1
|
Zhang Y, Yu Y, Zhou H, Zhao M, Pan X. A novel function by cathepsin D in degradation of nucleic acids. Biochem Biophys Res Commun 2023; 682:250-258. [PMID: 37826948 DOI: 10.1016/j.bbrc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Cathepsin D (CTSD) is an aspartic endopeptidase, however, we found that it was also capable of enzymatic digestion of nucleic acids (NAs). The purpose of this study was to investigate the basic properties of CTSD enzymatic activity on NAs, and explore the degradation mechanism. The results showed that NAs were efficiently digested between pH 3.0 and 5.0, and the optimum pH was 3.5. CTSD exhibited optimum activity at the temperature of 50°C. The degradation rate was improved with an increased CTSD concentration, and NAs were digested to an enzyme concentration of 0.001%, at which point, NAs were no longer digested. Ca2+ and Mg2+ at low concentrations of 5 mM promoted the digestion remarkably. As the protein substrate for CTSD, both Hb and BSA had no effect on DNA degradation, even when the molar ratio of protein:DNA was 104:1. Kinetic parameters of Km and kcat/Km value were (42 ± 1) μM and (1.62 ± 0.1) × 10-2 s-1mM-1 respectively, using real-time quantitative PCR (RT-PCR). Specially, pepstatin A which is the specific aspartic protease inhibitor exhibited inhibitory effect on NA digestion by CTSD as well, suggesting that the catalytic active site of CTSD for NAs might be the same as protein. A brief degradation mechanism is discussed. The present study may change the cognition of CTSD specificity for substrate and contribute greatly to enzymology of CTSD.
Collapse
Affiliation(s)
- Yanfang Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong, China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai, Shandong, China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, China.
| | - Yingying Yu
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Haoran Zhou
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Mingyue Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Xiaoming Pan
- School of Food Engineering, Ludong University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Asgharzadeh F, Geraylow KR, Khazaei M, Nassiri M, Hassanian SM, Ferns GA, Avan A. Angiotensin-converting Enzyme Inhibitors and Angiotensin Receptor Blockers as Potential Therapeutic Options for Pancreatic Cancer. Curr Cancer Drug Targets 2022; 22:785-795. [PMID: 35585824 DOI: 10.2174/1568009622666220517104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
The renin-angiotensin system (RAS) has been reported to have a role in carcinogenesis, and therefore it may be of value as a potential therapeutic target in inhibiting tumor growth. It has been shown that inhibition of RAS via angiotensin I-converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor (ARBs) inhibitors may have a protective effect against several malignancies. Here, we provide an overview of the potential value of the RAS pathway and targeting via ACE/ARB inhibitors in pancreatic cancer. Whilst the potential role of RAS as a target for the treatment of pancreatic cancer has been reported, the use of candesartan with gemcitabine failed to improve outcomes in pancreatic cancer. Another study of 1-3 years using ARB was found to reduce the risk of pancreatic cancer. In line with these trials, others have demonstrated that the ARBs in combination with gemcitabine might improve clinical outcomes in patients with advanced pancreatic cancer. Prospective trials are warranted to investigate this hypothesis.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:1-16. [PMID: 32578168 DOI: 10.1007/978-3-030-43093-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer remains a major and leading health problem worldwide. Lack of early diagnosis, chemoresistance, and recurrence of cancer means vast research and development are required in this area. The complexity of the tumor microenvironment in the biological milieu poses greater challenges in having safer, selective, and targeted therapies. Existing strategies such as chemotherapy, radiotherapy, and antiangiogenic therapies moderately improve progression-free survival; however, they come with side effects that reduce quality of life. Thus, targeting potential candidates in the microenvironment, such as extracellular cathepsin D (CathD) which has been known to play major pro-tumorigenic roles in breast and ovarian cancers, could be a breakthrough in cancer treatment, specially using novel treatment modalities such as immunotherapy and nanotechnology-based therapy. This chapter discusses CathD as a pro-cancerous, more specifically a proangiogenic factor, that acts bi-functionally in the tumor microenvironment, and possible ways of targeting the protein therapeutically.
Collapse
|
4
|
Vangala G, Imhoff FM, Squires CM, Cridge AG, Baird SK. Mesenchymal stem cell homing towards cancer cells is increased by enzyme activity of cathepsin D. Exp Cell Res 2019; 383:111494. [DOI: 10.1016/j.yexcr.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
|
5
|
Roth IM, Wickremesekera AC, Wickremesekera SK, Davis PF, Tan ST. Therapeutic Targeting of Cancer Stem Cells via Modulation of the Renin-Angiotensin System. Front Oncol 2019; 9:745. [PMID: 31440473 PMCID: PMC6694711 DOI: 10.3389/fonc.2019.00745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are proposed to be the cells that initiate tumorigenesis and maintain tumor development due to their self-renewal and multipotency properties. CSCs have been identified in many cancer types and are thought to be responsible for treatment resistance, metastasis, and recurrence. As such, targeting CSCs specifically should result in durable cancer treatment. One potential option for targeting CSCs is by manipulation of the renin-angiotensin system (RAS) and pathways that converge on the RAS with numerous inexpensive medications currently in common clinical use. In addition to its crucial role in cardiovascular and body fluid homeostasis, the RAS is vital for stem cell maintenance and differentiation and plays a role in tumorigenesis and cancer prevention, suggesting that these roles may converge and result in modulation of CSC function by the RAS. In support of this, components of the RAS have been shown to be expressed in many cancer types and have been more recently localized to the CSCs in some tumors. Given these roles of the RAS in tumor development, clinical trials using RAS inhibitors either singly or in combination with other therapies are underway in different cancer types. This review outlines the roles of the RAS, with respect to CSCs, and suggests that the presence of components of the RAS in CSCs could offer an avenue for therapeutic targeting using RAS modulators. Due to the nature of the RAS and its crosstalk with numerous other signaling pathways, a systems approach using traditional RAS inhibitors in combination with inhibitors of bypass loops of the RAS and other signaling pathways that converge on the RAS may offer a novel therapeutic approach to cancer treatment.
Collapse
Affiliation(s)
- Imogen M Roth
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Agadha C Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Upper Gastrointestinal, Hepatobiliary and Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|
6
|
van Weverwijk A, Koundouros N, Iravani M, Ashenden M, Gao Q, Poulogiannis G, Jungwirth U, Isacke CM. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation. Nat Commun 2019; 10:2698. [PMID: 31221959 PMCID: PMC6586667 DOI: 10.1038/s41467-019-10592-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
The different stages of the metastatic cascade present distinct metabolic challenges to tumour cells and an altered tumour metabolism associated with successful metastatic colonisation provides a therapeutic vulnerability in disseminated disease. We identify the aldo-keto reductase AKR1B10 as a metastasis enhancer that has little impact on primary tumour growth or dissemination but promotes effective tumour growth in secondary sites and, in human disease, is associated with an increased risk of distant metastatic relapse. AKR1B10High tumour cells have reduced glycolytic capacity and dependency on glucose as fuel source but increased utilisation of fatty acid oxidation. Conversely, in both 3D tumour spheroid assays and in vivo metastasis assays, inhibition of fatty acid oxidation blocks AKR1B10High-enhanced metastatic colonisation with no impact on AKR1B10Low cells. Finally, mechanistic analysis supports a model in which AKR1B10 serves to limit the toxic side effects of oxidative stress thereby sustaining fatty acid oxidation in metabolically challenging metastatic environments. Cancer cells must develop distinct metabolic adaptations to survive in challenging metastatic environments. Here, the authors find, via an in vivo RNAi screen, that the aldo-keto reductase AKR1B10 limits the toxic side effects of oxidative stress to sustain fatty acid oxidation and promote metastatic colonisation.
Collapse
Affiliation(s)
- Antoinette van Weverwijk
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.,Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Nikolaos Koundouros
- Department of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK.,Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Marjan Iravani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Matthew Ashenden
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Qiong Gao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - George Poulogiannis
- Department of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK.,Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Ute Jungwirth
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.,Department of Pharmacy & Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath, BA2 7AY, UK
| | - Clare M Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
7
|
Nagano K. Development and Evaluation of Antibody Proteomics Technology for Rapid and Comprehensive Identification of Potential Biomarkers and Therapeutic Targets. Biol Pharm Bull 2018; 41:663-669. [PMID: 29709904 DOI: 10.1248/bpb.b17-01041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteomics-based analyses are powerful means of identifying potentially useful proteins in the initial stage of drug development. Technological developments in the field of proteomics, and increases in the sensitivity of MS analyses, now facilitate identification and examination of increasingly small amounts of proteins that are differentially expressed in diseased versus normal tissues and can be candidate biomarkers or therapeutic targets. However, the current approach is for candidate proteins to be prioritized by research interest and then validated one by one; this is very inefficient. To address this issue, we have developed what we refer to as "antibody proteomics technology," which uses a phage antibody library and tissue microarray analysis to rapidly and comprehensively isolate monoclonal antibodies against candidate proteins for the identification of potential biomarkers and therapeutic targets. In our validation of this technology, we successfully identified oxysterol binding protein-like 5 and calumenin as potential biomarkers related to metastasis in lung cancer, annexin A4 as a potential biomarker related to cisplatin resistance in malignant mesothelioma, and Eph receptor A10 as a potential therapeutic target in breast cancer, including refractory breast cancer. These findings suggest that antibody proteomics technology has the potential to become a fundamental technology in drug discovery for the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kazuya Nagano
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
8
|
de Winne K, Roseeuw E, Pagnaer J, Schacht E. Succinoylated Poly[N-(2- Hydroxyethyl)-L-Glutamine] Derivatives for Drug Delivery. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911504048327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of succinoylated poly[N-(2-)- L-glutamine] (PHEG) derivatives was synthesized by reacting PHEG with succinic anhydride in the presence of N,N-dimethylaminopyridine as a catalyst. The size of the derivatives were measured by dynamic light scattering in buffers (pH 5.5 and 7.4, respectively) the lysosomal and physiological pH. The degradability of the succinoylated polymers toward cathepsin B was followed by gel permeation chromatography. It was demonstrated that an increase of modification results in decreased biodegradability. Conjugation of mitomycin C (MMC) with a succinoylated PHEG derivative through a collagenase-sensitive Pro-Leu-Gly-Pro- Leu spacer resulted in a water-soluble MMC conjugate. This conjugate was shown to be hydrolytically stable in buffers of lysosomal and physiological pH and able to release MMC in the presence of the bacterial collagenase clostridium histolyticum.
Collapse
Affiliation(s)
| | | | - John Pagnaer
- Polymer Materials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Etienne Schacht
- Polymer Materials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Visscher DW, Sloane B, Sakr W, Sameni M, Weaver D, Bouwman D, Crissman JD. Clinicopathologic Significance of Cathepsin B and Urokinase-type Plasminogen Activator Immunostaining in Colorectal Adenocarcinoma. Int J Surg Pathol 2016. [DOI: 10.1177/106689699400100403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetone-fixed cryostat sections of 52 colorectal adenocarcinomas (26 stage B, 26 stage C) were immunostained with antibodies for two "invasion-associated" proteolytic enzymes—cathepsin B and urokinase-type plasminogen activator. Cathepsin B immu nostaining of neoplastic cells was observed in 21 tumors (40%). It was generally accompanied by staining among peritumoral host cells. There was no correlation be tween neoplastic cell cathepsin B staining and tumor stage (stage B, 42% positive vs stage C, 38% positive) however staining was more frequent in tumors that recurred (cathepsin B negative, 23% recurred vs cathepsin B positive, 48% recurred, P = .05-.06,25 months follow-up). Significant neoplastic cell urokinase-type plasminogen activator staining was present in only six cases (12%); however, peritumoral spindle and inflammatory cells exhibited positivity in 35% of tumors. There was no correlation between host cell derived urokinase-type plasminogen activator staining and either node metastasis or patient outcome. Tumors that stained for both neoplastic cell ca thepsin B and stromal cell urokinase-type plasminogen activator (12%) characterized a morphologically and clinically aggressive subset, compared to cases that stained for only one (51%) or neither (37%) enzyme (both positive, 83% recurred, 83% poorly differentiated vs neither positive, 26% recurred, 5% poorly differentiated). These data imply that invasion-associated proteases are derived from heterogeneous cellular sources in colorectal tumors. Further, synergistic protease activity may promote aggres sive clinical behavior accounting, in part, for the adverse prognostic significance of poor differentiation. Int J Surg Pathol 1(4):227-234, 1994
Collapse
Affiliation(s)
| | - B. Sloane
- Surgery, Wayne State University and Harper Hospital, Detroit, Michigan
| | - Wael Sakr
- Surgery, Wayne State University and Harper Hospital, Detroit, Michigan
| | - M. Sameni
- Surgery, Wayne State University and Harper Hospital, Detroit, Michigan
| | - D. Weaver
- Surgery, Wayne State University and Harper Hospital, Detroit, Michigan
| | - D. Bouwman
- Surgery, Wayne State University and Harper Hospital, Detroit, Michigan
| | - John D. Crissman
- Surgery, Wayne State University and Harper Hospital, Detroit, Michigan
| |
Collapse
|
10
|
Proteomic analysis of β-asarone induced cytotoxicity in human glioblastoma U251 cells. J Pharm Biomed Anal 2015; 115:292-9. [DOI: 10.1016/j.jpba.2015.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 01/22/2023]
|
11
|
Jafari-Koshki T, Mansourian M, Mokarian F. Exploring factors related to metastasis free survival in breast cancer patients using Bayesian cure models. Asian Pac J Cancer Prev 2015; 15:9673-8. [PMID: 25520087 DOI: 10.7314/apjcp.2014.15.22.9673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is a fatal disease and the most frequently diagnosed cancer in women with an increasing pattern worldwide. The burden is mostly attributed to metastatic cancers that occur in one-third of patients and the treatments are palliative. It is of great interest to determine factors affecting time from cancer diagnosis to secondary metastasis. MATERIALS AND METHODS Cure rate models assume a Poisson distribution for the number of unobservable metastatic-component cells that are completely deleted from the non-metastasis patient body but some may remain and result in metastasis. Time to metastasis is defined as a function of the number of these cells and the time for each cell to develop a detectable sign of metastasis. Covariates are introduced to the model via the rate of metastatic-component cells. We used non-mixture cure rate models with Weibull and log-logistic distributions in a Bayesian setting to assess the relationship between metastasis free survival and covariates. RESULTS The median of metastasis free survival was 76.9 months. Various models showed that from covariates in the study, lymph node involvement ratio and being progesterone receptor positive were significant, with an adverse and a beneficial effect on metastasis free survival, respectively. The estimated fraction of patients cured from metastasis was almost 48%. The Weibull model had a slightly better performance than log-logistic. CONCLUSIONS Cure rate models are popular in survival studies and outperform other models under certain conditions. We explored the prognostic factors of metastatic breast cancer from a different viewpoint. In this study, metastasis sites were analyzed all together. Conducting similar studies in a larger sample of cancer patients as well as evaluating the prognostic value of covariates in metastasis to each site separately are recommended.
Collapse
Affiliation(s)
- Tohid Jafari-Koshki
- Department of Biostatistics, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran. E-mail :
| | | | | |
Collapse
|
12
|
Synergistic anticancer effects of combined γ-tocotrienol and oridonin treatment is associated with the induction of autophagy. Mol Cell Biochem 2015; 408:123-37. [PMID: 26112904 DOI: 10.1007/s11010-015-2488-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022]
Abstract
γ-Tocotrienol and oridonin are natural phytochemicals that display potent anticancer activity. Studies showed that combined treatment with subeffective doses of γ-tocotrienol with oridonin resulted in synergistic autophagic and apoptotic effects in malignant +SA, but not normal CL-S1 mouse mammary epithelial cells in vitro. Specifically, combined treatment with low doses of γ-tocotrienol (8 µM) and oridonin (2 µM) for 24 h resulted in synergistic inhibition of +SA mammary cancer cells viability. This combination significantly enhanced the expression of autophagy cellular markers including the conversion of LC3B-I to LC3B-II, beclin-1, Atg3, Atg7, Atg5-Atg12, LAMP-1 and cathepsin-D, and pretreatment with the autophagy inhibitors 3-methyladenine (3-MA) or bafilomycin A1 (Baf1) blocked these effects. Furthermore, blockade of γ-tocotrienol and oridonin-induced autophagy with 3-MA or Baf1 induced a modest, but significant reduction in cytotoxicity resulting from the combined treatment of these phytochemicals. The anticancer effects of combination treatment was also associated with a large suppression in Akt/mTOR mitogenic signaling and corresponding increase in the levels of apoptotic cellular marker including cleaved caspase-3 and PARP, and Bax/Bcl-2 ratio in these tumor cells. These effects were also found to be selective against cancer cells, since similar combined treatment with γ-tocotrienol and oridonin did not induce autophagy or reduce viability of normal mouse CL-S1 mammary epithelial cells. These findings indicate that combined γ-tocotrienol and oridonin-induced autophagy plays a role in mediating the synergistic anticancer effects of these phytochemicals.
Collapse
|
13
|
Nagano K, Imai S, Zhao X, Yamashita T, Yoshioka Y, Abe Y, Mukai Y, Kamada H, Nakagawa S, Tsutsumi Y, Tsunoda SI. Identification and evaluation of metastasis-related proteins, oxysterol binding protein-like 5 and calumenin, in lung tumors. Int J Oncol 2015; 47:195-203. [PMID: 25963840 DOI: 10.3892/ijo.2015.3000] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022] Open
Abstract
Metastasis is an important prognosis factor in lung cancer, therefore, it is imperative to identify target molecules and elucidate molecular mechanism of metastasis for developing new therapeutics and diagnosis methods. We searched for metastasis-related proteins by utilizing a novel antibody proteome technology developed in our laboratory that facilitated efficient screening of useful target proteins. Two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis identified sixteen proteins, which were highly expressed in metastatic lung cancer cells, as protein candidates. Monoclonal single-chain variable fragments (scFvs) binding to candidates were isolated from a scFv-displaying phage library by affinity selection. Tissue microarray analysis of scFvs binding to candidates revealed that oxysterol binding protein-like 5 (OSBPL5) and calumenin (CALU) were expressed at a significantly higher levels in the lung tissues of metastasis-positive cases than that in the metastasis-negative cases (OSBPL5; p=0.0156, CALU; p=0.0055). Furthermore, 80% of OSBPL5 and CALU double-positive cases were positive for lymph node metastasis. Consistent with these observations, overexpression of OSBPL5 and CALU promoted invasiveness of lung cancer cells. Conversely, knockdown of these proteins using respective siRNAs reversed the invasiveness of the lung cancer cells. Moreover, these proteins were expressed in lung tumor tissues, but not in normal lung tissues. In conclusion, OSBPL5 and CALU are related to metastatic potential of lung cancer cells, and they could be useful targets for cancer diagnosis and also for development of drugs against metastasis.
Collapse
Affiliation(s)
- Kazuya Nagano
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Sunao Imai
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Xiluli Zhao
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Takuya Yamashita
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Yasuo Yoshioka
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Yasuhiro Abe
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Yohei Mukai
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Shinsaku Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
14
|
Maynadier M, Farnoud R, Lamy PJ, Laurent-Matha V, Garcia M, Rochefort H. Cathepsin D stimulates the activities of secreted plasminogen activators in the breast cancer acidic environment. Int J Oncol 2013; 43:1683-90. [PMID: 24026424 DOI: 10.3892/ijo.2013.2095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/26/2013] [Indexed: 11/05/2022] Open
Abstract
Two proteases cathepsin D (cath D) and urokinase plasminogen activator (uPA) are tissue markers associated with an increased risk of metastasis in breast cancer. We investigated whether cath D, the major aspartyl protease overexpressed by breast cancer cells can trigger a proteolytic cascade via activation of plasminogens at the extracellular pH measured in hypoxic tumors. The effects of the aspartyl protease inhibitor pepstatin on the plasminogen activator (PA) system were analysed by conditioning media of human MDA-MB231 breast cancer cells at pH 6.6 and pH 7.4. Zymography analysis of culture media showed that pepstatin inhibited the secreted activity of tissue-type plasminogen activator (tPA) but not that of uPA. tPA was identified on the basis of the molecular weight, the immunoreactivity with relevant antibodies and the resistance to amiloride, a specific uPA inhibitor. The secreted tPA activity measured by a chromogenic assay in the presence of amiloride was also inhibited by pepstatin at pH 6.6. Surprisingly, pepstatin did not affect secreted tPA protein concentration but markedly increased the amount of the secreted plasminogen activator inhibitor-1 (PAI-1). We conclude that cath D overexpressed by these cells, stimulates at pH 6.6, but not at neutral pH, the extracellular PA proteolytic activity indirectly via PAI-1 proteolysis. This suggests that cath D at acidic pH close to the hypoxic regions of solid tumors, contributes to trigger a proteolytic cascade facilitating cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Marie Maynadier
- IBMM UMR 5247, University of Montpellier 1, University of Montpellier 2, ENSCM, Montpellier, France
| | | | | | | | | | | |
Collapse
|
15
|
Cathepsin D is released after severe tissue trauma in vivo and is capable of generating C5a in vitro. Mol Immunol 2012; 50:60-5. [PMID: 22244896 DOI: 10.1016/j.molimm.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 11/20/2022]
Abstract
In response to severe tissue trauma several danger sensing and signalling cascades are activated, including the complement and the apoptosis systems. In polytrauma patients, both the early activation of the complement cascade with an excessive generation of the potent anaphylatoxin C5a and the induction of apoptosis have been shown to modulate the post-traumatic immune response. However, little is known about a direct interaction between the complement and apoptosis systems after severe tissue trauma. Therefore the focus of the present study was to elucidate the interplay between the central complement component C5 and the pro-apoptotic aspartic protease cathepsin D. In vivo, the cathepsin D plasma concentration of multiple injured patients was markedly increased when compared to healthy volunteers. In vitro incubation of C5 with cathepsin D resulted in a concentration- and time-dependent generation of C5a, which was inhibited by the aspartate protease inhibitor pepstatin A. Immunoblotting and sequencing analysis indicated that the C5 cleavage product represents the native form of human C5a, also exhibiting chemotactic activity for human neutrophils. In conclusion, these data show for the first time that cathepsin D is increased in plasma early after severe tissue injury. Furthermore, the results provide in vitro evidence of cleavage of C5 by an aspartic protease with subsequent generation of functional C5a, which represents a new path of complement activation.
Collapse
|
16
|
|
17
|
|
18
|
Carvelli LF, Bannoud N, Aguilera CA, Morales CR, Sosa MA. Castration induces changes in the cation-dependent mannose-6-phosphate receptor in rat epididymis: Possible implications in secretion of lysosomal enzymes. J Cell Biochem 2010; 110:1101-10. [DOI: 10.1002/jcb.22622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Chi C, Zhu H, Han M, Zhuang Y, Wu X, Xu T. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila. J Biol Chem 2010; 285:21817-23. [PMID: 20418542 PMCID: PMC2898421 DOI: 10.1074/jbc.m110.131714] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders RasV12 cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the RasV12 cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.
Collapse
Affiliation(s)
- Congwu Chi
- Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Center for Biomedical Research, School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
20
|
Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 2010; 12:503-35. [PMID: 19650712 PMCID: PMC2861545 DOI: 10.1089/ars.2009.2598] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 07/22/2009] [Accepted: 08/02/2009] [Indexed: 12/19/2022]
Abstract
It is now generally accepted that aging and eventual death of multicellular organisms is to a large extent related to macromolecular damage by mitochondrially produced reactive oxygen species, mostly affecting long-lived postmitotic cells, such as neurons and cardiac myocytes. These cells are rarely or not at all replaced during life and can be as old as the whole organism. The inherent inability of autophagy and other cellular-degradation mechanisms to remove damaged structures completely results in the progressive accumulation of garbage, including cytosolic protein aggregates, defective mitochondria, and lipofuscin, an intralysosomal indigestible material. In this review, we stress the importance of crosstalk between mitochondria and lysosomes in aging. The slow accumulation of lipofuscin within lysosomes seems to depress autophagy, resulting in reduced turnover of effective mitochondria. The latter not only are functionally deficient but also produce increased amounts of reactive oxygen species, prompting lipofuscinogenesis. Moreover, defective and enlarged mitochondria are poorly autophagocytosed and constitute a growing population of badly functioning organelles that do not fuse and exchange their contents with normal mitochondria. The progress of these changes seems to result in enhanced oxidative stress, decreased ATP production, and collapse of the cellular catabolic machinery, which eventually is incompatible with survival.
Collapse
Affiliation(s)
- Alexei Terman
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
21
|
Suchý M, Ta R, Li AX, Wojciechowski F, Pasternak SH, Bartha R, Hudson RHE. A paramagnetic chemical exchange-based MRI probe metabolized by cathepsin D: design, synthesis and cellular uptake studies. Org Biomol Chem 2010; 8:2560-6. [PMID: 20485791 DOI: 10.1039/b926639a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overexpression of the aspartyl protease cathepsin D is associated with certain cancers and Alzheimer's disease; thus, it is a potentially useful imaging biomarker for disease. A dual fluorescence/MRI probe for the potential detection of localized cathepsin D activity has been synthesized. The probe design includes both MRI and optical reporter groups connected to a cell penetrating peptide by a cathepsin D cleavable sequence. This design results in the selective intracellular deposition (determined fluorimetrically) of the MRI and optical reporter groups in the presence of overexpressed cathepsin D. The probe also provided clearly detectable in vitro MRI contrast by the mechanism of paramagnetic chemical exchange effects (OPARACHEE).
Collapse
Affiliation(s)
- Mojmír Suchý
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | | | | | | | |
Collapse
|
22
|
Perks CM, Holly JMP. IGF binding proteins (IGFBPs) and regulation of breast cancer biology. J Mammary Gland Biol Neoplasia 2008; 13:455-69. [PMID: 19031049 DOI: 10.1007/s10911-008-9106-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 01/13/2023] Open
Abstract
The IGFBP family comprises six proteins with high affinity for the IGFs. Changes in the balance of the components of the IGF system may contribute to the progression of breast cancer. In tumours the abundance of IGFBPs relates to the estrogen receptor status and their production in the breast is controlled by hormones, principally estrogen and progesterone. Important interactions occur between IGFBPs and key growth regulators such as TGF-beta, PTEN and EGF which are reviewed. The conflicting observations between the effects of IGFBPs on the risk of breast cancer, in particular IGFBP-3, obtained from epidemiology studies in comparison to in vivo observations are highlighted and potential explanations provided. The functional activity of IGFBPs can also be affected by proteolysis, phosphorylation and glycosylation and the implications of these are described. The IGFs are generally present at levels far in excess of that required for maximal receptor stimulation, and the IGFBPs are critical regulators of their cellular actions. IGFBPs can affect cell function in an IGF-dependent or independent manner. The key mechanisms underlying the intrinsic actions of the IGFBPs are still in debate. IGF bioactivity locally in the breast is influenced not only by local tissue expression and regulation of IGFs, IGFBPs and IGFBP proteases, but also by these factors delivered from the circulation. Finally, the therapeutic potential of IGFBPs-2 and -3 are considered together with key questions that still need to be addressed.
Collapse
Affiliation(s)
- Claire M Perks
- Department of Clinical Sciences North Bristol, IGFs and Metabolic Endocrinology Group, University of Bristol, Southmead Hospital, The Medical School Unit, Bristol, BS10 5NB, UK.
| | | |
Collapse
|
23
|
Kurz T, Terman A, Gustafsson B, Brunk UT. Lysosomes in iron metabolism, ageing and apoptosis. Histochem Cell Biol 2008; 129:389-406. [PMID: 18259769 PMCID: PMC2668650 DOI: 10.1007/s00418-008-0394-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2008] [Indexed: 12/19/2022]
Abstract
The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH approximately 4 to 5) that constantly fuse and divide. It receives a large number of hydrolases ( approximately 50) from the trans-Golgi network, and substrates from both the cells' outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while 'resting' lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place.
Collapse
Affiliation(s)
- Tino Kurz
- Division of Pharmacology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
24
|
Wood RJ, Hulett MD. Cell Surface-expressed Cation-independent Mannose 6-Phosphate Receptor (CD222) Binds Enzymatically Active Heparanase Independently of Mannose 6-Phosphate to Promote Extracellular Matrix Degradation. J Biol Chem 2008; 283:4165-76. [DOI: 10.1074/jbc.m708723200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta Gen Subj 2008; 1780:1291-303. [PMID: 18255041 DOI: 10.1016/j.bbagen.2008.01.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/13/2008] [Accepted: 01/15/2008] [Indexed: 12/19/2022]
Abstract
The lysosomal compartment consists of numerous acidic vesicles (pH approximately 4-5) that constantly fuse and divide. It receives a large number of hydrolases from the trans-Golgi network, while their substrates arrive from both the cell's outside (heterophagy) and inside (autophagy). Many macromolecules under degradation inside lysosomes contain iron that, when released in labile form, makes lysosomes sensitive to oxidative stress. The magnitude of generated lysosomal destabilization determines if reparative autophagy, apoptosis, or necrosis will follow. Apart from being an essential turnover process, autophagy is also a mechanism for cells to repair inflicted damage, and to survive temporary starvation. The inevitable diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow oxidative formation of lipofuscin in long-lived postmitotic cells, where it finally occupies a substantial part of the volume of the lysosomal compartment. This seems to result in a misdirection of lysosomal enzymes away from autophagosomes, resulting in depressed autophagy and the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. This scenario might put aging into the category of autophagy disorders.
Collapse
|
26
|
Curtis CD, Likhite VS, McLeod IX, Yates JR, Nardulli AM. Interaction of the tumor metastasis suppressor nonmetastatic protein 23 homologue H1 and estrogen receptor alpha alters estrogen-responsive gene expression. Cancer Res 2007; 67:10600-7. [PMID: 17975005 DOI: 10.1158/0008-5472.can-07-0055] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastasis of cancer cells from the primary tumor is associated with poor prognosis and decreased overall survival. One protein implicated in inhibiting metastasis is the tumor metastasis suppressor nonmetastatic protein 23 homologue 1 (NM23-H1). NM23-H1 is a multifunctional protein, which, in addition to limiting metastasis, has DNase and histidine protein kinase activities. We have identified new functions for NM23-H1 in influencing estrogen receptor alpha (ER alpha)-mediated gene expression. Using a battery of molecular and biochemical techniques, we show that NM23-H1 interacts with ER alpha and increases the ER alpha-estrogen response element (ERE) interaction. When NM23-H1 expression is increased in U2 osteosarcoma and MDA-MB-231 breast cancer cells, transcription of a transiently transfected, estrogen-responsive reporter plasmid is decreased. More importantly, when endogenous NM23-H1 expression is knocked down in MCF-7 human breast cancer cells using small interfering RNA, estrogen responsiveness of the progesterone receptor (PR), Bcl-2, cathepsin D, and cyclin D1 genes, but not the pS2 gene, is enhanced. Furthermore, NM23-H1 associates with the region of the PR gene containing the +90 activator protein 1 site, but not with the ERE-containing region of the pS2 gene, indicating that NM23-H1 mediates gene-specific effects by association with endogenous chromatin. Our studies suggest that the capacity of NM23-H1 to limit the expression of estrogen-responsive genes such as cathepsin D and Bcl-2, which are involved in cell migration, apoptosis, and angiogenesis, may help to explain the metastasis-suppressive effects of this protein. The complementary abilities of ER alpha and NM23-H1 together to influence gene expression, cell migration, and apoptosis could be key factors in helping to determine tumor cell fate.
Collapse
Affiliation(s)
- Carol D Curtis
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
27
|
Page JL, Strom SC, Omiecinski CJ. Regulation of the human cathepsin E gene by the constitutive androstane receptor. Arch Biochem Biophys 2007; 467:132-8. [PMID: 17888866 PMCID: PMC4064465 DOI: 10.1016/j.abb.2007.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 01/28/2023]
Abstract
Cathepsin E (CTSE) is an aspartic protease that has been linked to antigen processing and innate immunity. Elevated levels of CTSE expression have also been associated with several forms of cancer, including carcinomas exhibiting highly invasive character. In this study, we performed DNA microarray experiments, together with quantitative reverse transcriptase PCR analyses and enzymatic activity determinations to identify human CTSE as a novel target gene for regulation by the constitutive androstane receptor (CAR), a nuclear receptor activated by the liver tumor promoting agent, phenobarbital. In particular, two motifs within the 5'-flanking region of the human CTSE gene were identified as direct sites of interaction with CAR/RXRalpha heterodimers, a direct repeat-3 site at position -766 and a direct repeat-4 site at position -1407. Thus, these studies demonstrate CAR-mediated regulation of CTSE within primary hepatocyte cultures from several individual donors and suggest that elevated CTSE activity may play a functional role in the etiology of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jeanine L. Page
- Center for Molecular Toxicology & Carcinogenesis and the Department of Veterinary & Biomedical Sciences, 101 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen C. Strom
- Department of Pathology, University of Pittsburgh, 210 Lothrop Street, 450 BST, Pittsburgh, PA 15261, USA
| | - Curtis J. Omiecinski
- Center for Molecular Toxicology & Carcinogenesis and the Department of Veterinary & Biomedical Sciences, 101 Life Sciences Building, The Pennsylvania State University, University Park, PA 16802, USA
- Corresponding author. Fax: +1 814 863 1696. (C.J. Omiecinski)
| |
Collapse
|
28
|
Schmid B, Chung DE, Warnecke A, Fichtner I, Kratz F. Albumin-Binding Prodrugs of Camptothecin and Doxorubicin with an Ala-Leu-Ala-Leu-Linker That Are Cleaved by Cathepsin B: Synthesis and Antitumor Efficacy. Bioconjug Chem 2007; 18:702-16. [PMID: 17378599 DOI: 10.1021/bc0602735] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently validated a macromolecular prodrug strategy for improved cancer chemotherapy based on two features: (a) rapid and selective binding of thiol-reactive prodrugs to the cysteine-34 position of endogenous albumin and (b) acid-sensitive promoted or enzymatic release of the drug at the tumor site [Kratz, F., Warnecke, A., Scheuemann, K., Stockmar, C., Schwab, J., Lazar, P., Druckes, P., Esser, N., Drevs, J., Rognan, D., Bissantz, C., Hinderling, C., Folkers, G., Fichtner, I., and Unger, C. (2002) J. Med. Chem. 45, 5523-33]. In the present work, we developed water-soluble camptothecin (CPT) and doxorubicin (DOXO) prodrugs that incorporate the peptide linker Ala-Leu-Ala-Leu that serves as a substrate for the tumor-associated protease, cathepsin B, which is overexpressed in several solid tumors. Consequently, two albumin-binding prodrugs were synthesized [EMC-Arg-Arg-Ala-Leu-Ala-Leu-Ala-CPT (1) and EMC-Arg-Arg-Ala-Leu-Ala-Leu-DOXO (2) (EMC = 6-maleimidocaproic acid)]. Both prodrugs exhibited excellent water-solubility and bound rapidly and selectively to the cysteine-34 position of endogenous albumin. Further in vitro studies showed that the albumin-bound form of the prodrugs was cleaved specifically by cathepsin B as well as in human tumor homogenates. Major cleavage products were CPT-peptide derivatives and CPT for the CPT prodrug and H-Leu-Ala-Leu-DOXO, H-Leu-DOXO, and DOXO for the doxorubicin prodrug. In vivo, 1 was superior to free camptothecin in an HT-29 human colon xenograft model; the antitumor efficacy of prodrug 2 was comparable to that of free doxorubicin in the M-3366 mamma carcinoma xenograft model at equimolar doses.
Collapse
Affiliation(s)
- Björn Schmid
- Tumor Biology Center, Breisacher Strasse 117, 79106 Freiburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Zhou H, Liu Y, Chui J, Guo K, Shun Q, Lu W, Jin H, Wei L, Yang P. Investigation on glycosylation patterns of proteins from human liver cancer cell lines based on the multiplexed proteomics technology. Arch Biochem Biophys 2006; 459:70-8. [PMID: 17214954 DOI: 10.1016/j.abb.2006.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/06/2006] [Accepted: 10/23/2006] [Indexed: 10/24/2022]
Abstract
Glycosylation, a very important post-translational modification of proteins, is increasingly coming into notice. However, large-scale, throughput investigations on glycosylated proteins are few. We applied a sensitive and fast fluorescence-based multiplexed proteomics (MP) technology which included two-dimensional gel electrophoresis (2-DE) followed by the fluorescence staining of glycoprotein and mass spectrometry identification for the purpose of constructing glycoprotein databases of the typical human hepatocellular carcinoma cell lines including Hep3B cell line without metastasis and MHCC97H with highly metastatic potential as well as the control non-tumor Chang liver cell. 74+/-2 (n=3), 78+/-3 (n=3) and 72+/-5 (n=3) glycoprotein spots were detected on 2-DE gels from Chang liver, Hep3B and MHCC97H cell sample using this MP technique, respectively. In all, 80 glycoproteins from three cell lines were successfully identified via peptide mass profiling using MALDI-TOF-MS/MS and the identified glycoproteins were annotated to our databases. In addition, we also found the glycosylation pattern differences among these three cell lines. The protein glycosylation alteration would be have great significance for the diagnosis of HCC and prediction of its metastasis. This study described the construction of glycosylation patterns of proteins and glycoproteome databases of human liver cells by the novel technological platform. The glycoproteome databases also provide essential basis for following study.
Collapse
Affiliation(s)
- Haijun Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
De Winne K, Seymour LW, Schacht EH. Synthesis and in vitro evaluation of macromolecular antitumour derivatives based on phenylenediamine mustard. Eur J Pharm Sci 2005; 24:159-68. [PMID: 15661487 DOI: 10.1016/j.ejps.2004.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 09/03/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022]
Abstract
Poly-[N-(2-hydroxyethyl)-L-glutamine] (PHEG) and poly(ethylene glycol) (PEG)-grafted PHEG conjugates of N,N-di(2-chloroethyl)-4-phenylenediamine mustard (PDM) were synthetised. A collagenase-sensitive oligopeptide spacer was selected to link the cytotoxic agent PDM onto the polymeric carrier. First, the oligopeptide-drug conjugate, L-pro-L-leu-gly-L-pro-gly-PDM, was prepared. In a second step, the low molecular weight PDM derivative and PEG-NH(2) were coupled to a N,N-disuccinimidylcarbonate activated PHEG. Dynamic laser light scattering measurements indicated the formation of aggregates. The presence of human serum albumin had no significant effect on the diameter of the conjugates. The hydrolytic stability of the conjugates was investigated in buffer solutions. The conjugates showed an improved stability compared to the parent nitrogen mustard. The enzymatic degradation studies of the polymeric conjugates were performed in the presence of collagenase type IV (Clostridiopeptidase A; EC 3.4.24.3), cathepsin B (EC 3.4.22.1), cathepsin D (EC 3.4.23.5) and tritosomes. Only the bacterial collagenase type IV was able to cleave the spacer releasing free PDM and its peptidyl derivative, gly-L-pro-gly-PDM. The in vitro cytotoxicity of the conjugates was evaluated against HT1080 fibrosarcoma cells and MDA adenocarcinoma cells. All conjugates showed low toxicity towards these cell lines.
Collapse
Affiliation(s)
- Katleen De Winne
- Polymer Materials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | | | | |
Collapse
|
31
|
Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H, Atzmon R, Elgavish S, Peretz T, Vlodavsky I. Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 2005; 280:13568-75. [PMID: 15659389 DOI: 10.1074/jbc.m413370200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparanase is an endo-beta-D-glucuronidase that degrades heparan sulfate in the extracellular matrix and cell surfaces. Human proheparanase is produced as a latent 65-kDa polypeptide undergoing processing at two potential proteolytic cleavage sites, located at Glu109-Ser110 (site 1) and Gln157-Lys158 (site 2). Cleavage of proheparanase yields 8- and 50-kDa subunits that heterodimerize to form the active enzyme. The fate of the linker segment (Ser110-Gln157) residing between the two subunits, the mode of processing, and the protease(s) engaged in proheparanase processing are currently unknown. We applied multiple site-directed mutagenesis and deletions to study the nature of the potential cleavage sites and amino acids essential for processing of proheparanase in transfected human choriocarcinoma cells devoid of endogenous heparanase but possessing the enzymatic machinery for proper processing and activation of the proenzyme. Although mutagenesis at site 1 and its flanking sequences failed to identify critical residues for proteolytic cleavage, processing at site 2 required a bulky hydrophobic amino acid at position 156 (i.e. P2 of the cleavage site). Substitution of Tyr156 by Ala or Glu, but not Val, resulted in cleavage at an upstream site in the linker segment, yielding an improperly processed inactive enzyme. Processing of the latent 65-kDa proheparanase in transfected Jar cells was inhibited by a cell-permeable inhibitor of cathepsin L. Moreover, recombinant 65-kDa proheparanase was processed and activated by cathepsin L in a cell-free system. Altogether, these results suggest that proheparanase processing at site 2 is brought about by cathepsin L-like proteases. The involvement of other members of the cathepsin family with specificity to bulky hydrophobic residues cannot be excluded. Our results and a three-dimensional model of the enzyme are expected to accelerate the design of inhibitory molecules capable of suppressing heparanase-mediated enhancement of tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Ghada Abboud-Jarrous
- Department of Oncology, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
Nishimura Y, Yoshioka K, Bernard O, Himeno M, Itoh K. LIM kinase 1: evidence for a role in the regulation of intracellular vesicle trafficking of lysosomes and endosomes in human breast cancer cells. Eur J Cell Biol 2004; 83:369-80. [PMID: 15503860 DOI: 10.1078/0171-9335-00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LIM kinase (LIMK) plays a critical role in stimulus-induced remodeling of the actin cytoskeleton by linking signals from the Rho family GTPases to changes in cofilin activity. Recent studies have shown an important role for LIMK1 signaling in tumor cell invasion through regulating actin dynamics. In this study, we investigate the role of LIMK1 in intracellular vesicle trafficking of lysosomes/endosomes. We analyzed by confocal immunofluorescence microscopy the cellular distribution of lysosomal proteins and the endocytosis of an endocytic tracer, epidermal growth factor (EGF), in LIMK1-transfected cells. We found in these cells an abnormal dispersed translocation of lysosomes stained for LIMPII and cathepsin D throughout the cytoplasm. The small punctate structures that stained for these lysosomal proteins were redistributed to the periphery of the cell. Computational 3D-image analysis of confocal immunofluorescence micrographs further demonstrated that these vesicles did not colocalize with the transferrin receptor, an early endosomal marker. Furthermore, LIMPII-positive lysosomes did not colocalize with early endosomes labeled with endocytosed Texas red-transferrin. These results indicate that there is no mixing between dispersed lysosomes and early endosomes in the LIMK1-transfected cells. Moreover, LIMK1 overexpression resulted in a marked retardation in the receptor-mediated internalization of Texas red-labeled EGF in comparison with mock-transfected cells. At 30 min after internalization, most of the Texas red-EGF staining overlapped with LIMPII-positive late endosomes/lysosomes in mock-transfected cells, whereas in LIMK1 transfectants only a small fraction of internalized EGF colocalized with LIMPII-positive structures in the perinuclear region. Taken together, the findings presented in this paper suggest that LIMK1 has a role in regulating vesicle trafficking of lysosomes and endosomes in invasive tumor cells.
Collapse
Affiliation(s)
- Yukio Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
33
|
Castino R, Démoz M, Isidoro C. Destination 'lysosome': a target organelle for tumour cell killing? J Mol Recognit 2004; 16:337-48. [PMID: 14523947 DOI: 10.1002/jmr.643] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lysosomes and lysosome-related organelles constitute a system of acid compartments that interconnect the inside of the cell with the extracellular environment via endocytosis, phagocytosis and exocytosis. In recent decades it has been recognized that lysosomes are not just wastebaskets for disposal of unused cellular constituents, but that they are involved in several cellular processes such as post-translational maturation of proteins, degradation of receptors and extracellular release of active enzymes. By complementing the autophagic process, lysosomes actively contribute to the maintenance of cellular homeostasis. Proteolysis by lysosomal cathepsins has been shown to mediate the death signal of cytotoxic drugs and cytokines, as well as the activation of pro-survival factors. Secreted lysosomal cathepsins have been shown to degrade protein components of the extracellular matrix, thus contributing actively to its re-modelling in physiological and pathological processes. The malfunction of lysosomes can, therefore, impact on cell behaviour and fate. Here we review the role of lysosomal hydrolases in several aspects of the malignant phenotype including loss of cell growth control, altered regulation of cell death, acquisition of chemoresistance and of metastatic potential. Based on these observations, the lysosome is proposed as a potential target organelle for the chemotherapy of tumours. We will also present some recent data concerning the technologies for delivering chemotherapeutic drugs to the endosomal-lysosomal compartment and the strategies to improve their efficacy.
Collapse
Affiliation(s)
- Roberta Castino
- Dipartimento di Scienze Mediche, Università degli Studi del Piemonte Orientale 'A Avogadro', Novara, Italy
| | | | | |
Collapse
|
34
|
Hoste K, De Winne K, Schacht E. Polymeric prodrugs. Int J Pharm 2004; 277:119-31. [PMID: 15158975 DOI: 10.1016/j.ijpharm.2003.07.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Revised: 04/15/2003] [Accepted: 07/17/2003] [Indexed: 11/22/2022]
Abstract
In 1975 Prof. H. Ringsdorf proposed a model for rational design of polymeric prodrugs [J. Polym. Sci. Symp. 51 (1975) 135]. The model has been the most important basis for research in the field, since it was the first model that took into account both the chemical and biological aspects needed for the design of polymeric prodrugs. This paper deals with the most important properties that were discovered by designing polymeric prodrugs: prolongation of action of the drug, controlled release of the drug, passive tumor accumulation by the EPR-effect and alteration of body distribution and cell uptake. Over the years, other objectives have been formulated and other properties of polymer-drug conjugates were discovered. One recent example, the immunoprotective ability of polymeric prodrugs, is described in more detail in this paper.
Collapse
Affiliation(s)
- K Hoste
- Department of Organic Chemistry, Ghent University, Krijgslaan 281 (S4bis), 9000 Gent, Belgium
| | | | | |
Collapse
|
35
|
Saleh Y, Siewiński M, Kielan W, Ziółkowski P, Gryboś M, Rybka J. Regulation of cathepsin B and L expression in vitro in gastric cancer tissues by egg cystatin. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2004; 3:319-24. [PMID: 14678520 DOI: 10.1111/j.1533-869x.2003.01105.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Degradation of the basement membrane and surrounding extracellular matrix is likely to represent a key step in cancer invasion and metastasis. The purpose of this study was to determine whether gastric cancer tissues demonstrate higher cysteine proteases activities: cathepsins B and L during cancer progression in compression with non-cancerous tissues. METHODS We measured the expression of both cathepsins B and L in 30 patients with gastric cancer tissues and non-cancerous tissues activities by a fluorescence assay and immunohistochemical staining. We attempted to regulate cathepsin B and L expression using egg white cystatin. RESULTS The activities of cathepsins B and L were significantly higher in cancerous than in non-cancerous tissues (P </= 0.0001). Activities of these enzymes decreased 18-fold after treatment of tissue homogenates with 5 nM of purified egg white cystatin. Immunohistochemical staining was significant and positive expression of low molecular weight cystatin was observed on the tumor cell surface in gastric carcinoma. It was found that non-cancerous tissues (control) were not stained with anti-egg white antibody. CONCLUSION Our experiment demonstrated that the cysteine peptidases cathepsins B and L may be useful for the early detection of gastric cancer. The results suggest that addition of egg white cystatin reduces the activities of cathepsins B and L to that of non-cancerous values.
Collapse
Affiliation(s)
- Yousif Saleh
- 1st Department of Gynaecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
In the classical skin model of tumor initiation, keratinocytes treated once with carcinogen retain their normal appearance and growth behavior indefinitely unless promoted to growth into papillomas. Because many of the papillomas regress and may recur with further promotion, their cells can also be considered as initiated. The growth of initiated keratinocytes can be inhibited either in vitro or in vivo by close association with an excess of normal keratinocytes, but it is enhanced by dermal fibroblasts. Chick embryo fibroblasts (CEF) in culture produce transformed foci after infection with Rous sarcoma virus (RSV) on a background of normal CEF in a medium containing 10% or less calf serum (CS), but they retain normal appearance and growth regulation in 10% fetal bovine serum (FBS) or 20% CS. Transformation of a carcinogen-treated line of mouse embryo fibroblasts is prevented, and can be reversed, in high concentrations of FBS in the presence of an excess of normal cells. FBS has high, broad-spectrum antiprotease activity. Increased protease production occurs in a variety of transformed cells and is correlated with progression in tumors. Protease treatment stimulates DNA synthesis and mitosis in confluent, contact-inhibited normal cell cultures. Synthetic inhibitors of proteases suppress transformation in carcinogen-treated cultures and inhibit tumor formation in animals. Several different classes of protease may be overexpressed in the same transformed cells. It is proposed that excessive protease production accounts for major features of neoplastic transformation of initiated cells, but that transformation can be held in check by protease inhibitors present in serum and released from surrounding cells. It would be informative to determine whether high concentrations of FBS would inhibit the neoplastic development of initiated keratinocytes.
Collapse
Affiliation(s)
- Harry Rubin
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, CA 94720-3200, USA
| |
Collapse
|
37
|
Vasconcelos A, Medeiros R, Veiga I, Pereira D, Carrilho S, Palmeira C, Azevedo C, Lopes CS. Analysis of estrogen receptor polymorphism in codon 325 by PCR-SSCP in breast cancer: association with lymph node metastasis. Breast J 2002; 8:226-9. [PMID: 12100115 DOI: 10.1046/j.1524-4741.2002.08407.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Breast cancer is the most frequent neoplasm in women. Expression of the estrogen receptor (ER) has a key role in breast cancer; the ER gene is located at chromosome 6q24-q27 and is made up of 8 exons with a total of 140 kb. The polymorphism in codon 325 of exon 4 (ER325) is a transition CCC-->CCG. The objective of this study is to analyze the frequency of this polymorphism in breast cancer using the polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) technology. DNA was extracted from tumor cells of 70 breast cancer patients and from the peripheral blood of 69 individuals without any known pathology (control group). Amplification products of the ER gene were analyzed by SSCP. In breast cancer patients the ER325 polymorphism was detected in 42.8% of the cases. In contrast, in the control group, the frequency of the same polymorphism was 24.6. Statistical comparison of the frequency distributions revealed that they are significantly different (p = 0.023). There was also an association between ER325 polymorphism and the absence of lymph node metastases (p = 0.038). Our data suggest that there is a relationship between the ER325 polymorphism and susceptibility to breast cancer (OR = 2.3; 1.10 < OR < 5.1) and that it can also be related with the metastasization process.
Collapse
Affiliation(s)
- André Vasconcelos
- Oncologia Molecular-Serv. de Anat. Patológica, Centro Regional Norte, Instituto Português de Oncologia Francisco Gentil, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nishimura Y, Itoh K, Yoshioka K, Ikeda K, Himeno M. A role for small GTPase RhoA in regulating intracellular membrane traffic of lysosomes in invasive rat hepatoma cells. THE HISTOCHEMICAL JOURNAL 2002; 34:189-213. [PMID: 12587997 DOI: 10.1023/a:1021702812146] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small GTPase RhoA regulates signal transduction from receptors in the membrane to a variety of cellular events related to cell morphology, motility, cytoskeletal dynamics, cytokinesis, and tumour progression, but it is unclear how RhoA regulates intracellular membrane dynamics of lysosomes. We showed previously by confocal immunofluorescence microscopy that the transfection of dominant active RhoA in MM1 cells causes the dispersal translocation of lysosomes stained for cathepsin D throughout the cytoplasm. Y-27632, a selective inhibitor of p160ROCK, impeded the cellular redistribution of lysosomes and promoted reclustering of lysosomes toward the perinuclear region. Here we have further investigated whether the acidic lysosomal vesicles dispersed throughout the cytoplasm are applied to the early endosomes in the endocytic pathway, and we demonstrate that the dispersed lysosomes were accessible to endocytosed molecule such as dextran, and their acidity was not changed, as determined by increased accumulation of the acidotropic probe LysoTracker Red. Brefeldin A did not induce the tabulation of these dispersed lysosomes, but it caused early endosomes to form an extensive tubular network. The dispersed lysosomes associated with cathepsin D and LIMPII were not colocalized with early endosomes, and these vesicles were not inaccessible to the endocytosed anti-transferrin receptor antibody. Moreover, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, induced a dramatic change in LIMPII-containing structures in which LIMPII-positive swollen large vacuoles were increased and small punctate structures disappeared in the cytoplasm. These swollen vacuoles were not doubly positive for LIMPII and transferrin receptor, and were not inaccessible to the internalized anti-transferrin receptor antibody. Therefore, our novel findings presented in this paper indicate that RhoA activity causes a selective translocation of lysosomes without perturbing the machinery of endocytic pathway.
Collapse
Affiliation(s)
- Yukio Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
39
|
Oh-e H, Tanaka S, Kitadai Y, Shimamoto F, Yoshihara M, Haruma K. Cathepsin D expression as a possible predictor of lymph node metastasis in submucosal colorectal cancer. Eur J Cancer 2001; 37:180-8. [PMID: 11166144 DOI: 10.1016/s0959-8049(00)00348-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was to clarify the usefulness of cathepsin D expression as a predictor of lymph node metastasis in submucosal colorectal cancer (CRC). Cathepsin D expression was examined immunohistochemically in cancer and stromal cells located at the deepest portion of 254 invasive tumours that had been resected from patients with submucosal CRC. In cancer cells, the expression was classified according to differences in intracellular localisation: polarity positive, apical type (PA); polarity positive, basal type (PB); polarity negative (PN); or no expression (NE). Lesions with PN or NE expression showed a significantly higher incidence of lymph node metastasis than those with PA or PB expression. Alternatively, lesions with positive expression in stromal cells showed a significantly higher incidence of lymph node metastasis than that of those with negative expression. None of the lesions with PA or PB expression and negative expression in stromal cells had metastasised to the lymph node. In conclusion, analysis combining cathepsin D expression in cancer and stromal cells may be a quite useful predictor for lymph node metastasis and may broaden the indications for curative endoscopic treatment of submucosal CRC.
Collapse
Affiliation(s)
- H Oh-e
- First Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Seiwerth S, Stambuk N, Konjevoda P, Masić N, Vasilj A, Bura M, Klapan I, Manojlović S, Danić D. Immunohistochemical analysis and prognostic value of cathepsin D determination in laryngeal squamous cell carcinoma. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2000; 40:545-9. [PMID: 10850757 DOI: 10.1021/ci990075q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cathepsin D, a protease with the capability of degrading matrix proteins, is implicated in the process of breast and colorectal cancer invasion and metastasis. Biochemical studies in laryngeal cancer have shown a potential prognostic significance of cathepsin D content determination. We studied immunohistochemical positivity of cathepsin D in tumor epithelium and stroma of 61 surgical specimens of squamous cell laryngeal cancer. Immunohistochemical reaction was quantitatively assessed using a PC-based image analysis system SFORM-VAMS. The results were correlated to clinical and morphological parameters and survival. Immunohistochemical positivity was noted in neoplastic cells and tumor stroma. Significant prognostic value for cathepsin D was established separately for epithelial tumor component and tumor stroma using log-rank test, the Cox proportional hazards regression model, and C4.5 machine learning system. In all groups, patients above the median cathepsin D staining showed significantly shorter survival time. C4.5 machine learning system extracted cutoff values for the decision tree that defines the probabilities of patients survival and death with high sensitivity (92.8% alive, 73.6% dead), 100% specificity, and 86.9% accuracy. This makes immunohistochemical cathepsin D estimation an independent prognostic parameter in laryngeal carcinomas within a 5-year period from the time of tumor surgery.
Collapse
Affiliation(s)
- S Seiwerth
- Institute of Pathology, Department of Pharmacology, and ENT Clinic, Medical Faculty University of Zagreb, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhou L, Hayashi Y, Itoh T, Wang W, Rui J, Itoh H. Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor, and plasminogen activator inhibitor-1 and -2 in hepatocellular carcinoma. Pathol Int 2000; 50:392-7. [PMID: 10849328 DOI: 10.1046/j.1440-1827.2000.01059.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has become more and more clear in recent decades that the plasminogen activation system, which includes urokinase-type plasminogen activator (uPA), urokinase-type plasminogen activator receptor (uPAR), plasminogen activator inhibitor (PAI)-1 and PAI-2, plays a very important role in the aggressiveness of cancer. Using immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), the expression of these four components of the uPA system was analyzed in 19 cases of hepatocellular carcinoma (HCC) and 18 cases of the adjacent non-cancer tissues which all had chronic active hepatitis with liver fibrosis or liver cirrhosis. Four cases of normal liver tissues, as controls for immunohistochemical stains, were obtained from the hepatectomized liver of patients with metastatic cancer in the liver. The positive rates of uPA, uPAR, PAI-1 and PAI-2 for immunohistochemical stains in cancer tissues were 78.9, 68.4, 57.9 and 31.6%, respectively. Positive signals were mainly distributed in the cytoplasm of the cancer and in stromal cells. Moreover, the strong stains were chiefly located in the invasive front of the cancer cells. No specific stain was detected in four cases of normal liver tissues. In ELISA, there were significant differences between cancer and non-cancer tissues in concentration of uPA, uPAR and PAI-1 (P < 0.0003, 0.0024 and 0.01, respectively), but there was no significant difference in that of PAI-2 (P = 0.37). These results suggest that uPA, uPAR and PAI-1 are related to invasion of HCC.
Collapse
Affiliation(s)
- L Zhou
- First Division, Department of Pathology, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The IGFBP family comprises six proteins with high affinity for the IGFs and several lower affinity IGFBP-related proteins. Their production in the breast is controlled by hormones, other local regulators and in tumors relates to the estrogen receptor status. Their functional activity can also be affected by various post-translational modifications. The IGFs are generally present at levels far in excess of that required for maximal receptor stimulation, and the IGFBPs are critical regulators of cellular action. IGFBPs can affect cell function in an IGF-dependent or independent manner. IGF bioactivity locally in the breast is influenced not only by local tissue expression and regulation of IGFs, IGFBPs, and IGFBP proteases, but also by these factors delivered from the circulation. Changes in the balance of the components of the IGF system may lead to a disruption of tissue homeostasis.
Collapse
Affiliation(s)
- C M Perks
- Department of Hospital Medicine, Bristol Royal Infirmary, United Kingdom.
| | | |
Collapse
|
43
|
|
44
|
Abstract
Cathepsin D is an aspartyl protease of lysosomal origin and functions in a variety of roles including protein turnover, catabolism of peptide hormones, antigen processing and presentation, and neoplastic disease. In breast cancer, the level of cathepsin D has been linked to metastasis and prognosis for survivability. Many of these studies concerning the role of cathepsin D in cancer have used immunological detection methods to determine the level of enzyme. These indirect methods to assess the cathepsin D level may not reflect enzyme activity accurately. The significance of cathepsin D to physiological and pathophysiological processes suggests that rapid and sensitive methods for determining cathepsin D activity would contribute to a more complete assessment of this enzyme in its various roles. This work describes a procedure to determine cathepsin D activity based on hydrolysis of fluorescently labeled hemoglobin and employs capillary electrophoresis to separate and measure the products of reaction. A single major cleavage product, representing the first 32 residues of the hemoglobin alpha-chain, appeared after a very short incubation time (less than 10 min) and was used to determine activity. The procedure described here requires very small sample volumes, has a low detection limit (approximately 10(-9) M) and thus represents an additional approach to determine cathepsin D activity in biological samples.
Collapse
Affiliation(s)
- Q Chu
- Doheny Eye Institute, Los Angeles, CA, USA
| | | | | |
Collapse
|
45
|
Cho KK, Mikkelsen T, Lee YJ, Jiang F, Chopp M, Rosenblum ML. The role of protein kinase Calpha in U-87 glioma invasion. Int J Dev Neurosci 1999; 17:447-61. [PMID: 10571407 DOI: 10.1016/s0736-5748(99)00054-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate the hypothesis that protein kinase Calpha (PKCalpha) is functional glial tumor cell invasion, stable PKCalpha sense and antisense transfected U-87 cell lines were established and PKCalpha expression characterized by Western blot and PKC activity assays. Invasion assays including barrier migration (Koochekpour et al., Extracellular matrix proteins inhibit proliferation, upregulate migration and induce morphological changes in human glioma lines. Eur. J. Cancer, 1995, 31, 375-380; Merzak et al., CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res., 1994, 54, 3988-3992; Merzak et al., Cell surface gangliosides are involved in the control of human glioma cell invasion in vitro. Neurosci. Lett., 1994, 177, 11-16), and spheroid confrontation were used to study the relationship between PKCalpha expression and invasiveness. PKCalpha overexpressing clones show increased barrier migration (1.5x) relative to the control transfected clones. PKCalpha inhibited clones exhibited reduced invasiveness, to < 50%. In coculture with PKCalpha overexpressing clones, the remaining normal fetal rat brain aggregate volume was significantly decreased (up to 200%) but 90% of the initial brain volume was left in PKCalpha inhibited clone in the rat brain aggregate tumor spheroid confrontation. This effect was not associated with significant growth inhibition. We conclude that expression of PKCalpha in glioma-derived cell lines appears to be central to glioma invasion in vitro.
Collapse
Affiliation(s)
- K K Cho
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
46
|
Zheng WQ, Looi LM, Cheah PL. A comparison of the pattern of cathepsin-D expression in fibroadenoma, fibrocystic disease, preinvasive and invasive ductal breast carcinoma. Pathology 1999; 31:247-51. [PMID: 10503271 DOI: 10.1080/003130299105061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In the metastatic process, proteolytic enzymes play an important role in mediating the passage of cancer cells through the basement membrane and extracellular matrix. We have compared cathepsin-D (CD) expression in a range of benign and malignant breast lesions so as to investigate its role in breast cancer progression. One hundred and sixty-two breast samples, comprising 18 fibroadenomas, 22 fibrocystic disease, 96 invasive ductal carcinoma and 26 lesions with intraductal carcinoma components, were evaluated for CD expression by the standard avidin-biotin-immunoperoxidase complex method on formalin-fixed, paraffin-embedded histological sections using a commercial antibody against human cathepsin-D. Of the invasive ductal carcinomas, 61.5% showed stromal cell CD positivity, whereas 48.9% expressed CD positivity in neoplastic cells. There was significant correlation between neoplastic cell and stromal CD positivity. The prevalences of CD positivity in both neoplastic and stromal cell components were significantly higher (P < 0.05 and P < 0.01, respectively) in histological grade III tumors compared to grades I and II carcinomas. CD expression by either neoplastic or stromal cells did not show significant correlation with patient age and tumor size. Only 15% of intraductal carcinomas were CD positive and expression was limited to neoplastic cells. Neither epithelial nor stromal cells in fibrocystic lesions and fibroadenomas were CD positive, but a weak to moderate positivity was observed within myoepithelial cells in mammary ducts. These findings provide insights into the mechanism whereby tumors with high histological grade mediate invasion into tissue. The role of stromal cells in tumor progression and the means of their recruitment deserve further study.
Collapse
Affiliation(s)
- W Q Zheng
- Department of Pathology, Faculty of Basic Medicine, Second Military Medical University, Shanghai, China.
| | | | | |
Collapse
|
47
|
Campana WM, O'Brien JS, Hiraiwa M, Patton S. Secretion of prosaposin, a multifunctional protein, by breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:392-400. [PMID: 10350655 DOI: 10.1016/s0304-4165(99)00036-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Western blotting and immunodetection with three antibodies were used to probe conditioned media of breast cancer cells (MDA231, MDA435, MCF-7) for prosaposin, a lysosomal protein that occurs in milk. It was readily detected in media from these cells, and from that of an sv40-transformed mammary epithelial cell, HBL100, but not from medium of human neural tumor cells (SK-N-MC). In cultures of MCF-7 cells, the prosaposin pattern of secretion over time closely resembled that of procathepsin D, another lysosomal protein occurring in milk. Supplementing medium with 17beta-estradiol (0. 1-100 nM) dose dependently increased secretion of both proteins after 48 h without changes in cell viability. The influence of 17beta-estradiol on secretion could play a role in the trophic activity of prosaposin in cellular differentiation and cell death protection. In concert with other lysosomal proteins in the tumor environment, such as procathepsin D, prosaposin may be a factor in eliminating barriers to tumor metastasis by facilitating hydrolysis of membrane glycolipids. The number of milk proteins known to be secreted by breast cancer cells is growing. There is evidence that at least some of these may be secreted in an endocrine manner in the normal, non-lactating breast.
Collapse
Affiliation(s)
- W M Campana
- Department of Neurosciences, 0634J, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
48
|
Furuta K, Yang XL, Chen JS, Hamilton SR, August JT. Differential expression of the lysosome-associated membrane proteins in normal human tissues. Arch Biochem Biophys 1999; 365:75-82. [PMID: 10222041 DOI: 10.1006/abbi.1999.1147] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lysosome-associated membrane proteins LAMP-1 and LAMP-2 have closely related structures, with 37% sequence homology, and are major constituents of the lysosomal membrane. Their roles are unknown, but they are thought to be structural or functional components of the lysosomal membrane. Recent reports suggest that despite their similar structure and common localization, LAMP-1 and LAMP-2 may have different functions. In our further study of these two molecules, the presence of LAMP-1 and LAMP-2 in a variety of human tissues was analyzed by immunohistochemistry, and their localization was compared to that of cathepsin D, a lysosomal hydrolase. the tissue content of LAMP-1 and LAMP-2 and their respective mRNAs were also analyzed by Northern and Western blotting. The LAMP molecules were detected by immunohistochemistry primarily in metabolically active cells, with a cytoplasmic distribution similar to that of cathepsin D and consistent with their predominant localization in lysosomes. However, there were marked differences in the intensity of staining and, in some cases, the localization of the three proteins. For example, there was much stronger staining for LAMP-2 than LAMP-1 in brain tissue and prostate ductal cells. These differences in localization were consistent with the results obtained in Western blotting of protein extracted from the tissues. The pattern of mRNA expression was similar in all of the examined tissues, with a single mRNA identified for LAMP-1 and two splice variant forms seen for LAMP-2. Our studies of these molecules in human tissues support the conclusion that the expression of the molecules is independently controlled in some tissues, suggesting that the molecules may have independent as well as similar functions.
Collapse
Affiliation(s)
- K Furuta
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | |
Collapse
|
49
|
Marinaro JA, Hendrich EC, Leeding KS, Bach LA. HaCaT human keratinocytes express IGF-II, IGFBP-6, and an acid-activated protease with activity against IGFBP-6. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E536-42. [PMID: 10070021 DOI: 10.1152/ajpendo.1999.276.3.e536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-like growth factor (IGF) system plays an important role in skin. HaCaT human keratinocytes proliferate in response to IGFs and synthesize IGF-binding protein-3 (IGFBP-3). Recently, IGFBP-6 was also identified by NH2-terminal sequencing, but it has not been identified by Western ligand blotting. In the present study, IGFBP-6 was detected in HaCaT-conditioned medium by use of immunoblotting and Western ligand blotting with 125I-labeled IGF-II. Proteolytic activity against IGFBPs, an important mechanism for regulation of their activity, was then studied. An acid-activated, cathepsin D-like protease that cleaved both IGFBP-6 and IGFBP-3 was detected. Although proteolysis did not substantially reduce the size of immunoreactive IGFBP-6, it greatly reduced the ability of IGFBP-6 to bind 125I-IGF-II as determined by Western ligand blotting and solution assay. HaCaT keratinocytes do not express IGF-I mRNA, but IGF-II mRNA and protein expression was detected. These observations suggest the possibility of an autocrine IGF-II loop that is regulated by the relative expression of IGF-II, IGFBP-3, and IGFBP-6, and IGFBP proteases in these keratinocytes, although demonstration of this loop requires further study.
Collapse
Affiliation(s)
- J A Marinaro
- Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | | | | | | |
Collapse
|
50
|
Rao VH, Singh RK, Finnell RH, Dave BJ, Beuhler BA, Sanger WG, Schaefer GB. Matrix metalloproteinases and their inhibitors in tumor invasion and metastasis. J CHEM SCI 1999. [DOI: 10.1007/bf02869913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|