TK activity decreased the photosynthetic rate, seed germination rate, growth yield, and the tolerance to low temperature and weak light stress. Transketolase (TK, EC 2.2.1.1) is a key enzyme in the photosynthetic carbon reduction cycle (Calvin cycle). A cDNA fragment (526 bp) encoding transketolase was cloned from cucumber plants (Cucumis sativa L. cv 'Jinyou 3') by RT-PCR. The antisense expression [(PBI-CsTK(-)] vector containing the CsTK gene fragment was constructed. The resulting plasmid was introduced into the cucumber inbred lines '08-1' using the agrobacterium-mediated method, and four antisense transgenic cucumber plants were obtained. Decreased CsTK expression either unaltered or slightly increased the mRNA abundance and activities of the other main enzymes in the Calvin cycle, however, it decreased the TK activity and net photosynthetic rate (Pn) in antisense transgenic cucumber leaves. Antisense plants showed decreases in the growth, ratio of female flowers and yield compared with the wild-type (WT) plants. The decrease in Pn, stomatal conductance (Gs), transpiration rate (Tr), photochemical efficiency (Fv/Fm) and actual photochemical efficiency of PSII (ΦPSII) and the increase in electrolyte leakage (EL) were greater in antisense transgenic plants than in WT plants under low temperature (5 °C) and low light intensity (100 μmol m(-2) s(-1)).
Collapse
Affiliation(s)
- Huangai Bi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong St., Tai'an, 271018, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Cloning, Expression and Characterization of Sugarcane (Saccharum officinarum L.) Transketolase. Protein J 2013; 32:551-9. [DOI: 10.1007/s10930-013-9516-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Bi H, Wang M, Dong X, Ai X. Cloning and expression analysis of transketolase gene in Cucumis sativus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:512-21. [PMID: 23860231 DOI: 10.1016/j.plaphy.2013.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 06/20/2013] [Indexed: 05/26/2023]
Abstract
Transketolase (TK, EC 2.2.1.1) is a key enzyme in the photosynthetic carbon reduction cycle (Calvin cycle). A full-length cDNA encoding transketolase (TK, designated as CsTK) was isolated from cucumber leaves (Cucumis sativa L. cv 'Jinyou 3') by RT-PCR and RACE. The cDNA contained 2368 nucleotides with a complete open reading frame (ORF) of 2229 nucleotides, which was predicted to encode a peptide of 742 amino acids. Expression analysis by real-time PCR and western blot revealed that TK mRNA was abundant in cucumber leaves and detectable in stems, fruits and roots. TK activity and the gene expression at the mRNA and protein levels was higher in mid-position leaves (4th apical leaves) than in upper position leaves (1st) and base position leaves (12th). The diurnal variation of CsTK expression and TK activity in the optimal functional leaf (4th leaf) was a single-peak curve, and the peak appeared at 14:00 on a sunny day. Low temperature (5 °C) and low light (100 μmol m(-2) s(-1)) induced CsTK expression, but the expression level decreased after 24 h of chilling stress. Over-expression of CsTK increased the TK activity, mRNA abundance and activities of other main enzymes in Calvin cycle, and net photosynthetic rate (Pn) in transgenic cucumber leaves. Transgenic plants showed a higher ratio of female flower and yield relative to the wild type (WT) plants. The decreases in Pn and carboxylation efficiency (CE) were less in transgenic plants than that in WT during low temperature and low light intensity.
Collapse
Affiliation(s)
- Huangai Bi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | |
Collapse
|
12
|
Andrews FH, McLeish MJ. Using site-saturation mutagenesis to explore mechanism and substrate specificity in thiamin diphosphate-dependent enzymes. FEBS J 2013; 280:6395-411. [DOI: 10.1111/febs.12459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Forest H. Andrews
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; IN USA
| | - Michael J. McLeish
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; IN USA
| |
Collapse
|
13
|
Fullam E, Pojer F, Bergfors T, Jones TA, Cole ST. Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme. Open Biol 2013; 2:110026. [PMID: 22645655 PMCID: PMC3352088 DOI: 10.1098/rsob.110026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
The transketolase (TKT) enzyme in Mycobacterium tuberculosis
represents a novel drug target for tuberculosis treatment and has low homology
with the orthologous human enzyme. Here, we report on the structural and kinetic
characterization of the transketolase from M. tuberculosis
(TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that
TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and
fructose-6-phosphate as well as the reduction of the acceptor sugar
ribose-5-phosphate. An invariant residue of the TKT consensus sequence required
for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities
are unaffected, and the 2.5 Å resolution structure of full-length TBTKT
provides an explanation for this. Key structural differences between the human
and mycobacterial TKT enzymes that impact both substrate and cofactor
recognition and binding were uncovered. These changes explain the kinetic
differences between TBTKT and its human counterpart, and their differential
inhibition by small molecules. The availability of a detailed structural model
of TBTKT will enable differences between human and M.
tuberculosis TKT structures to be exploited to design selective
inhibitors with potential antitubercular activity.
Collapse
|
14
|
Chen S, Yuan HM, Liu GF, Li HY, Jiang J. A label-free differential quantitative proteomics analysis of a TaLEA-introduced transgenic Populus simonii × Populus nigra dwarf mutant. Mol Biol Rep 2012; 39:7657-64. [DOI: 10.1007/s11033-012-1600-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/31/2012] [Indexed: 01/10/2023]
|
15
|
Ma Y, Jakowitsch J, Deusch O, Henze K, Martin W, Löffelhardt W. Transketolase from Cyanophora paradoxa: in vitro import into cyanelles and pea chloroplasts and a complex history of a gene often, but not always, transferred in the context of secondary endosymbiosis. J Eukaryot Microbiol 2009; 56:568-76. [PMID: 19883445 DOI: 10.1111/j.1550-7408.2009.00437.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glaucocystophyte Cyanophora paradoxa is an obligatorily photoautotrophic biflagellated protist containing cyanelles, peculiar plastids surrounded by a peptidoglycan layer between their inner and outer envelope membranes. Although the 136-kb cyanelle genome surpasses higher plant chloroplast genomes in coding capacity by about 50 protein genes, these primitive plastids still have to import >2,000 polypeptides across their unique organelle wall. One such protein is transketolase, an essential enzyme of the Calvin cycle. We report the sequence of the pre-transketolase cDNA from C. paradoxa and in vitro import experiments of precursor polypeptides into cyanelles and into pea chloroplasts. The transit sequence clearly indicates the localization of the gene product to cyanelles and is more similar to the transit sequences of the plant homologues than to transit sequences of other cyanelle precursor polypeptides with the exception of a cyanelle consensus sequence at the N-terminus. The mature sequence reveals conservation of the thiamine pyrophosphate binding site. A neighbor-net planar graph suggests that Cyanophora, higher plants, and the photosynthetic protist Euglena gracilis acquired their nuclear-encoded transketolase genes via endosymbiotic gene transfer from the cyanobacterial ancestor of plastids; in the case of Euglena probably entailing two transfers, once from the plastid in the green algal lineage and once again in the secondary endosymbiosis underlying the origin of Euglena's plastids. By contrast, transketolase genes in some eukaryotes with secondary plastids of red algal origin, such as Thalassiosira pseudonana, have retained the pre-existing transketolase gene germane to their secondary host.
Collapse
Affiliation(s)
- Yan Ma
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Golenberg EM, Sather DN, Hancock LC, Buckley KJ, Villafranco NM, Bisaro DM. Development of a gene silencing DNA vector derived from a broad host range geminivirus. PLANT METHODS 2009; 5:9. [PMID: 19573239 PMCID: PMC2713212 DOI: 10.1186/1746-4811-5-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/02/2009] [Indexed: 05/03/2023]
Abstract
BACKGROUND Gene silencing is proving to be a powerful tool for genetic, developmental, and physiological analyses. The use of viral induced gene silencing (VIGS) offers advantages to transgenic approaches as it can be potentially applied to non-model systems for which transgenic techniques are not readily available. However, many VIGS vectors are derived from Gemini viruses that have limited host ranges. We present a new, unipartite vector that is derived from a curtovirus that has a broad host range and will be amenable to use in many non-model systems. RESULTS The construction of a gene silencing vector derived from the geminivirus Beet curly top virus (BCTV), named pWSRi, is reported. Two versions of the vector have been developed to allow application by biolistic techniques or by agro-infiltration. We demonstrate its ability to silence nuclear genes including ribulose bisphosphate carboxylase small subunit (rbcS), transketolase, the sulfur allele of magnesium chelatase (ChlI), and two homeotic transcription factors in spinach or tomato by generating gene-specific knock-down phenotypes. Onset of phenotypes occurred 3 to 12 weeks post-inoculation, depending on the target gene, in organs that developed after the application. The vector lacks movement genes and we found no evidence for significant spread from the site of inoculation. However, viral amplification in inoculated tissue was detected and is necessary for systemic silencing, suggesting that signals generated from active viral replicons are efficiently transported within the plant. CONCLUSION The unique properties of the pWSRi vector, the ability to silence genes in meristem tissue, the separation of virus and silencing phenotypes, and the broad natural host range of BCTV, suggest that it will have wide utility.
Collapse
Affiliation(s)
- Edward M Golenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - D Noah Sather
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109, USA
| | - Leandria C Hancock
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1053, G017 Lied Building, Kansas City, KS 66160, USA
| | - Kenneth J Buckley
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA
| | - Natalie M Villafranco
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA
| | - David M Bisaro
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Willige BC, Kutzer M, Tebartz F, Bartels D. Subcellular localization and enzymatic properties of differentially expressed transketolase genes isolated from the desiccation tolerant resurrection plant Craterostigma plantagineum. PLANTA 2009; 229:659-666. [PMID: 19052774 DOI: 10.1007/s00425-008-0863-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/13/2008] [Indexed: 05/27/2023]
Abstract
The desiccation tolerant resurrection plant Craterostigma plantagineum encodes three classes of transketolase transcripts, which are distinguished by their gene structures and their expression patterns. One class, represented by tkt3, is constitutively expressed and two classes, represented by tkt7 and tkt10, are upregulated upon rehydration of desiccated C. plantagineum plants. The objective of this work was to characterize the differentially expressed transketolase isoforms with respect to subcellular localization and enzymatic activity. Using GFP fusion constructs and enzymatic activity assays, we demonstrate that C. plantagineum has novel forms of transketolase which localize not to the chloroplast, but mainly to the cytoplasm and which are distinct in the enzymatic properties from the transketolase enzymes active in the Calvin cycle or oxidative pentose phosphate pathway. A transketolase preparation from rehydrated leaves was able to synthesize the unusual C8 carbon sugar octulose when glucose-6-phosphate and hydroxy-pyruvate were used as acceptor and donor molecules in in vitro assays. This suggests that a transketolase catalyzed reaction is likely to be involved in the octulose biosynthesis in C. plantagineum.
Collapse
Affiliation(s)
- Björn C Willige
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | | | | | |
Collapse
|
18
|
Satoh A, Kurano N, Harayama S, Miyachi S. Effects of Chloramphenicol on Photosynthesis, Protein Profiles and Transketolase Activity under Extremely High CO2 Concentration in an Extremely-high-CO2-tolerant Green Microalga, Chlorococcum littorale. ACTA ACUST UNITED AC 2004; 45:1857-62. [PMID: 15653804 DOI: 10.1093/pcp/pch196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
An extremely-high-CO2-tolerant alga, Chlorococcum littorale, showed high quantum efficiency of PSII (PhiII) in the light at 40% CO2, as well as at 5% CO2. However, PhiII decreased greatly when chloramphenicol (CAP) was added at 40% CO2, while no such decrease was observed at 5% CO2. Cycloheximide showed no effect on PhiII at either 5% or 40% CO2. The amount of a 76 kDa polypeptide (p76) on SDS-PAGE decreased markedly in the presence of CAP at 40% CO2 but not at 5% CO2. A partial amino acid sequence of p76 was 71-100% identical (10-14 identical residues out of 14 amino acids determined) to those of transketolases (TKLs) reported in higher plants and a cyanobacterium. In agreement with these observations, the TKL activity in C. littorale was decreased by CAP at 40% CO2, but not at 5% CO2. The transient decrease in TKL activity caused by CAP under 40% CO2 was well correlated with that in PhiII. These results indicate that the addition of CAP directly or indirectly influences the stability of TKL in C. littorale at 40% CO2, but not at 5% CO2, and that photosynthetic activity was reduced by a decrease in TKL activity.
Collapse
Affiliation(s)
- Akira Satoh
- Marine Biotechnology Institute, 3-75-1Heita, Kamaishi, Iwate, 026-0001 Japan.
| | | | | | | |
Collapse
|
19
|
Gerhardt S, Echt S, Busch M, Freigang J, Auerbach G, Bader G, Martin WF, Bacher A, Huber R, Fischer M. Structure and properties of an engineered transketolase from maize. PLANT PHYSIOLOGY 2003; 132:1941-9. [PMID: 12913150 PMCID: PMC181279 DOI: 10.1104/pp.103.020982] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 03/04/2003] [Accepted: 05/06/2003] [Indexed: 05/20/2023]
Abstract
The gene specifying plastid transketolase (TK) of maize (Zea mays) was cloned from a cDNA library by southern blotting using a heterologous probe from sorghum (Sorghum bicolor). A recombinant fusion protein comprising thioredoxin of Escherichia coli and mature TK of maize was expressed at a high level in E. coli and cleaved with thrombin, affording plastid TK. The protein in complex with thiamine pyrophoshate was crystallized, and its structure was solved by molecular replacement. The enzyme is a C2 symmetric homodimer closely similar to the enzyme from yeast (Saccharomyces cerevisiae). Each subunit is folded into three domains. The two topologically equivalent active sites are located in the subunit interface region and resemble those of the yeast enzyme.
Collapse
Affiliation(s)
- Stefan Gerhardt
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Figge RM, Cassier-Chauvat C, Chauvat F, Cerff R. Characterization and analysis of an NAD(P)H dehydrogenase transcriptional regulator critical for the survival of cyanobacteria facing inorganic carbon starvation and osmotic stress. Mol Microbiol 2001; 39:455-68. [PMID: 11136465 DOI: 10.1046/j.1365-2958.2001.02239.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The three Synechocystis PCC6803 genes homologous to proteobacterial Calvin cycle regulators (cbbR) have been analysed. sll0998 appeared to be crucial to cell viability, whereas both sll0030 and sll1594 were found to be dispensable for cell growth. In spite of their sequence homology, Sll0030 and Sll1594 did not appear to regulate the transcription of Calvin cycle key genes. Further analysis of Sll1594 showed that this protein plays an important role in the adaptation to inorganic carbon starvation and osmotic stress. Sll1594 mediates the response to these stress conditions by regulating the transcription of a new regulon including the monocistronic genes sll1594 and slr1727 (encoding a presumptive Na+/H+ antiporter), as well as the ndh3 operon encoding the NAD(P)H-dehydrogenase subunits F3 and D3 and a protein of unknown function. The sll1594 gene and the ndh3 operon are negatively controlled by Sll1594, which also regulates the expression of the slr1727 gene. Sequence alignment of the diverse Sll1594 DNA binding sites led us to propose the TCAATG-(N10)-ATCAAT sequence as the consensus motif. To our knowledge, this is the first report on the characterization and analysis of a transcriptional regulator for ndh genes in a photoautotrophic organism.
Collapse
Affiliation(s)
- R M Figge
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | | | | | | |
Collapse
|
22
|
Kopriva S, Koprivova A, Süss KH. Identification, cloning, and properties of cytosolic D-ribulose-5-phosphate 3-epimerase from higher plants. J Biol Chem 2000; 275:1294-9. [PMID: 10625676 DOI: 10.1074/jbc.275.2.1294] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant cells contain a complete oxidative pentose phosphate pathway in the chloroplasts, but an incomplete pathway was proposed to be present in the cytosol, with cytosolic (cyt) isoforms of ribulose-5-phosphate 3-epimerase (RPEase) and other non-oxidative branch enzymes being undetectable. Here we present for the first time the identification, cloning, and properties of a cyt-RPEase in rice (Oryza sativa) and presence of its homologues in other plant species. Recombinant cyt-RPEase is a homodimer of 24.3-kDa subunits such as in the case of the animal and yeast enzymes, whereas the chloroplast (chl) RPEase is a hexamer. Cytosolic and chloroplastic RPEases cannot be separated by anion exchange chromatography. Since plant cyt-RPEase is more closely related in its primary structure to homologous enzymes in animal and yeast cells than to the chloroplast RPEase, the plant nuclear genes coding for cytosolic and chloroplast RPEases were most likely derived from eubacteria and cyanobacteria, respectively. Accumulation of cyt-RPEase-mRNA and protein is high in root cells, lacking chl-RPEase, and lower in green tissue. These and other observations support the view that green and non-green plant cells possess a complete oxidative pentose phosphate pathway in the cytosol.
Collapse
Affiliation(s)
- S Kopriva
- Institute of Plant Physiology, Altenbergrain 21, 3013 Bern, Switzerland.
| | | | | |
Collapse
|
23
|
|
24
|
Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 1998; 30:1297-318. [PMID: 9924800 DOI: 10.1016/s1357-2725(98)00095-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer's disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.
Collapse
Affiliation(s)
- G Schenk
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
25
|
Bouvier F, d'Harlingue A, Suire C, Backhaus RA, Camara B. Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits1. PLANT PHYSIOLOGY 1998; 117:1423-31. [PMID: 9701598 PMCID: PMC34906 DOI: 10.1104/pp.117.4.1423] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 05/11/1998] [Indexed: 05/19/2023]
Abstract
Isopentenyl diphosphate (IPP), which is produced from mevalonic acid or other nonmevalonic substrates, is the universal precursor of isoprenoids in nature. Despite the presence of several isoprenoid compounds in plastids, enzymes of the mevalonate pathway leading to IPP formation have never been isolated or identified to our knowledge. We now describe the characterization of two pepper (Capsicum annuum L.) cDNAs, CapTKT1 and CapTKT2, that encode transketolases having distinct and dedicated specificities. CapTKT1 is primarily involved in plastidial pentose phosphate and glycolytic cycle integration, whereas CapTKT2 initiates the synthesis of isoprenoids in plastids via the nonmevalonic acid pathway. From pyruvate and glyceraldehyde-3-phosphate, CapTKT2 catalyzes the formation of 1-deoxy-xylulose-5-phosphate, the IPP precursor. CapTKT1 is almost constitutively expressed during the chloroplast-to-chromoplast transition, whereas CapTKT2 is overexpressed during this period, probably to furnish the IPP necessary for increased carotenoid biosynthesis. Because deoxy-xylulose phosphate is shared by the plastid pathways of isoprenoid, thiamine (vitamin B1), and pyridoxine (vitamin B6) biosynthesis, our results may explain why albino phenotypes usually occur in thiamine-deficient plants.
Collapse
Affiliation(s)
- F Bouvier
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique and Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
26
|
Abstract
The extent to which the order of genes along chromosomes is conserved between Saccharomyces cerevisiae and related species was studied by analysing data from DNA sequence database. As expected, the extent of gene order conservation decreases with increasing evolutionary distance. About 59% of adjacent gene pairs in Kluyveromyces lactis or K. marxianus are also adjacent in S. cerevisiae, and a further 16% of Kluyveromyces neighbours can be explained in terms of the inferred ancestral gene order in Saccharomyces prior to the occurrence of an ancient whole-genome duplication. Only 13% of Candida albicans linkages, and no Schizosaccharomyces pombe linkages, are conserved. Analysis of gene order arrangements, chromosome numbers, and ribosomal RNA sequences suggests that genome duplication occurred before the divergence of the four species in Saccharomyces sensu stricto (all of which have 16 chromosomes), but after this lineage had diverged from Saccharomyces kluyveri and the Kluyveromyces lactislmarxianus species assemblage.
Collapse
Affiliation(s)
- R S Keogh
- Department of Genetics, University of Dublin, Trinity College, Ireland
| | | | | |
Collapse
|
27
|
Martin W, Mustafa AZ, Henze K, Schnarrenberger C. Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. PLANT MOLECULAR BIOLOGY 1996; 32:485-91. [PMID: 8980497 DOI: 10.1007/bf00019100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Full-size cDNAs encoding the precursors of chloroplast fructose-1,6-bisphosphatase (FBP), sedoheptulose-1,7-bisphosphatase (SBP), and the small subunit of Rubisco (RbcS) from spinach were cloned. These cDNAs complete the set of homologous probes for all nuclear-encoded enzymes of the Calvin cycle from spinach (Spinacia oleracea L.). FBP enzymes not only of higher plants but also of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a eubacterial origin of these eukaryotic nuclear genes. Chloroplast and cytosolic FBP isoenzymes of higher plants arose through a gene duplication event which occurred early in eukaryotic evolution. Both FBP and SBP of higher plant chloroplasts have acquired substrate specificity, i.e. have undergone functional specialization since their divergence from bifunctional FBP/SBP enzymes of free-living eubacteria.
Collapse
Affiliation(s)
- W Martin
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | |
Collapse
|