1
|
Masmoudi D, Villalba M, Alix-Panabières C. Natural killer cells: the immune frontline against circulating tumor cells. J Exp Clin Cancer Res 2025; 44:118. [PMID: 40211394 PMCID: PMC11983744 DOI: 10.1186/s13046-025-03375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Natural killer (NK) play a key role in controlling tumor dissemination by mediating cytotoxicity towards cancer cells without the need of education. These cells are pivotal in eliminating circulating tumor cells (CTCs) from the bloodstream, thus limiting cancer spread and metastasis. However, aggressive CTCs can evade NK cell surveillance, facilitating tumor growth at distant sites. In this review, we first discuss the biology of NK cells, focusing on their functions within the tumor microenvironment (TME), the lymphatic system, and circulation. We then examine the immune evasion mechanisms employed by cancer cells to inhibit NK cell activity, including the upregulation of inhibitory receptors. Finally, we explore the clinical implications of monitoring circulating biomarkers, such as NK cells and CTCs, for therapeutic decision-making and emphasize the need to enhance NK cell-based therapies by overcoming immune escape mechanisms.
Collapse
Affiliation(s)
- Doryan Masmoudi
- Laboratory of Rare Circulating Human Cells, University Medical Center of Montpellier, Montpellier, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells, University Medical Center of Montpellier, Montpellier, France.
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- LCCRH, Site Unique de Biologie (SUB), 641, Avenue du Doyen Gaston Giraud, Montpellier, 34093, France.
| |
Collapse
|
2
|
Nagai H, Karube R. Late-Stage Ovarian Cancer With Systemic Multiple Metastases Shows Marked Shrinkage Using a Combination of Wilms' Tumor Antigen 1 (WT1) Dendritic Cell Vaccine, Natural Killer (NK) Cell Therapy, and Nivolumab. Cureus 2024; 16:e56685. [PMID: 38523872 PMCID: PMC10960621 DOI: 10.7759/cureus.56685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
A patient with bilateral ovarian cancer, peritoneal dissemination, and multiple liver and lung metastases was found with a sudden accumulation of ascites six months after delivery. Chemotherapy was started, but the prognosis was judged to be poor, so immuno-cell therapy was combined with chemotherapy. After multiple cycles of Wilms' tumor antigen 1 (WT1) dendritic cell vaccine therapy and highly activated natural killer (NK) cell therapy, the patient showed a disappearance of ascites and a remarkable reduction of multiple cancers in the whole body. Furthermore, there were no side effects other than reactive fever caused by the administration of immune cells, and no damage to the patient's body was observed. This case suggests that not only the combined effects of chemotherapy and immunotherapy but also the combined use of various types of immuno-cell therapy may provide beneficial clinical effects in patients with extremely poor prognoses and few options for standard treatment.
Collapse
Affiliation(s)
- Hisashi Nagai
- Human and Environmental Studies, Tokai University, Hiratsuka, JPN
- Oncology, Ginza Phoenix Clinic, Tokyo, JPN
| | | |
Collapse
|
3
|
Muraro E, Brisotto G. Circulating tumor cells and host immunity: A tricky liaison. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:131-157. [PMID: 37739482 DOI: 10.1016/bs.ircmb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
During their dissemination, circulating tumor cells (CTCs) steadily face the immune system, which is a key player in the whole metastatic cascade, from intravasation to the CTC colonization of distant sites. In this chapter, we will go through the description of immune cells involved in this controversial dialogue encompassing both the anti-tumor activity and the tumor-promoting and immunosuppressive function mediated by several circulating immune effectors as natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, T helper 17, regulatory T cells, neutrophils, monocytes, macrophages, myeloid-derived suppressor cells, dendritic cells, and platelets. Then, we will report on the same interaction from the CTCs point of view, depicting the direct and indirect mechanisms of crosstalk with the above mentioned immune cells. Finally, we will report the recent literature evidence on the potential prognostic role of the integrated CTCs and immune cells monitoring in cancer patients management.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy.
| |
Collapse
|
4
|
Zhao X, Yan C. Research Progress of Cell Membrane Biomimetic Nanoparticles for Tumor Therapy. NANOSCALE RESEARCH LETTERS 2022; 17:36. [PMID: 35316443 PMCID: PMC8941025 DOI: 10.1186/s11671-022-03673-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/25/2022] [Indexed: 05/04/2023]
Abstract
Nanoparticles have unique properties and high design flexibility, which are thought to be safe, site-specific, and efficient drug delivery systems. However, nanoparticles as exogenous materials can provide recognition and be eliminated by the body's immune system, which considerably restricts their applications. To overcome these drawbacks, natural cell membrane coating method has attracted great attention in the field of drug delivery systems, which can prolong nanoparticles blood circulation time and avoiding the capture as well as elimination by the body immune system. Biomimetic nanoparticles via a top-down approach can avoid the laborious group modified engineering and keep the integrity of cell membrane structure and membrane antigens, which can be endowed with unique properties, such as immune escape, longer blood circulation time, targeting delivery and controlling drugs sustain-release. At the present research, erythrocyte membrane, cancer cell membrane, platelet membrane, lymphocyte membrane and hybrid membrane have been successfully coated into the surface of nanoparticles to achieve biological camouflage. Thus, integrating various kinds of cell membranes and nanoparticles into one system, the biomimetic nanoparticles can inherit unique biofunction and drug delivery properties to exhibit tumor targeting-delivery and antitumor outcomes. In this article, we will discuss the prospects and challenges of some basic cell membrane cloaking nanoparticles as a drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Xuefen Zhao
- Northern Jiangsu People's Hospital, Yangzhou, 225001, People's Republic of China
| | - Chao Yan
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an, 223002, People's Republic of China.
| |
Collapse
|
5
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
6
|
Saviana M, Romano G, Le P, Acunzo M, Nana-Sinkam P. Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers (Basel) 2021; 13:5633. [PMID: 34830787 PMCID: PMC8616161 DOI: 10.3390/cancers13225633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.
Collapse
Affiliation(s)
- Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| |
Collapse
|
7
|
Kang Y, Niu Z, Hadlock T, Purcell E, Lo T, Zeinali M, Owen S, Keshamouni VG, Reddy R, Ramnath N, Nagrath S. On-Chip Biogenesis of Circulating NK Cell-Derived Exosomes in Non-Small Cell Lung Cancer Exhibits Antitumoral Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003747. [PMID: 33747745 PMCID: PMC7967048 DOI: 10.1002/advs.202003747] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/14/2020] [Indexed: 05/19/2023]
Abstract
As the recognition between natural killer (NK) cells and cancer cells does not require antigen presentation, NK cells are being actively studied for use in adoptive cell therapies in the rapidly evolving armamentarium of cancer immunotherapy. In addition to utilizing NK cells, recent studies have shown that exosomes derived from NK cells also exhibit antitumor properties. Furthermore, these NK cell-derived exosomes exhibit higher stability, greater modification potentials and less immunogenicity compared to NK cells. Therefore, technologies that allow highly sensitive and specific isolation of NK cells and NK cell-derived exosomes can enable personalized NK-mediated cancer therapeutics in the future. Here, a novel microfluidic system to collect patient-specific NK cells and on-chip biogenesis of NK-exosomes is proposed. In a small cohort of non-small cell lung cancer (NSCLC) patients, both NK cells and circulating tumor cells (CTCs) were isolated, and it is found NSCLC patients have high numbers of NK and NK-exosomes compared with healthy donors, and these concentrations show a trend of positive and negative correlations with bloodborne CTC numbers, respectively. It is further demonstrated that the NK-exosomes harvested from NK-graphene oxide chip exhibit cytotoxic effect on CTCs. This versatile system is expected to be used for patient-specific NK-based immunotherapies along with CTCs for potential prognostic/diagnostic applications.
Collapse
Affiliation(s)
- Yoon‐Tae Kang
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Zeqi Niu
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Thomas Hadlock
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Emma Purcell
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Ting‐Wen Lo
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Mina Zeinali
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Sarah Owen
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | | | - Rishindra Reddy
- Michigan Medicine Thoracic Surgery ClinicTaubman Center1500E Medical Center Dr. SPC 5344Ann ArborMI48109USA
| | - Nithya Ramnath
- Department of Internal MedicineUniversity of MichiganAnn ArborMI48109USA
| | - Sunitha Nagrath
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
- Rogel Cancer CenterUniversity of Michigan1500 East Medical Center DriveAnn ArborMI48109USA
| |
Collapse
|
8
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
9
|
Bhattacharyya S, Ghosh SS. Unfolding transmembrane TNFα dynamics in cancer therapeutics. Cytokine 2020; 137:155303. [PMID: 33002738 DOI: 10.1016/j.cyto.2020.155303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
Cytokines are a group of glycoprotein signaling mediators, which play essential roles in maintaining several complex physiological functions of our body. TNFα is such a pleiotropic cytokine, which involves maintaining a plethora of immune responses. Initially, TNFα is synthesized as a 26 kDa full-length transmembrane form, which is enzymatically cleaved to produce the soluble circulating 17 kDa TNFα. Although the anti-cancer potential of soluble TNFα was discovered more than a century back, its dual ability to promote tumor, posed a major hindrance in finding its acceptance as a proper anti-cancer molecule. In contrast, the membrane-tethered tmTNFα holds the potential of tumor regression without initiating cell proliferation. The membrane-tethered form of TNFα is the physiological precursor of soluble TNFα that remains biologically active and is capable of initiating signaling cascades after binding with the TNFα receptors- TNFR I and TNFR II. In this review, we emphasize on the basic biology and molecular aspects of tmTNFα for its anti-cancer potential.
Collapse
Affiliation(s)
- Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India.
| |
Collapse
|
10
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Abelardo E, Davies G, Kamhieh Y, Prabhu V. Are Inflammatory Markers Significant Prognostic Factors for Head and Neck Cancer Patients? ORL J Otorhinolaryngol Relat Spec 2020; 82:235-244. [DOI: 10.1159/000507027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022]
|
12
|
Gray ME, Meehan J, Blair EO, Ward C, Langdon SP, Morrison LR, Marland JRK, Tsiamis A, Kunkler IH, Murray A, Argyle D. Biocompatibility of common implantable sensor materials in a tumor xenograft model. J Biomed Mater Res B Appl Biomater 2019; 107:1620-1633. [PMID: 30367816 PMCID: PMC6767110 DOI: 10.1002/jbm.b.34254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
Abstract
Real-time monitoring of tumor microenvironment parameters using an implanted biosensor could provide valuable information on the dynamic nature of a tumor's biology and its response to treatment. However, following implantation biosensors may lose functionality due to biofouling caused by the foreign body response (FBR). This study developed a novel tumor xenograft model to evaluate the potential of six biomaterials (silicon dioxide, silicon nitride, Parylene-C, Nafion, biocompatible EPOTEK epoxy resin, and platinum) to trigger a FBR when implanted into a solid tumor. Biomaterials were chosen based on their use in the construction of a novel biosensor, designed to measure spatial and temporal changes in intra-tumoral O2 , and pH. None of the biomaterials had any detrimental effect on tumor growth or body weight of the murine host. Immunohistochemistry showed no significant changes in tumor necrosis, hypoxic cell number, proliferation, apoptosis, immune cell infiltration, or collagen deposition. The absence of biofouling supports the use of these materials in biosensors; future investigations in preclinical cancer models are required, with a view to eventual applications in humans. To our knowledge this is the first documented investigation of the effects of modern biomaterials, used in the production of implantable sensors, on tumor tissue after implantation. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1620-1633, 2019.
Collapse
Affiliation(s)
- Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
- Institute of Sensors, Signals and Systems, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - Ewen O. Blair
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Linda R. Morrison
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| | | | | | - Ian H. Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Alan Murray
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| |
Collapse
|
13
|
Vaeteewoottacharn K, Pairojkul C, Kariya R, Muisuk K, Imtawil K, Chamgramol Y, Bhudhisawasdi V, Khuntikeo N, Pugkhem A, Saeseow OT, Silsirivanit A, Wongkham C, Wongkham S, Okada S. Establishment of Highly Transplantable Cholangiocarcinoma Cell Lines from a Patient-Derived Xenograft Mouse Model. Cells 2019; 8:496. [PMID: 31126020 PMCID: PMC6562875 DOI: 10.3390/cells8050496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly malignant tumor of the liver. It is a significant health problem in Thailand. The critical obstacles of CCA diagnosis and treatment are the high heterogeneity of disease and considerable resistance to treatment. Recent multi-omics studies revealed the promising targets for CCA treatment; however, limited models for drug discovery are available. This study aimed to develop a patient-derived xenograft (PDX) model as well as PDX-derived cell lines of CCA for future drug screening. From a total of 16 CCA frozen tissues, 75% (eight intrahepatic and four extrahepatic subtypes) were successfully grown and subpassaged in Balb/c Rag-2-/-/Jak3-/- mice. A shorter duration of PDX growth was observed during F0 to F2 transplantation; concomitantly, increased Oct-3/4 and Sox2 were evidenced in 50% and 33%, respectively, of serial PDXs. Only four cell lines were established. The cell lines exhibited either bile duct (KKK-D049 and KKK-D068) or combined hepatobiliary origin (KKK-D131 and KKK-D138). These cell lines acquired high transplantation efficiency in both subcutaneous (100%) and intrasplenic (88%) transplantation models. The subcutaneously transplanted xenograft retained the histological architecture as in the patient tissues. Our models of CCA PDX and PDX-derived cell lines would be a useful platform for CCA precision medicine.
Collapse
Affiliation(s)
- Kulthida Vaeteewoottacharn
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Pathology, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Kanha Muisuk
- Department of Forensic Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kanokwan Imtawil
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Yaovalux Chamgramol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Pathology, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Vajarabhongsa Bhudhisawasdi
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ake Pugkhem
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - O-Tur Saeseow
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Atit Silsirivanit
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Chaisiri Wongkham
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sopit Wongkham
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
14
|
Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating tumor cells. Radiol Oncol 2019; 53:131-147. [PMID: 31104002 PMCID: PMC6572494 DOI: 10.2478/raon-2019-0024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tumor cells can shed from the tumor, enter the circulation and travel to distant organs, where they can seed metastases. These cells are called circulating tumor cells (CTCs). The ability of CTCs to populate distant tissues and organs has led us to believe they are the primary cause of cancer metastasis. The biological properties and interaction of CTCs with other cell types during intravasation, circulation in the bloodstream, extravasation and colonization are multifaceted and include changes of CTC phenotypes that are regulated by many signaling molecules, including cytokines and chemokines. Considering a sample is readily accessible by a simple blood draw, monitoring CTC levels in the blood has exceptional implications in oncology field. A method called the liquid biopsy allows the extraction of not only CTC, but also CTC products, such as cell free DNA (cfDNA), cell free RNA (cfRNA), microRNA (miRNA) and exosomes. Conclusions The clinical utility of CTCs and their products is increasing with advances in liquid biopsy technology. Clinical applications of liquid biopsy to detect CTCs and their products are numerous and could be used for screening of the presence of the cancer in the general population, as well as for prognostic and predictive biomarkers in cancer patients. With the development of better CTC isolation technologies and clinical testing in large prospective trials, increasing clinical utility of CTCs can be expected. The understanding of their biology and interactions with other cell types, particularly with those of the immune system and the rise of immunotherapy also hold great promise for novel therapeutic possibilities.
Collapse
Affiliation(s)
- Taja Lozar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klara Gersak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- General Hospital Izola, Izola, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Weidle UH, Epp A, Birzele F, Brinkmann U. The Functional Role of Prostate Cancer Metastasis-related Micro-RNAs. Cancer Genomics Proteomics 2019; 16:1-19. [PMID: 30587496 DOI: 10.21873/cgp.20108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
The mortality of patients with hormone-resistant prostate cancer can be ascribed to a large degree to metastasis to distant organs, predominantly to the bones. In this review, we discuss the contribution of micro-RNAs (miRs) to the metastatic process of prostate cancer. The criteria for selection of miRs for this review were the availability of preclinical in vivo metastasis-related data in conjunction with prognostic clinical data. Depending on their function in the metastatic process, the corresponding miRs are up- or down-regulated in prostate cancer tissues when compared to matching normal tissues. Up-regulated miRs preferentially target suppressors of cytokine signaling or tumor suppressor-related genes and metastasis-inhibitory transcription factors. Down-regulated miRs promote epithelial-mesenchymal transition or mesenchymal-epithelial transition and diverse pro-metastatic signaling pathways. Some of the discussed miRs exert their function by simultaneously targeting epigenetic pathways as well as cell-cycle-related, anti-apoptotic and signaling-promoting targets. Finally, we discuss potential therapeutic options for the treatment of prostate cancer-related metastases by substitution or inhibition of miRs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexandra Epp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
16
|
The Interplay between Circulating Tumor Cells and the Immune System: From Immune Escape to Cancer Immunotherapy. Diagnostics (Basel) 2018; 8:diagnostics8030059. [PMID: 30200242 PMCID: PMC6164896 DOI: 10.3390/diagnostics8030059] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
Circulating tumor cells (CTCs) have aroused increasing interest not only in mechanistic studies of metastasis, but also for translational applications, such as patient monitoring, treatment choice, and treatment change due to tumor resistance. In this review, we will assess the state of the art about the study of the interactions between CTCs and the immune system. We intend to analyze the impact that the cells of the immune system have in limiting or promoting the metastatic capability of CTCs. To this purpose, we will examine studies that correlate CTCs, immune cells, and patient prognosis, and we will also discuss relevant animal models that have contributed to the understanding of the mechanisms of immune-mediated metastasis. We will then consider some studies in which CTCs seem to play a promising role in monitoring cancer patients during immunotherapy regimens. We believe that, from an accurate and profound knowledge of the interactions between CTCs and the immune system, new immunotherapeutic strategies against cancer might emerge in the future.
Collapse
|
17
|
Thompson TJ, Han B. Analysis of adhesion kinetics of cancer cells on inflamed endothelium using a microfluidic platform. BIOMICROFLUIDICS 2018; 12:042215. [PMID: 29937953 PMCID: PMC5993669 DOI: 10.1063/1.5025891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/21/2018] [Indexed: 06/01/2023]
Abstract
Metastasis is the ultimate cause of death among the vast majority of cancer patients. This process is comprised of multiple steps, including the migration of circulating cancer cells across microvasculature. This trans-endothelial migration involves the adhesion and eventual penetration of cancer cells to the vasculature of the target organ. Many of these mechanisms remain poorly understood due to poor control of pathophysiological conditions in tumor models. In this work, a microfluidic device was developed to support the culture and observation of engineered microvasculature with systematic control of the environmental characteristics. This device was then used to study the adhesion of circulating cancer cells to an endothelium under varying conditions to delineate the effects of hemodynamics and inflammations. The resulting understanding will help to establish a quantitative and biophysical mechanism of interactions between cancer cells and endothelium.
Collapse
Affiliation(s)
- Taylor J. Thompson
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bumsoo Han
- Author to whom correspondence should be addressed: . Present address: 585 Purdue Mall, West Lafayette, IN 47907, USA, Phone: +1-765-494-5626, Fax: +1-765-496-7535
| |
Collapse
|
18
|
Khan I, Steeg PS. Metastasis suppressors: functional pathways. J Transl Med 2018; 98:198-210. [PMID: 28967874 PMCID: PMC6545599 DOI: 10.1038/labinvest.2017.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complex process and a major contributor of death in cancer patients. Metastasis suppressor genes are identified by their ability to inhibit metastasis at a secondary site without affecting the growth of primary tumor. In this review, we have conducted a survey of the metastasis suppressor literature to identify common downstream pathways. The metastasis suppressor genes mechanistically target MAPK, G-protein-coupled receptor, cell adhesion, cytoskeletal, transcriptional regulatory, and metastasis susceptibility pathways. The majority of the metastasis suppressor genes are functionally multifactorial, inhibiting metastasis at multiple points in the cascade, and many operate in a context-dependent fashion. A greater understanding of common pathways/molecules targeted by metastasis suppressor could improve metastasis treatment strategies.
Collapse
|
19
|
Pitchaimani A, Nguyen TDT, Aryal S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 2018; 160:124-137. [PMID: 29407341 DOI: 10.1016/j.biomaterials.2018.01.018] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
Therapeutic efficacy of a systemic drug delivery largely depends on the targeting design of the delivery system, which tackles with circulatory traffic and prevents the nonspecific distribution of the drug in the wide range of vital organs. A drawing attention has been given to a biomimetic cloaking of the synthetic drug delivery nanoparticle using mammalian cell-ghosts, which has shown the installment of the biological complexity of the original cells thereby acting as naïve cells, to precisely delivery drug to the intended target. Align towards this direction; we developed a membrane camouflage fusogenic liposomal delivery system "NKsome" for targeted tumor therapy using Natural Killer (NK) cell-ghost, which naturally undergoes immunosurveillance of diseased/stress cells. The engineered NKsome shows successful retention of NK cell membrane-associated targeting protein on its surface. With its excellent biocompatibility, NKsome shows a higher affinity towards cancer than normal cells as demonstrated by in vitro flow-passage assay, and exhibits enhanced tumor homing efficiency in-vivo with an extended plasma residence time of 18 h. Moreover, the therapeutic potential of doxorubicin-loaded NKsome shows promising antitumor activity in vivo against MCF-7 induced tumor model. Overall results illustrate the therapeutic advantages of NK cell biomimicry capable of communicating like immune cells for cooperative drug delivery.
Collapse
Affiliation(s)
- Arunkumar Pitchaimani
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA; Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS, 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Tuyen Duong Thanh Nguyen
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA; Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS, 66506, USA
| | - Santosh Aryal
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA; Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
20
|
Katt ME, Wong AD, Searson PC. Dissemination from a Solid Tumor: Examining the Multiple Parallel Pathways. Trends Cancer 2018; 4:20-37. [PMID: 29413419 PMCID: PMC5806201 DOI: 10.1016/j.trecan.2017.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022]
Abstract
Metastasis can be generalized as a linear sequence of events whereby halting one or more steps in the cascade may reduce tumor cell dissemination and ultimately improve patient outcomes. However, metastasis is a complex process with multiple parallel mechanisms of dissemination. Clinical strategies focus on removing the primary tumor and/or treating distant metastases through chemo- or immunotherapies. Successful strategies for blocking metastasis will need to address the parallel mechanisms of dissemination and identify common bottlenecks. Here, we review the current understanding of common dissemination pathways for tumors. Understanding the complexities of metastasis will guide the design of new therapies that halt dissemination.
Collapse
Affiliation(s)
- Moriah E Katt
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; These authors contributed equally
| | - Andrew D Wong
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; These authors contributed equally
| | - Peter C Searson
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
21
|
Grisard E, Nicoloso MS. Following MicroRNAs Through the Cancer Metastatic Cascade. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:173-228. [PMID: 28729025 DOI: 10.1016/bs.ircmb.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately a decade ago the first MicroRNAs (MiRNAs) participating in cancer metastasis were identified and metastmiRs were initially only a handful. Since those first reports, MiRNA research has explosively thrived, mainly due to their revolutionary mechanism of action and the hope of having at hand a novel tool to control cancer aggressiveness. This has ultimately led to delineate an almost impenetrable regulatory network: hundreds of MiRNAs transversally dominating every aspect of normal and cancer biology, each MiRNA having hundreds of targets and context-dependent activity. Providing a comprehensive description of MiRNA roles in cancer metastasis is a daunting task; nevertheless, we still believe that grasping the big picture of MiRNAs in cancer metastasis can give a different perspective on the potential insights and approaches that MiRNAs can offer to understand cancer complexity (e.g., as predictive and prognostic markers) and to tackle cancer metastasis (e.g., as therapeutic targets or tools). This chapter presents a schematic overview of the role of MiRNAs in governing cancer metastasis, describing step by step the cellular and molecular processes whereby cancer cells conquer distant organs and can grow as secondary tumors at different distant sites, and for each step, we will introduce how MiRNAs impinge on each one of them. We deeply apologize with our colleagues for any of their research work that, for clarity, for our effort to streamline and due to space limitations, we did not cite.
Collapse
|
22
|
Varghese S, Joseph MM, S R A, B S U, Sreelekha TT. The inhibitory effect of anti- tumor polysaccharide from Punica granatum on metastasis. Int J Biol Macromol 2017; 103:1000-1010. [PMID: 28552725 DOI: 10.1016/j.ijbiomac.2017.05.137] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022]
Abstract
Galactomannan (PSP001) isolated from the fruit rind of Punica granatum was demonstrated as an excellent antioxidant, immunomodulatory and anticancer agent both in vitro and in vivo models. Since the most lethal and debilitating attribute of cancer cells is their ability to evolve to a state of malignancy, with key features like increased angiogenesis, invasion, migration, colony formation, and metastasis, the present study focused on evaluating the effects of the galactomannan on tumor and malignancy. PSP001 effectively reduced the neovascularization in chick embryos highlighting its potential as an angiogenic inhibitor. Furthermore, the invasion, migration and clonogenic capacity of human and murine cancer cells were dramatically inhibited by PSP001. Evaluation of the molecular mechanism of its unique potential revealed the down regulation of key players including VEGF, MMP-2, and MMP-9 with marked elevation of TIMP-1 and TIMP-2. The anti-metastatic potential of PSP001 tested in pulmonary metastasis C57BL/6 mice model deciphered the combinatorial administration with vincristine deliberated better survival rates and decreased metastatic index. The angiogenic inhibition potential of PSP001 was further proved with peritoneal angiogenesis assay in BALB/c mice ascitic tumor model. The outcomes of the current investigation highlight the mode of action of antitumor galactomannan in the reduction of tumor malignancy.
Collapse
Affiliation(s)
- Sheeja Varghese
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram 695011, Kerala, India.
| | - Manu M Joseph
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram 695011, Kerala, India.
| | - Aravind S R
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram 695011, Kerala, India.
| | - Unnikrishnan B S
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram 695011, Kerala, India.
| | - T T Sreelekha
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|
23
|
Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat Rev Clin Oncol 2016; 14:155-167. [PMID: 27644321 DOI: 10.1038/nrclinonc.2016.144] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metastatic spread of tumour cells is the main cause of cancer-related deaths. Understanding the mechanisms of tumour-cell dissemination has, therefore, become an important focus for cancer research. In patients with cancer, disseminated cancer cells are often detectable in the peripheral blood as circulating tumour cells (CTCs) and in the bone marrow or lymph nodes as disseminated tumour cells (DTCs). The identification and characterization of CTCs and DTCs has yielded important insights into the mechanisms of metastasis, resulting in a better understanding of the molecular alterations and profiles underlying drug resistance. Given the expanding role of immunotherapies in the treatment of cancer, interactions between tumour cells and immune cells are the subject of intense research. Theoretically, cancer cells that exit the primary tumour site - leaving the protection of the typically immunosuppressive tumour microenvironment - will be more vulnerable to attack by immune effector cells; thus, the survival of tumour cells after dissemination might be the 'Achilles' heel' of metastatic progression. In this Review, we discuss findings relating to the interactions of CTCs and DTCs with the immune system, in the context of cancer immuno-editing, evasion from immune surveillance, and formation of metastases.
Collapse
Affiliation(s)
- Malte Mohme
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
24
|
Yang Y, Tai X, Shi K, Ruan S, Qiu Y, Zhang Z, Xiang B, He Q. A New Concept of Enhancing Immuno-Chemotherapeutic Effects Against B16F10 Tumor via Systemic Administration by Taking Advantages of the Limitation of EPR Effect. Am J Cancer Res 2016; 6:2141-2160. [PMID: 27698946 PMCID: PMC5039686 DOI: 10.7150/thno.16184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023] Open
Abstract
The enhanced permeability and retention (EPR) effect has been comfortably accepted, and extensively assumed as a keystone in the research on tumor-targeted drug delivery system. Due to the unsatisfied tumor-targeting efficiency of EPR effect being one conspicuous drawback, nanocarriers that merely relying on EPR effect are difficult to access the tumor tissue and consequently trigger efficient tumor therapy in clinic. In the present contribution, we break up the shackles of EPR effect on nanocarriers thanks to their universal distribution characteristic. We successfully design a paclitaxel (PTX) and alpha-galactosylceramide (αGC) co-loaded TH peptide (AGYLLGHINLHHLAHL(Aib)HHIL-Cys) -modified liposome (PTX/αGC-TH-Lip) and introduce a new concept of immuno-chemotherapy combination via accumulation of these liposomes at both spleen and tumor sites naturally and simultaneously. The PTX-initiated cytotoxicity attacks tumor cells at tumor sites, meanwhile, the αGC-triggered antitumor immune response emerges at spleen tissue. Different to the case that liposomes are loaded with sole drug, in this concept two therapeutic processes effectively reinforce each other, thereby elevating the tumor therapy efficiency significantly. The data demonstrates that the PTX/αGC-TH-Lip not only possess therapeutic effect against highly malignant B16F10 melanoma tumor, but also adjust the in vivo immune status and induce a more remarkable systemic antitumor immunity that could further suppress the growth of tumor at distant site. This work exhibits the capability of the PTX/αGC-TH-Lip in improving immune-chemotherapy against tumor after systemic administration.
Collapse
|
25
|
Abstract
The presence of natural killer (NK) cells in the tumor microenvironment correlates with outcome in a variety of cancers. However, the role of intratumoral NK cells is unclear. Preclinical studies have shown that, while NK cells efficiently kill circulating tumor cells of almost any origin, they seem to have very little effect against the same type of tumor cells when these have extravasated. The ability to kill extravasated tumor cells is, however, is dependent of the level of activation of the NK cells, as more recent published and unpublished studies, discussed below, have demonstrated that interleukin-2-activated NK cells are able to attack well-established solid tumors.
Collapse
Affiliation(s)
- Stine K Larsen
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213, USA; Department of Hematology, 54P4, Copenhagen University Hospital, Herlev, Denmark
| | - Yanhua Gao
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Per H Basse
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213, USA; Department of Immunology, University of Pittsburgh, Pittsburgh PA 15213, USA
| |
Collapse
|
26
|
MiRNA-296-3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis 2013; 4:e928. [PMID: 24263102 PMCID: PMC3847334 DOI: 10.1038/cddis.2013.458] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/06/2013] [Accepted: 10/21/2013] [Indexed: 01/28/2023]
Abstract
Natural killer (NK) cells are important in host to eliminate circulating tumour cells (CTCs) in turn preventing the development of tumour cells into metastasis but the mechanisms are very poorly defined. Here we find that the expression level of miR-296-3p is much lower in the non-metastatic human prostate cancer (PCa) cell line P69 than that in the highly metastatic cell line M12, which is derived from P69. We demonstrate that miR-296-3p directly targets and inhibits the expression of intercellular adhesion molecule 1 (ICAM-1) in the malignant M12. The data from clinical tissue microarrays also show that miR-296-3p is frequently upregulated and ICAM-1 is reversely downregulated in PCa. Interestingly, ectopic expression of miR-296-3p in P69 increases the tolerance to NK cells whereas knockdown of miR-296-3p in M12 reduces the resistance to NK cells, which both phenotypes can be rescued by re-expression or silencing of ICAM-1 in P69 and M12, respectively. These results are also manifested in vivo by the decrease in the incidence of pulmonary tumour metastasis exhibited by knockdown of miR-296-3p in M12 when injected into athymic nude mice via tail vein, and consistently down-expression of ICAM-1 reverses this to increase extravasation of CTCs into lungs. Above results suggest that this newly identified miR-296-3p-ICAM-1 axis has a pivotal role in mediating PCa metastasis by possible enhancing survival of NK cell-resistant CTC. Our findings provide novel potential targets for PCa therapy and prognosis.
Collapse
|
27
|
De Giorgi U, Mego M, Scarpi E, Giuliano M, Giordano A, Reuben JM, Valero V, Ueno NT, Hortobagyi GN, Cristofanilli M. Relationship between lymphocytopenia and circulating tumor cells as prognostic factors for overall survival in metastatic breast cancer. Clin Breast Cancer 2012; 12:264-9. [PMID: 22591634 DOI: 10.1016/j.clbc.2012.04.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/16/2012] [Accepted: 04/12/2012] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Lymphocytopenia and circulating tumor cells (CTCs) have been reported as independent prognostic factors for overall survival (OS) in metastatic breast cancer (MBC), and both have been associated with bone metastases. Our objective was to compare the prognostic significance of lymphocytopenia, CTC count, and extensive bone metastases (> 2 lesions) assessed by fluorine-18 ((18)F) fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in patients with MBC. PATIENTS AND METHODS This is a retrospective study that included patients with MBC who were starting a new line of systemic therapy. The study population consisted of patients treated at the University of Texas MD Anderson Cancer Center between 2004 and 2008 for whom baseline CTC count, lymphocyte counts, and FDG-PET/CT scans were available. Patients were stratified according to estrogen receptor status (positive vs. negative), human epidermal growth factor receptor 2 (HER2) status (amplified vs. constitutive), baseline CTC counts per 7.5 mL of blood (< 5 CTCs/7.5 mL of blood vs. ≥ 5 CTCs/7.5 mL of blood), lymphocytopenia (< 1000 vs. ≥ 1000/μL), and extensive bone metastases (> 2 vs. ≤ 2 lesions). RESULTS In 195 assessable patients, the median OS was 27 months (range, 1 to > 45 months). In multivariate analysis, lymphocytopenia, ≥ 5 CTCs/7.5 mL of blood, estrogen receptor status, and line of therapy were the only predictive factors for progression-free survival (PFS) (2P = .001, 2P = .032, 2P = .029, and 2P = .002, respectively) and OS (2P = .001, 2P = .009, 2P = .004, and 2P = .024, respectively). CONCLUSION CTC measurement and lymphocytopenia are independent prognostic factors for PFS and OS in patients with MBC.
Collapse
Affiliation(s)
- Ugo De Giorgi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takeda K, Nakayama M, Sakaki M, Hayakawa Y, Imawari M, Ogasawara K, Okumura K, Smyth MJ. IFN-γ production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. J Leukoc Biol 2011; 90:777-85. [PMID: 21712396 DOI: 10.1189/jlb.0411208] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NK cells are effector lymphocytes playing a critical role in the natural resistance against tumors. However, the precise mechanisms underlying NK cell-mediated natural resistance against tumor metastasis are still unrevealed. B16 cells, mouse melanoma cells, were resistant to freshly isolated NK cell-mediated killing; nevertheless, NK cells were critical for natural resistance against experimental lung metastasis of B16 cells. We found that lung metastasis was increased significantly in IFN-γ(-/-) mice but not pfp(-/-), IFN-αR(-/-), or IL-12/IL-18(-/-) mice. Interestingly, freshly isolated lung NK cells, but not spleen or liver NK cells, displayed augmented IFN-γ production after B16 inoculation. Adoptive transfer of pfp(-/-) NK cells, but not IFN-γ(-/-) NK cells, significantly decreased B16 lung metastasis in IFN-γ(-/-) and pfp/IFN-γ(-/-)mice. Lung metastases of IFN-γRDN B16 was also increased in NK cell-depleted or IFN-γ(-/-) mice, suggesting that the IFN-γ response of host cells was required in the NK cell and IFN-γ-mediated antimetastatic effect. Our results demonstrate that IFN-γ production from lung resident NK cells is a key response in the natural resistance to the experimental lung metastasis of NK cell-resistant tumor cells.
Collapse
Affiliation(s)
- Kazuyoshi Takeda
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Doyen J, Alix-Panabières C, Hofman P, Parks SK, Chamorey E, Naman H, Hannoun-Lévi JM. Circulating tumor cells in prostate cancer: a potential surrogate marker of survival. Crit Rev Oncol Hematol 2011; 81:241-56. [PMID: 21680196 DOI: 10.1016/j.critrevonc.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/23/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023] Open
Abstract
Prostate-specific antigen (PSA) levels in blood are widely used in prostate cancer (PCa) for the management of this disease at every stage of progression. Currently, PSA levels combined with clinical stage and Gleason score provide the best predictor of survival and the main element to monitor treatment efficiency. However, these areas could be improved by utilizing emerging biomarkers. Recently, circulating tumor cells (CTCs) and disseminating tumor cells (DTCs) have been detected in PCa and may be a new surrogate candidate. Here we provide a systematic review of the literature in order to describe the current evidence of CTC/DTC surrogacy regarding outcome of prostate cancer patients. We also discuss several markers that could be used to increase the sensitivity and specificity of CTC/DTC detection. CTC/DTC detection is performed using a wide variety of techniques. Initially, reverse transcriptase polymerase chain reaction (RT-PCR) based methods were utilized with weak correlation between their positive detection and patients' outcome. More recent immunological techniques have indicated a reproducible correlation with outcome. Such surrogate markers may enable clinicians to provide early detection for inefficient treatments and patients with poor prognosis that are candidates for treatment intensification. Dissecting the micrometastasis phenomenon in CTCs/DTCs is a key point to increase surrogacy of this biomarker.
Collapse
Affiliation(s)
- Jérôme Doyen
- Department of Radiation Oncology, Antoine-Lacassagne Cancer Center, Nice, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Mauti LA, Le Bitoux MA, Baumer K, Stehle JC, Golshayan D, Provero P, Stamenkovic I. Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J Clin Invest 2011; 121:2794-807. [PMID: 21646719 DOI: 10.1172/jci41936] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/20/2011] [Indexed: 01/06/2023] Open
Abstract
Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth.
Collapse
Affiliation(s)
- Laetitia A Mauti
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Bugelski PJ, Volk A, Walker MR, Krayer JH, Martin P, Descotes J. Critical Review of Preclinical Approaches to Evaluate the Potential of Immunosuppressive Drugs to Influence Human Neoplasia. Int J Toxicol 2010; 29:435-66. [DOI: 10.1177/1091581810374654] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many immunosuppressive drugs are associated with an increased risk of B-cell lymphoma, squamous cell carcinoma, and Kaposi sarcoma. Thirteen immunosuppressive drugs have been tested in 2-year carcinogenicity studies (abatacept; azathioprine; busulfan; cyclophosphamide; cyclosporine; dexamethasone; everolimus; leflunomide; methotrexate; mycophenolate mofetil; prednisone; sirolimus; and tacrolimus) and in additional models including neonatal and genetically modified mice; chemical, viral, ultraviolet, and ionizing radiation co-carcinogenesis, and in models with transplanted tumor cells. The purpose of this review is to outline the mechanisms by which immunosuppressive drugs can influence neoplasia, to summarize the available preclinical data on the 13 drugs, and to critically review the performance of the models. A combination of primary tumor and metastasis assays conducted with transplanted cells may provide the highest value for hazard identification and can be applied on a case-by-case basis. However, for both small molecules and therapeutic proteins, determining the relative risk to patients from preclinical data remains problematic. Classifying immunosuppressive drugs based on their mechanism of action and hazard identification from preclinical studies and a prospective pharmacovigilance program to monitor carcinogenic risk may be a feasible way to manage patient safety during the clinical development program and postmarketing.
Collapse
Affiliation(s)
| | - Amy Volk
- Biologics Toxicology, Centocor R&D, Radnor, PA, USA
| | | | | | | | - Jacques Descotes
- Centre Antipoison–Centre de Pharmacovigilance, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
32
|
Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 2010; 70:5649-69. [PMID: 20610625 DOI: 10.1158/0008-5472.can-10-1040] [Citation(s) in RCA: 782] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metastasis resistant to therapy is the major cause of death from cancer. Despite almost 200 years of study, the process of tumor metastasis remains controversial. Stephen Paget initially identified the role of host-tumor interactions on the basis of a review of autopsy records. His "seed and soil" hypothesis was substantiated a century later with experimental studies, and numerous reports have confirmed these seminal observations. An improved understanding of the metastatic process and the attributes of the cells selected by this process is critical for the treatment of patients with systemic disease. In many patients, metastasis has occurred by the time of diagnosis, so metastasis prevention may not be relevant. Treating systemic disease and identifying patients with early disease should be our goal. Revitalized research in the past three decades has focused on new discoveries in the biology of metastasis. Even though our understanding of molecular events that regulate metastasis has improved, the contributions and timing of molecular lesion(s) involved in metastasis pathogenesis remain unclear. Review of the history of pioneering observations and discussion of current controversies should increase understanding of the complex and multifactorial interactions between the host and selected tumor cells that contribute to fatal metastasis and should lead to the design of successful therapy.
Collapse
Affiliation(s)
- James E Talmadge
- The University of Nebraska Medical Center, Transplantation Immunology Laboratory, Omaha, Nebraska, USA
| | | |
Collapse
|
33
|
Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 2010. [PMID: 20610625 DOI: 10.1158/0008-5472.can-10-1040.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastasis resistant to therapy is the major cause of death from cancer. Despite almost 200 years of study, the process of tumor metastasis remains controversial. Stephen Paget initially identified the role of host-tumor interactions on the basis of a review of autopsy records. His "seed and soil" hypothesis was substantiated a century later with experimental studies, and numerous reports have confirmed these seminal observations. An improved understanding of the metastatic process and the attributes of the cells selected by this process is critical for the treatment of patients with systemic disease. In many patients, metastasis has occurred by the time of diagnosis, so metastasis prevention may not be relevant. Treating systemic disease and identifying patients with early disease should be our goal. Revitalized research in the past three decades has focused on new discoveries in the biology of metastasis. Even though our understanding of molecular events that regulate metastasis has improved, the contributions and timing of molecular lesion(s) involved in metastasis pathogenesis remain unclear. Review of the history of pioneering observations and discussion of current controversies should increase understanding of the complex and multifactorial interactions between the host and selected tumor cells that contribute to fatal metastasis and should lead to the design of successful therapy.
Collapse
Affiliation(s)
- James E Talmadge
- The University of Nebraska Medical Center, Transplantation Immunology Laboratory, Omaha, Nebraska, USA
| | | |
Collapse
|
34
|
Khan KN, Kitajima M, Hiraki K, Fujishita A, Sekine I, Ishimaru T, Masuzaki H. Immunopathogenesis of pelvic endometriosis: role of hepatocyte growth factor, macrophages and ovarian steroids. Am J Reprod Immunol 2009; 60:383-404. [PMID: 19238747 DOI: 10.1111/j.1600-0897.2008.00643.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Endometriosis, a chronic disease characterized by endometrial tissue located outside the uterine cavity is associated with chronic pelvic pain and infertility. However, an in-depth understanding of the pathophysiology of endometriosis is still elusive. It is generally believed that besides ovarian steroid hormones, the growth of endometriosis can be regulated by innate immune system in pelvic microenvironment by their interaction with endometrial cells and immune cells. We conducted a series of studies in perspectives of pelvic inflammation that is triggered primarily by bacterial endotoxin (lipopolysaccharide) and is mediated by toll-like receptor 4 and showed their involvement in the development of pelvic endometriosis. As a cellular component of innate immune system, macrophages were found to play a central role in inducing pelvic inflammatory reaction. We further report here that peritoneal macrophages retain receptors encoding for estrogen and progesterone and ovarian steroids also participate in producing an inflammatory response in pelvic cavity and are involved in the growth of endometriosis either alone or in combination with hepatocyte growth factor (HGF). As a pleiotropic growth factor, HGF retains multifunctional role ometriosis. We describe here the individual and step-wise role of HGF, macrophages and ovarian steroid hormones and their orchestrated involvement in the immunopathogenesis of pelvic endometriosis.
Collapse
Affiliation(s)
- Khaleque Newaz Khan
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Selgrade MK, Gilmour MI, Yang YG, Burleson GR, Hatch GE. Pulmonary Host Defenses and Resistance to Infection Following Subchronic Exposure to Phosgene. Inhal Toxicol 2008. [DOI: 10.3109/08958379509029716] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Yang YG, Gilmour MI, Lange R, Burleson GR, Selgrade MK. Effects Of Acute Exposure To Phosgene On Pulmonary Host Defenses And Resistance To Infection. Inhal Toxicol 2008. [DOI: 10.3109/08958379509029710] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Selgrade MK, Starnes DM, Illing JW, Daniels MJ, Graham JA. Effects of Phosgene Exposure on Bacterial, Viral, and Neoplastic Lung Disease Susceptibility in Mice. Inhal Toxicol 2008. [DOI: 10.3109/08958378909145231] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Selgrade MK, Daniels MJ, Crose EC. Evaluation of Immunotoxicity of an Urban Profile of Nitrogen Dioxide: Acute, Subchronic, and Chronic Studies. Inhal Toxicol 2008. [DOI: 10.3109/08958379109145297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Trastuzumab decreases the number of circulating and disseminated tumor cells despite trastuzumab resistance of the primary tumor. Cancer Lett 2007; 260:198-208. [PMID: 18096313 DOI: 10.1016/j.canlet.2007.10.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 11/22/2022]
Abstract
We have recently shown that despite of the fact that the ErbB2-positive JIMT-1 human breast cancer cells intrinsically resistant to trastuzumab in vitro, trastuzumab inhibited the outgrowth of early phase JIMT-1 xenografts in SCID mice via antibody-dependent cellular cytotoxicity (ADCC). Here we show that trastuzumab significantly reduces the number of circulating and disseminated tumor cells (CTCs and DTCs) in this xenograft model system at a time when the primary tumor is already unresponsive to trastuzumab. This observation suggests that ErbB2 positive CTCs and DTCs might be sensitive to trastuzumab-mediated ADCC even if when the primary tumor is already non-responsive. Thus, trastuzumab treatment might also be beneficial in the case of patients with breast cancer that is already trastuzumab resistant.
Collapse
|
40
|
Abstract
Metastasis is the most lethal attribute of cancer cells and clinical decisions regarding treatment are based largely upon the likelihood of developing metastases. However, improvements in detection as well as recent experimental data have raised questions about the most appropriate definition of a metastasis, especially whether the mere presence of cells at secondary sites constitute a metastatic lesion. After reviewing the experimental basis of metastasis, a definition of metastasis is proffered along with a proposal to consider regarding modification of staging parameters.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Pathology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.
| |
Collapse
|
41
|
Abstract
The process of cancer metastasis is sequential and selective and contains stochastic elements. The growth of metastases represents the endpoint of many lethal events that few tumor cells can survive. Primary tumors consist of multiple subpopulations of cells with heterogeneous metastatic properties, and the outcome of metastasis depends on the interplay of tumor cells with various host factors. The findings that different metastases can originate from different progenitor cells account for the biological diversity that exists among various metastases. Even within a solitary metastasis of proven clonal origin, however, heterogeneity of biological characteristics can develop rapidly. The pathogenesis of metastasis depends on multiple interactions of metastatic cells with favorable host homeostatic mechanisms. Interruption of one or more of these interactions can lead to the inhibition or eradication of cancer metastasis. For many years, all of our efforts to treat cancer have concentrated on the inhibition or destruction of tumor cells. Strategies both to treat tumor cells (such as chemotherapy and immunotherapy) and to modulate the host microenvironment (including the tumor vasculature) should offer additional approaches for cancer treatment. The recent advances in our understanding of the biological basis of cancer metastasis present unprecedented possibilities for translating basic research to the clinical reality of cancer treatment.
Collapse
Affiliation(s)
- Robert R Langley
- Department of Cancer Biology, Unit 173, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|
42
|
Stopińska-Głuszak U, Waligóra J, Grzela T, Głuszak M, Jóźwiak J, Radomski D, Roszkowski PI, Malejczyk J. Effect of estrogen/progesterone hormone replacement therapy on natural killer cell cytotoxicity and immunoregulatory cytokine release by peripheral blood mononuclear cells of postmenopausal women. J Reprod Immunol 2005; 69:65-75. [PMID: 16236362 DOI: 10.1016/j.jri.2005.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 07/06/2005] [Accepted: 07/07/2005] [Indexed: 11/22/2022]
Abstract
Sex steroids are known to affect immune responses; however, information on immunomodulatory effects of estrogen/progesterone hormone replacement therapy (HRT) is still limited. Therefore, the present study aimed to investigate the effect of estrogen/medroxyprogesterone HRT on natural killer (NK) cell cytotoxicity and immunoregulatory cytokine (IL-2, IL-4 and IFN-gamma) release by phytohemaglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC) from 15 selected healthy postmenopausal women. NK cell cytotoxicity, cytokine production and serum levels of 17beta-estradiol (E2), progesterone (P) and FSH were tested in each patient before and after 90-days HRT. NK cell cytotoxicity was tested by (51)Cr-release assay using K562 erythroleukemic cells as target. Specific cytokine production and serum hormone levels were evaluated by enzyme-linked immunosorbent assay (ELISA) and immunochemiluminescent assays, respectively. HRT resulted in a significant decrease of Kupperman index, an increase of E2 and a decrease of FSH levels. These changes were associated with a significant decrease of NK cell cytotoxicity, IL-2 and IFN-gamma production. The levels of IL-4 production remained unchanged. Changes of NK cell cytotoxicity and cytokine release in individual patients did not correlate with changes of serum sex hormone levels. Nevertheless, the present results imply strongly that estrogen/progesterone HRT may affect cell-mediated immunity, thus being a potential factor influencing development and course of autoimmune disorders and neoplastic diseases.
Collapse
Affiliation(s)
- Urszula Stopińska-Głuszak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, PL-02004 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Larin SS, Korobko EV, Kustikova OS, Borodulina OR, Raikhlin NT, Brisgalov IP, Georgiev GP, Kiselev SL. Immunotherapy with autologous tumor cells engineered to secrete Tag7/PGRP, an innate immunity recognition molecule. J Gene Med 2004; 6:798-808. [PMID: 15241787 DOI: 10.1002/jgm.560] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recent studies indicate that the innate component of immune defense plays an important role in the establishment of antigen-specific immune response. We have previously isolated a novel mouse gene tag7/PGRP that was shown to be involved in the innate component of the immune system, and its insect homologue is an upstream mediator of Toll signaling in Drosophila. METHODS Transiently or stably genetically modified mouse tumor cell lines expressing Tag7 were used. Tumor growth rate and animal survival were analyzed. Possible effector cells involved in tumor suppression were detected immunohistochemically. RESULTS Transfection of mammary gland adenocarcinoma cells with the tag7 cDNA did not alter their growth rate in vitro but diminished their tumorogenicity in vivo in syngeneic and immunodeficient animals. Increased incidence of apoptosis was registered in the modified tumors. Transient expression of Tag7 by mouse melanoma M3 cells elicited protective immunity against parental tumor cells. Immunohistochemical analysis revealed that tumors after immunization with the genetically modified cells were infiltrated with Mac1(+) cells, B220(+) cells, and NK cells. Using nude mice we observed rejection of modified cells, but did not detect memory formation. CONCLUSIONS We can conclude that secretion of the Tag7 protein by genetically modified cells can induce mobilization of antigen-presenting cells and innate effectors. Memory mechanisms are mediated by T cell response. For the first time our results demonstrate that local secretion of Tag7-the molecule involved in innate immunity-may play an important role in the induction of effective antitumor response in mice.
Collapse
Affiliation(s)
- Sergey S Larin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Block KI, Mead MN. Immune system effects of echinacea, ginseng, and astragalus: a review. Integr Cancer Ther 2004; 2:247-67. [PMID: 15035888 DOI: 10.1177/1534735403256419] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Traditional herbal medicine provides several remedies for strengthening the body's resistance to illness through effects on immune system components. This review article examines 3 popular herbal immune stimulants that are often of interest to cancer patients. Echinacea, a native of North America, is widely used to prevent, or provide early treatment for, colds. Preclinical studies lend biological plausibility to the idea that echinacea works through immune mechanisms. Numerous clinical trials have been carried out on echinacea preparations: it appears that the extracts shorten the duration and severity of colds and other upper respiratory infections (URIs) when given as soon as symptoms become evident. However, trials of long-term use of echinacea as a preventive have not shown positive results. Ginseng has been studied in some depth as an antifatigue agent, but studies of immune mechanisms have not proceeded so far. Preclinical evidence shows some immune-stimulating activity. There have been several clinical trials in a variety of different diseases. Astragalus is the least-studied agent. There are some preclinical trials that show intriguing immune activity. The herbs discussed appear to have satisfactory safety profiles. Cancer patients may wish to use these botanicals to inhibit tumor growth or to boost resistance to infections. However, passive immunotherapy with herbs, with no mechanism to expose tumor antigens, is unlikely to be effective in inhibiting tumor growth. Although the margin of safety for these herbs is large, more research is needed to demonstrate the clear value of using herbs to improve resistance to infections.
Collapse
Affiliation(s)
- Keith I Block
- Institute for Integrative Cancer Care and Block Center for Integrative Cancer Care, Evanston, Illinois 60201, USA.
| | | |
Collapse
|
45
|
Lee SJ, Saiki I, Hayakawa Y, Nunome S, Yamada H, Kim SH. Antimetastatic and immunomodulating properties of a new herbal prescription, Bojung-bangam-tang. Int Immunopharmacol 2003; 3:147-57. [PMID: 12586596 DOI: 10.1016/s1567-5769(02)00091-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the antimetastatic effect of Bojung-bangam-tang, a new herbal prescription, on liver metastasis by the inoculation of colon 26-L5 carcinoma cells into the portal vein. Oral administration of Bojung-bangam-tang for 15 days from day 7 before tumor inoculation significantly inhibited liver metastasis in a dose-dependent manner. Bojung-bangam-tang enhanced the mitogenic activity of BALB/c whole splenocytes induced by various mitogenic stimuli. Oral administration of Bojung-bangam-tang, by itself, could not induce the production of interleukin (IL)-12 or IFN-gamma by macrophages, but enhanced the potential of macrophages to produce cytokines in response to lipopolysaccharide (LPS). Experiments using macrophage- or natural killer (NK) cell-deficient mice revealed that the antimetastatic effect of Bojung-bangam-tang is mediated by macrophages rather than NK cells. Bojung-bangam-tang caused a marked increase of production of Th1 cytokine (IFN-gamma) and decrease of production of Th2 cytokine (IL-4) by splenocytes stimulated with concanavalin A (Con A). These results indicated that oral administration of Bojung-bangam-tang inhibited the liver metastasis of colon 26-L5 cells through a mechanism leading to a Th1 dominant immune state and activation of macrophages. Thus, Bojung-bangam-tang may be useful for the prevention of cancer metastasis.
Collapse
Affiliation(s)
- Soo Jin Lee
- Department of Pathogenic Biochemistry, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630, Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Metastatic lesions constitute the most frequently occurring malignancy in the brain, and their detection portends a grim prognosis. Efforts to treat these lesions have failed partly because the biologic processes that govern their development are poorly understood. In recent years, it has become evident that metastases occur as a result of a multistep process involving a rigorous natural selection of cells in the primary tumor that bear molecular and biologic characteristics permitting brain metastasis. In addition, recent studies have uncovered the importance of the brain microenvironment and its contribution to the metastatic process. The development of targeted therapies against brain metastases demands a better understanding of these molecular processes and the factors that influence them. This review examines the interplay between tumor cells and host brain tissue in the context of our current understanding of the role of various molecules involved in the metastatic process.
Collapse
Affiliation(s)
- V K Puduvalli
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, Box 431, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Lampe JW. Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies. Am J Clin Nutr 1999; 70:475S-490S. [PMID: 10479220 DOI: 10.1093/ajcn/70.3.475s] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epidemiologic data support the association between high intake of vegetables and fruits and low risk of chronic disease. There are several biologically plausible reasons why consumption of vegetables and fruit might slow or prevent the onset of chronic diseases. Vegetables and fruit are rich sources of a variety of nutrients, including vitamins, trace minerals, and dietary fiber, and many other classes of biologically active compounds. These phytochemicals can have complementary and overlapping mechanisms of action, including modulation of detoxification enzymes, stimulation of the immune system, reduction of platelet aggregation, modulation of cholesterol synthesis and hormone metabolism, reduction of blood pressure, and antioxidant, antibacterial, and antiviral effects. Although these effects have been examined primarily in animal and cell-culture models, experimental dietary studies in humans have also shown the capacity of vegetables and fruit and their constituents to modulate some of these potential disease-preventive mechanisms. The human studies have relied on intermediate endpoints related to disease risk. Design methodologies used include multiple-arm trials, randomized crossover studies, and more compromised designs such as nonrandomized crossovers and pre- and posttreatment analyses. Length of treatment ranged from a single dose to years depending on the mechanism of interest. Stringency of dietary control varied from addition of supplements to a habitual diet to provision of all food for the duration of a treatment. Rigorously conducted experimental dietary studies in humans are an important link between population- and laboratory-based research.
Collapse
Affiliation(s)
- J W Lampe
- Cancer Prevention Research Program, the Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
48
|
Toft P, Dagnaes-Hansen F, Tønnesen E, Basse PM. The effect of surgical stress and endotoxin-induced sepsis on the NK-cell activity, distribution and pulmonary clearance of YAC-1 and melanoma cells. APMIS 1999; 107:359-64. [PMID: 10230687 DOI: 10.1111/j.1699-0463.1999.tb01565.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following surgery the activity of natural killer (NK) cells is decreased in the blood. It is possible that sepsis with release of endotoxin will further decrease the NK-cell activity. The purpose of the present study was to investigate the NK-cell cytotoxicity, the clearance in the lungs of YAC-1 and melanoma cells, as well as the distribution of NK-cells in the liver, following abdominal surgery and intraperitoneally (i.p.) administered endotoxin. Ten mice in each group were allocated to abdominal surgery, i.p. endotoxin or anaesthesia alone. Following abdominal surgery, the cytotoxicity of NK-cells isolated from the spleen was decreased and 4 h after injection the clearance of YAC-1 cells from the lungs was only 79.5+/-6.1% compared to 99.5+/-0.3% in the control group. The number of NK-cells in the liver was also significantly reduced following abdominal surgery. In contrast, i.p. endotoxin increased the activity of NK-cells by 28.5% compared to 11.8% in the control group and 8.1% in the surgery group, lowered the number of melanoma metastases in extrapulmonary organs and significantly increased the number of NK-cells in the liver. Following abdominal surgery, activity of NK-cells, pulmonary clearance and number of NK-cells in the liver were decreased. The number of NK-cells in the liver correlated with the NK-cell activity throughout the study. The increased NK-cell cytotoxicity and the increased number of NK-cells in the liver following i.p. administered endotoxin might initially be an appropriate measure against intra-abdominal infection.
Collapse
Affiliation(s)
- P Toft
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Denmark
| | | | | | | |
Collapse
|
49
|
Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom AC. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:865-73. [PMID: 9736035 PMCID: PMC1853000 DOI: 10.1016/s0002-9440(10)65628-3] [Citation(s) in RCA: 854] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cancer metastasis, only a small percentage of cells released from a primary tumor successfully form distant lesions, but it is uncertain at which steps in the process cells are lost. Our goal was to determine what proportions of B16F1 melanoma cells injected intraportally to target mouse liver 1) survive and extravasate, 2) form micrometastases (4 to 16 cells) by day 3, 3) develop into macroscopic tumors by day 13, and 4) remain as solitary dormant cells. Using in vivo videomicroscopy, a novel cell accounting assay, and immunohistochemical markers for proliferation (Ki-67) and apoptosis (TUNEL), we found that 1) 80% of injected cells survived in the liver microcirculation and extravasated by day 3, 2) only a small subset of extravasated cells began to grow, with 1 in 40 forming micrometastases by day 3, 3) only a small subset of micrometastases continued to grow, with 1 in 100 progressing to form macroscopic tumors by day 13 (in fact, most micrometastases disappeared), and 4) 36% of injected cells remained by day 13 as solitary cancer cells, most of which were dormant (proliferation, 2%; apoptosis, 3%; in contrast to cells within macroscopic tumors: proliferation, 91%; apoptosis/necrosis, 6%). Thus, in this model, metastatic inefficiency is principally determined by two distinct aspects of cell growth after extravasation: failure of solitary cells to initiate growth and failure of early micrometastases to continue growth into macroscopic tumors.
Collapse
Affiliation(s)
- K J Luzzi
- Department of Medical Biophysics, University of Western Ontario, London Regional Cancer Centre, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Ohnishi Y, Fujii H, Hayakawa Y, Sakukawa R, Yamaura T, Sakamoto T, Tsukada K, Fujimaki M, Nunome S, Komatsu Y, Saiki I. Oral administration of a Kampo (Japanese herbal) medicine Juzen-taiho-to inhibits liver metastasis of colon 26-L5 carcinoma cells. Jpn J Cancer Res 1998; 89:206-13. [PMID: 9548449 PMCID: PMC5921762 DOI: 10.1111/j.1349-7006.1998.tb00550.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have investigated the inhibitory effect of oral administration of Juzen-taiho-to, a Kampo Japanese herbal medicine, on liver metastasis by the inoculation of a liver-metastatic variant (L5) of murine colon 26 carcinoma cells into the portal vein. Oral administration of Juzen-taiho-to for 7 days before tumor inoculation resulted in dose-dependent inhibition of liver tumor colonies and significant enhancement of survival rate as compared with the untreated control, without side effects. We also found that liver metastasis of L5 cells was enhanced in BALB/c mice pretreated with anti-asialo GM1 serum or 2-chloroadenosine, and in BALB/c nu/nu mice, compared to normal mice. This indicates that NK cells, macrophages, and T-cells play important roles in the prevention of metastasis of tumor cells. Juzen-taiho-to significantly inhibited the experimental liver metastasis of colon 26-L5 cells in mice pretreated with anti-asialo GM1 serum and untreated normal mice, whereas it did not inhibit metastasis in 2-chloroadenosine-pretreated mice or T-cell-deficient nude mice. Oral administration of Juzen-taiho-to activated peritoneal exudate macrophages (PEM) to become cytostatic against the tumor cells. These results show that oral administration of Juzen-taiho-to inhibited liver metastasis of colon 26-L5 cells, possibly through a mechanism mediated by the activation of macrophages and/or T-cells in the host immune system. Thus, Juzen-taiho-to may be efficacious for the prevention of cancer metastasis.
Collapse
MESH Headings
- 2-Chloroadenosine/pharmacology
- Administration, Oral
- Animals
- Anticarcinogenic Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/therapeutic use
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/pathology
- Cytotoxicity, Immunologic/drug effects
- Drug Interactions
- Drugs, Chinese Herbal/therapeutic use
- Female
- G(M1) Ganglioside/immunology
- Immune Sera/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Liver Neoplasms, Experimental/prevention & control
- Liver Neoplasms, Experimental/secondary
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Stimulation, Chemical
Collapse
Affiliation(s)
- Y Ohnishi
- Department of Pathogenic Biochemistry, Research Institute for Wakan-yaku, Sugitani, Toyama
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|