1
|
Niu M, Chen X, Zhou W, Guo Y, Yuan X, Cui J, Shen Z, Su N. Multi-omics analysis provides insights intro lysine accumulation in quinoa (Chenopodium quinoa Willd.) sprouts. Food Res Int 2023; 171:113026. [PMID: 37330848 DOI: 10.1016/j.foodres.2023.113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
Lysine, the first limiting essential amino acid, the deficiency of which seriously affects the health of human and animals. In this study, quinoa germination significantly increased the nutrients, especially lysine content. To better understanding the underlying molecular mechanism of lysine biosynthesis, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics, RNA-sequencing (RNA-Seq) technology and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) platform-based phytohormones analyses were conducted. Through proteome analyses, a total of 11,406 differentially expressed proteins were identified, which were mainly related to secondary metabolites. The lysine-rich storage globulins and endogenous phytohormones probably contributed the increased lysine content in quinoa during germination. Furthermore, aspartic acid semialdehyde dehydrogenase is essential for lysine synthesis in addition to aspartate kinase and dihydropyridine dicarboxylic acid synthase. Protein-protein interaction analysis indicated lysine biosynthesis is associated with "amino metabolism" and "starch and sucrose metabolism". Above all, our study screens the candidate genes participated in lysine accumulation and explores the factors affected lysine biosynthesis by multi-omics analysis. These information not only paves a foundation for breeding lysine-rich quinoa sprouts but also provides valuable multi-omics resource to explore the characteristic of nutrients during quinoa germination.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Youyou Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Kiekens R, de Koning R, Toili MEM, Angenon G. The Hidden Potential of High-Throughput RNA-Seq Re-Analysis, a Case Study for DHDPS, Key Enzyme of the Aspartate-Derived Lysine Biosynthesis Pathway and Its Role in Abiotic and Biotic Stress Responses in Soybean. PLANTS 2022; 11:plants11131762. [PMID: 35807714 PMCID: PMC9269547 DOI: 10.3390/plants11131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
DHDPS is a key enzyme in the aspartate-derived lysine biosynthesis pathway and an evident object of study for biofortification strategies in plants. DHDPS isoforms with novel regulatory properties in Medicago truncatula were demonstrated earlier and hypothesized to be involved in abiotic and biotic stress responses. Here, we present a phylogenetic analysis of the DHPDS gene family in land plants which establishes the existence of a legume-specific class of DHDPS, termed DHDPS B-type, distinguishable from the DHDPS A-type commonly present in all land plants. The G. max genome comprises two A-type DHDPS genes (Gm.DHDPS-A1; Glyma.09G268200, Gm.DHDPS-A2; Glyma.18G221700) and one B-type (Gm.DHDPS-B; Glyma.03G022300). To further investigate the expression pattern of the G. max DHDPS isozymes in different plant tissues and under various stress conditions, 461 RNA-seq experiments were exploited and re-analyzed covering two expression atlases, 13 abiotic and 5 biotic stress studies. Gm.DHDPS-B is seen almost exclusively expressed in roots and nodules in addition to old cotyledons or senescent leaves while both DHDPS A-types are expressed constitutively in all tissues analyzed with the highest expression in mature seeds. Furthermore, Gm.DHDPS-B expression is significantly upregulated in some but not all stress responses including salt stress, flooding, ethylene or infection with Phytophthora sojae and coincides with downregulation of DHDPS A-types. In conclusion, we demonstrate the potential of an in-depth RNA-seq re-analysis for the guidance of future experiments and to expand on current knowledge.
Collapse
Affiliation(s)
- Raphaël Kiekens
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Ramon de Koning
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Department of Horticulture and Food Security, School of Agriculture and Environmental Sciences, College of Agriculture and Natural Resources, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Correspondence: ; Tel.: +32-2-629-1935
| |
Collapse
|
3
|
Salaria S, Boatwright JL, Thavarajah P, Kumar S, Thavarajah D. Protein Biofortification in Lentils ( Lens culinaris Medik.) Toward Human Health. FRONTIERS IN PLANT SCIENCE 2022; 13:869713. [PMID: 35449893 PMCID: PMC9016278 DOI: 10.3389/fpls.2022.869713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 05/11/2023]
Abstract
Lentil (Lens culinaris Medik.) is a nutritionally dense crop with significant quantities of protein, low-digestible carbohydrates, minerals, and vitamins. The amino acid composition of lentil protein can impact human health by maintaining amino acid balance for physiological functions and preventing protein-energy malnutrition and non-communicable diseases (NCDs). Thus, enhancing lentil protein quality through genetic biofortification, i.e., conventional plant breeding and molecular technologies, is vital for the nutritional improvement of lentil crops across the globe. This review highlights variation in protein concentration and quality across Lens species, genetic mechanisms controlling amino acid synthesis in plants, functions of amino acids, and the effect of antinutrients on the absorption of amino acids into the human body. Successful breeding strategies in lentils and other pulses are reviewed to demonstrate robust breeding approaches for protein biofortification. Future lentil breeding approaches will include rapid germplasm selection, phenotypic evaluation, genome-wide association studies, genetic engineering, and genome editing to select sequences that improve protein concentration and quality.
Collapse
Affiliation(s)
- Sonia Salaria
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Jon Lucas Boatwright
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | | | - Shiv Kumar
- Biodiversity and Crop Improvement Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institute, Rabat, Morocco
| | - Dil Thavarajah
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- *Correspondence: Dil Thavarajah,
| |
Collapse
|
4
|
Soares da Costa TP, Hall CJ, Panjikar S, Wyllie JA, Christoff RM, Bayat S, Hulett MD, Abbott BM, Gendall AR, Perugini MA. Towards novel herbicide modes of action by inhibiting lysine biosynthesis in plants. eLife 2021; 10:69444. [PMID: 34313586 PMCID: PMC8341977 DOI: 10.7554/elife.69444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
Weeds are becoming increasingly resistant to our current herbicides, posing a significant threat to agricultural production. Therefore, new herbicides with novel modes of action are urgently needed. In this study, we exploited a novel herbicide target, dihydrodipicolinate synthase (DHDPS), which catalyses the first and rate-limiting step in lysine biosynthesis. The first class of plant DHDPS inhibitors with micromolar potency against Arabidopsis thaliana DHDPS was identified using a high-throughput chemical screen. We determined that this class of inhibitors binds to a novel and unexplored pocket within DHDPS, which is highly conserved across plant species. The inhibitors also attenuated the germination and growth of A. thaliana seedlings and confirmed their pre-emergence herbicidal activity in soil-grown plants. These results provide proof-of-concept that lysine biosynthesis represents a promising target for the development of herbicides with a novel mode of action to tackle the global rise of herbicide-resistant weeds.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Cody J Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Australia.,Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Australia
| | - Jessica A Wyllie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Saadi Bayat
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, Australia.,Australian Research Council Research Hub for Medicinal Agriculture, Bundoora, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
5
|
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 2018; 10:153-162. [PMID: 29204887 PMCID: PMC5899710 DOI: 10.1007/s12551-017-0350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Melbourne, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
6
|
Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RCJ, Gerrard JA, Wagner J, Perugini MA. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. PLANT MOLECULAR BIOLOGY 2013; 81:431-446. [PMID: 23354837 DOI: 10.1007/s11103-013-0014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Erzeel E, Van Bochaute P, Thu TT, Angenon G. Medicago truncatula dihydrodipicolinate synthase (DHDPS) enzymes display novel regulatory properties. PLANT MOLECULAR BIOLOGY 2013; 81:401-415. [PMID: 23329373 DOI: 10.1007/s11103-013-0008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Lysine biosynthesis in plants is tightly regulated by feedback inhibition of the end product on the first enzyme of the lysine-specific branch, dihydrodipicolinate synthase (DHDPS). Three complete DHDPS coding sequences and one partial sequence were obtained in Medicago truncatula via inverse PCR. Analysis of the MtDHDPS sequences indicated the presence of isozymes (MtDHDPS2 and MtDHDPS3) with multiple amino acid substitutions on positions previously shown to be involved in feedback inhibition and of residues important for catalytic activity, possibly affecting the enzymatic properties of these isoforms. Sequences similar to MtDHDPS2 and 3 are present in Lotus japonicus and Glycine max, suggesting the existence of a specific conserved class of DHDPS genes within the Fabaceae family. The MtDHDPS genes were found by quantitative RT-PCR analysis to be expressed in an organ-specific manner in M. truncatula. All four MtDHDPS enzymes were expressed separately in Escherichia coli, revealing a strongly reduced sensitivity of the MtDHDPS2 protein to lysine feedback inhibition and a severely reduced activity of the MtDHDPS3 protein. Remarkably, MtDHDPS3 expression in Arabidopsis thaliana produced transgenic plants with a significantly increased threonine level, suggesting a dominant DHDPS inhibiting role of this isoform. This is supported by co-expression experiments in E. coli which indicate that AtDHDPS and MtDHDPS3 interact and may form hetero-oligomers with strongly reduced enzymatic activity. In conclusion, analysis of DHDPS in M. truncatula revealed the presence of unique isozymes displaying novel regulatory properties.
Collapse
Affiliation(s)
- Ellen Erzeel
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | |
Collapse
|
8
|
Jones-Held S, Ambrozevicius LP, Campbell M, Drumheller B, Harrington E, Leustek T. Two Arabidopsis thaliana dihydrodipicolinate synthases, DHDPS1 and DHDPS2, are unequally redundant. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:1058-1067. [PMID: 32480855 DOI: 10.1071/fp12169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/14/2012] [Indexed: 06/11/2023]
Abstract
In Arabidopsis thalinana (L.) Heynh., DHDPS1 and DHDPS2 encode orthologous dihydrodipicolinate synthases (DHDPS), the first enzyme of the lysine (Lys) biosynthesis pathway. A TDNA insertion mutant of dhdps2 was previously reported to be viable and to accumulate free threonine (Thr). Analysis of additional TDNA insertion lines showed that dhdps1 and dhdps2 mutants are both viable and that whereas dhdps2 mutants accumulate Thr, dhdps1 plants do not. Thr-accumulation was complemented by heterologous expression of Escherichia coli DapA, indicating that the phenotype is due to reduced DHDPS activity in dhdps2. DHDPS1 contributes ~30% towards the total DHDPS activity in leaves of young plants and DHDPS2 contributes 70%; therefore, the threshold of activity resulting in Thr accumulation lies within this narrow range. dhdps1-dhdps2 double mutants could not be isolated, even after exogenous feeding with Lys. Segregation analysis indicated that gametes lacking functional DHDPS genes are defective, as are embryos. Plants carrying only a single DHDPS2 gene do not accumulate Thr, but they show a gametophytic defect that is partially rescued by Lys application. Despite the accumulation of Thr, dhdps2 seedlings are no more sensitive than wild-type plants to growth inhibition by Lys or the Lys precursor diaminopimelate. They also are not rescued by methionine at growth-inhibitory Lys concentrations. Exogenous application of Lys and methionine to dhdps2 mutants did not reduce the accumulation of Thr.
Collapse
Affiliation(s)
- Susan Jones-Held
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | | - Michael Campbell
- School of Science, Penn State Erie, The Behrend College, P-1 Prischak Building, 4205 College Drive, Erie, PA 16563-0203, USA
| | - Bradley Drumheller
- School of Science, Penn State Erie, The Behrend College, P-1 Prischak Building, 4205 College Drive, Erie, PA 16563-0203, USA
| | - Emily Harrington
- School of Science, Penn State Erie, The Behrend College, P-1 Prischak Building, 4205 College Drive, Erie, PA 16563-0203, USA
| | - Thomas Leustek
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
9
|
Jander G, Joshi V. Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. MOLECULAR PLANT 2010; 3:54-65. [PMID: 20019093 DOI: 10.1093/mp/ssp104] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants are either directly or indirectly the source of most of the essential amino acids in animal diets. Four of these essential amino acids-methionine, threonine, isoleucine, and lysine-are all produced from aspartate via a well studied biosynthesis pathway. Given the nutritional interest in essential amino acids, the aspartate-derived amino acid pathway has been the subject of extensive research. Additionally, several pathway enzymes serve as targets for economically important herbicides, and some of the downstream products are biosynthetic precursors for other essential plant metabolites such as ethylene and S-adenosylmethionine. Recent and ongoing research on the aspartate-derived family of amino acids has identified new enzyme activities, regulatory mechanisms, and in vivo metabolic functions. Together, these discoveries will open up new possibilities for plant metabolic engineering.
Collapse
Affiliation(s)
- Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14850, USA.
| | | |
Collapse
|
10
|
Jander G, Joshi V. Aspartate-Derived Amino Acid Biosynthesis in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2009; 7:e0121. [PMID: 22303247 PMCID: PMC3243338 DOI: 10.1199/tab.0121] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The aspartate-derived amino acid pathway in plants leads to the biosynthesis of lysine, methionine, threonine, and isoleucine. These four amino acids are essential in the diets of humans and other animals, but are present in growth-limiting quantities in some of the world's major food crops. Genetic and biochemical approaches have been used for the functional analysis of almost all Arabidopsis thaliana enzymes involved in aspartate-derived amino acid biosynthesis. The branch-point enzymes aspartate kinase, dihydrodipicolinate synthase, homoserine dehydrogenase, cystathionine gamma synthase, threonine synthase, and threonine deaminase contain well-studied sites for allosteric regulation by pathway products and other plant metabolites. In contrast, relatively little is known about the transcriptional regulation of amino acid biosynthesis and the mechanisms that are used to balance aspartate-derived amino acid biosynthesis with other plant metabolic needs. The aspartate-derived amino acid pathway provides excellent examples of basic research conducted with A. thaliana that has been used to improve the nutritional quality of crop plants, in particular to increase the accumulation of lysine in maize and methionine in potatoes.
Collapse
Affiliation(s)
- Georg Jander
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853 USA
- Address correspondence to
| | - Vijay Joshi
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853 USA
| |
Collapse
|
11
|
Wolterink-van Loo S, Levisson M, Cabrières MC, Franssen MCR, van der Oost J. Characterization of a thermostable dihydrodipicolinate synthase from Thermoanaerobacter tengcongensis. Extremophiles 2008; 12:461-9. [DOI: 10.1007/s00792-008-0152-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
|
12
|
Curien G, Biou V, Mas-Droux C, Robert-Genthon M, Ferrer JL, Dumas R. Amino acid biosynthesis: new architectures in allosteric enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:325-339. [PMID: 18272376 DOI: 10.1016/j.plaphy.2007.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Indexed: 05/25/2023]
Abstract
This review focuses on the allosteric controls in the Aspartate-derived and the branched-chain amino acid biosynthetic pathways examined both from kinetic and structural points of view. The objective is to show the differences that exist among the plant and microbial worlds concerning the allosteric regulation of these pathways and to unveil the structural bases of this diversity. Indeed, crystallographic structures of enzymes from these pathways have been determined in bacteria, fungi and plants, providing a wonderful opportunity to obtain insight into the acquisition and modulation of allosteric controls in the course of evolution. This will be examined using two enzymes, threonine synthase and the ACT domain containing enzyme aspartate kinase. In a last part, as many enzymes in these pathways display regulatory domains containing the conserved ACT module, the organization of ACT domains in this kind of allosteric enzymes will be reviewed, providing explanations for the variety of allosteric effectors and type of controls observed.
Collapse
Affiliation(s)
- Gilles Curien
- Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier, Commissariat à l'Energie Atomique, Institut de Recherche et de Technologie des Sciences du Vivant, 38054 Grenoble, France
| | | | | | | | | | | |
Collapse
|
13
|
Anzala F, Morère-Le Paven MC, Fournier S, Rondeau D, Limami AM. Physiological and molecular aspects of aspartate-derived amino acid metabolism during germination and post-germination growth in two maize genotypes differing in germination efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:645-53. [PMID: 16415333 DOI: 10.1093/jxb/erj054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Asp-derived amino acid pathway has been studied during the early stages of development in two maize genotypes, Io and F2, differing in germination efficiency and post-germination growth. In both genotypes expression of Ask2 (monofunctional Asp-kinase-2), Akh1 and Akh2 (bifunctional Asp-kinase-homo-Ser dehydrogenase-1 and 2), increased throughout germination and post-germination growth, suggesting a developmental regulation, whereas Ask1 (monofunctional Asp-kinase-1) was expressed constitutively. The major difference between Io and F2 concerned genes encoding bifunctional enzymes, particularly Akh2, the expression of which was dramatically low in F2. 15N-Asp labelling showed differences in in vivo Asp-kinase activities between the genotypes studied. Asp flux through the Met/Thr branches was higher in Io than in F2, while the latter exhibited a higher flux of Asp through the Lys branch. Physiological results, together with the higher Akh2 expression in Io, suggest that bifunctional enzyme activity, favourable to Met/Thr, was higher in Io than in F2 and that the monofunctional pathway was boosted in F2 because of the lower competition by the bifunctional pathway, thus allowing for higher flux of Asp through the Lys branch. In conclusion, it is suggested that F2 germination and post-germination growth might have been partially inhibited due to a limitation in Met and Thr availability. A negative physiological effect related to Lys accumulation in F2 is also discussed.
Collapse
Affiliation(s)
- Fabiola Anzala
- UMR INRA 1191, Physiologie Moléculaire des Semences, University of Angers, 2 Bd Lavoisier, F-49045 Angers cedex 01, France
| | | | | | | | | |
Collapse
|
14
|
Craciun A, Jacobs M, Vauterin M. Arabidopsis loss-of-function mutant in the lysine pathway points out complex regulation mechanisms. FEBS Lett 2000; 487:234-8. [PMID: 11150516 DOI: 10.1016/s0014-5793(00)02303-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In plants, the amino acids lysine, threonine, methionine and isoleucine have L-aspartate-beta-semialdehyde (ASA) as a common precursor in their biosynthesis pathways. How this ASA precursor is dispersed among the different pathways remains vague knowledge. The proportional balances of free and/or protein-bound lysine, threonine, isoleucine and methionine are a function of protein synthesis, secondary metabolism and plant physiology. Some control points determining the flux through the distinct pathways are known, but an adequate explanation of how the competing pathways share ASA in a fine-tuned amino acid biosynthesis network is yet not available. In this article we discuss the influence of lysine biosynthesis on the adjacent pathways of threonine and methionine. We report the finding of an Arabidopsis thaliana dihydrodipicolinate synthase T-DNA insertion mutant displaying lower lysine synthesis, and, as a result of this, a strongly enhanced synthesis of threonine. Consequences of these cross-pathway regulations are discussed.
Collapse
Affiliation(s)
- A Craciun
- Laboratorium voor Plantengenetica, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640, Sint Genesius Rode, Belgium
| | | | | |
Collapse
|
15
|
Azevedo RA, Arruda P, Turner WL, Lea PJ. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. PHYTOCHEMISTRY 1997; 46:395-419. [PMID: 9332022 DOI: 10.1016/s0031-9422(97)00319-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential amino acids lysine, threonine, methionine and isoleucine are synthesised in higher plants via a common pathway starting with aspartate. The regulation of the pathway is discussed in detail, and the properties of the key enzymes described. Recent data obtained from studies of regulation at the gene level and information derived from mutant and transgenic plants are also discussed. The herbicide target enzyme acetohydroxyacid synthase involved in the synthesis of the branched chain amino acids is reviewed.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Universidade de São Paulo, Piracicaba, SP, Brasil
| | | | | | | |
Collapse
|
16
|
Lawrence MC, Barbosa JA, Smith BJ, Hall NE, Pilling PA, Ooi HC, Marcuccio SM. Structure and mechanism of a sub-family of enzymes related to N-acetylneuraminate lyase. J Mol Biol 1997; 266:381-99. [PMID: 9047371 DOI: 10.1006/jmbi.1996.0769] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe here a sub-family of enzymes related both structurally and functionally to N-acetylneuraminate lyase. Two members of this family (N-acetylneuraminate lyase and dihydrodipicolinate synthase) have known three-dimensional structures and we now proceed to show their structural and functional relationship to two further proteins, trans-o-hydroxybenzylidenepyruvate hydratase-aldolase and D-4-deoxy-5-oxoglucarate dehydratase. These enzymes are all thought to involve intermediate Schiff-base formation with their respective substrates. In order to understand the nature of this intermediate, we have determined the three-dimensional structure of N-acetylneuraminate lyase in complex with hydroxypyruvate (a product analogue) and in complex with one of its products (pyruvate). From these structures we deduce the presence of a closely similar Schiff-base forming motif in all members of the N-acetylneuraminate lyase sub-family. A fifth protein, MosA, is also confirmed to be a member of the sub-family although the involvement of an intermediate Schiff-base in its proposed reaction is unclear.
Collapse
Affiliation(s)
- M C Lawrence
- Biomolecular Research Institute, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|