1
|
Cescon M, Gregorio I, Eiber N, Borgia D, Fusto A, Sabatelli P, Scorzeto M, Megighian A, Pegoraro E, Hashemolhosseini S, Bonaldo P. Collagen VI is required for the structural and functional integrity of the neuromuscular junction. Acta Neuropathol 2018; 136:483-499. [PMID: 29752552 DOI: 10.1007/s00401-018-1860-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
The synaptic cleft of the neuromuscular junction (NMJ) consists of a highly specialized extracellular matrix (ECM) involved in synapse maturation, in the juxtaposition of pre- to post-synaptic areas, and in ensuring proper synaptic transmission. Key components of synaptic ECM, such as collagen IV, perlecan and biglycan, are binding partners of one of the most abundant ECM protein of skeletal muscle, collagen VI (ColVI), previously never linked to NMJ. Here, we demonstrate that ColVI is itself a component of this specialized ECM and that it is required for the structural and functional integrity of NMJs. In vivo, ColVI deficiency causes fragmentation of acetylcholine receptor (AChR) clusters, with abnormal expression of NMJ-enriched proteins and re-expression of fetal AChRγ subunit, both in Col6a1 null mice and in patients affected by Ullrich congenital muscular dystrophy (UCMD), the most severe form of ColVI-related myopathies. Ex vivo muscle preparations from ColVI null mice revealed altered neuromuscular transmission, with electrophysiological defects and decreased safety factor (i.e., the excess current generated in response to a nerve impulse over that required to reach the action potential threshold). Moreover, in vitro studies in differentiated C2C12 myotubes showed the ability of ColVI to induce AChR clustering and synaptic gene expression. These findings reveal a novel role for ColVI at the NMJ and point to the involvement of NMJ defects in the etiopathology of ColVI-related myopathies.
Collapse
|
2
|
Rice KM, Preston DL, Neff D, Norton M, Blough ER. Age-Related Dystrophin-Glycoprotein Complex Structure and Function in the Rat Extensor Digitorum Longus and Soleus Muscle. J Gerontol A Biol Sci Med Sci 2006; 61:1119-29. [PMID: 17167152 DOI: 10.1093/gerona/61.11.1119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study tested the hypothesis that age-related changes in the dystrophin-glycoprotein complex (DGC) may precede age-associated alterations in muscle morphology and function. Compared to those in adult (6 month) rats, extensor digitorum longus (EDL) and soleus muscle mass was decreased in old (30 month) and very old (36 month) Fischer 344/NNiaHSD x Brown Norway/BiNia rats. The amount of dystrophin, beta-dystroglycan, and alpha-sarcoglycan increased with aging in the EDL and decreased with aging in the soleus. alpha-Dystroglycan levels were increased with aging in both muscles and displayed evidence of altered glycosylation. Immunostaining for the presence of antibody infiltration and dystrophin following increased muscle stretch suggested that the aging in the soleus was characterized by diminished membrane integrity. Together, these data suggest that aging is associated with alterations in EDL and soleus DGC protein content and localization. These results may implicate the DGC as playing a role in age-associated skeletal muscle remodeling.
Collapse
Affiliation(s)
- Kevin M Rice
- Laboratory of Molecular Physiology, Suite 311, Science Building, Department of Biological Sciences, 1 John Marshall Drive, Marshall University, Huntington, WV 25755-1090, USA
| | | | | | | | | |
Collapse
|
3
|
Stocksley MA, Chakkalakal JV, Bradford A, Miura P, De Repentigny Y, Kothary R, Jasmin BJ. A 1.3 kb promoter fragment confers spatial and temporal expression of utrophin A mRNA in mouse skeletal muscle fibers. Neuromuscul Disord 2005; 15:437-49. [PMID: 15907291 DOI: 10.1016/j.nmd.2005.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/02/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Upregulation of utrophin in muscle is currently being examined as a potential therapy for Duchenne muscular dystrophy patients. In this context, we generated transgenic mice harboring a 1.3 kb human utrophin A promoter fragment driving expression of the lacZ gene. Characterization of reporter expression during postnatal muscle development revealed that the levels and localization of beta-galactosidase parallel expression of utrophin A transcripts. Moreover, we noted that the utrophin A promoter is more active in slow soleus muscles. Additionally, expression of the reporter gene was regulated during muscle regeneration in a manner similar to utrophin A transcripts. Together, these results show that the utrophin A promoter-lacZ construct mirrors expression of utrophin A mRNAs indicating that this utrophin A promoter fragment confers temporal and spatial patterns of expression in skeletal muscle. This transgenic mouse will be valuable as an in vivo model for developing and testing molecules aimed at increasing utrophin A expression.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Female
- Gene Expression
- Genes, Reporter
- Genetic Therapy
- Lac Operon
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/therapy
- Neuromuscular Junction/physiology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Regeneration/physiology
- Utrophin/genetics
Collapse
Affiliation(s)
- Mark A Stocksley
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ont., Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
4
|
von Fellenberg A, Lin S, Burgunder JM. Disturbed trafficking of dystrophin and associated proteins in targetoid phenomena after chronic muscle denervation. Neuropathol Appl Neurobiol 2004; 30:255-66. [PMID: 15175079 DOI: 10.1046/j.0305-1846.2004.00529.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystrophin and associated proteins form a complex with an important role at the sarcolemma. Expression of this protein complex is highly regulated during development and regeneration. In order to better understand assembling patterns of these proteins, we have studied their expression in targetoid-like phenomena found in human muscle after chronic denervation, a situation known to give rise to abnormal protein trafficking. In eight biopsies of patients with chronic denervation, mainly resulting from amyotrophic lateral sclerosis, we found a number of targetoid phenomena. Selective accumulation of a number of sarcolemmal and sarcoplasmatic proteins occurred in targetoid phenomena. The larger majority of them contained gamma-sarcoglycan (gammaSG), but none contained the developmental heavy chain myosin isoform. In a series of 166 targetoid phenomena which could be studied with 17 different antibodies recognizing sarcolemmal and cytoplasmatic proteins, a high level of colocalization of gammaSG with desmin and alpha-actinin was found. Colocalization rate was much lower with other proteins, including other members of the dystrophin-associated protein complex. These data show that selective changes in expression of otherwise closely related proteins occur during disturbed trafficking leading to target formation. Because members of the dystrophin-associated protein complex do not accumulate in a similar fashion within targets, we suggest that a complex molecular control of gene expression and trafficking of this complex is involved after chronic muscle denervation.
Collapse
Affiliation(s)
- A von Fellenberg
- Laboratory of Neuromorphology, Department of Neurology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
5
|
Anderson AA, Treves S, Biral D, Betto R, Sandonà D, Ronjat M, Zorzato F. The novel skeletal muscle sarcoplasmic reticulum JP-45 protein. Molecular cloning, tissue distribution, developmental expression, and interaction with alpha 1.1 subunit of the voltage-gated calcium channel. J Biol Chem 2003; 278:39987-92. [PMID: 12871958 DOI: 10.1074/jbc.m305016200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
JP-45 is a novel integral protein constituent of the skeletal muscle sarcoplasmic reticulum junctional face membrane. We identified its primary structure from a cDNA clone isolated from a mouse skeletal muscle cDNA library. Mouse skeletal muscle JP-45 displays over 86 and 50% identity with two hypothetical NCBI data base protein sequences from mouse tongue and human muscle, respectively. JP-45 is predicted to have a cytoplasmic domain, a single transmembrane segment followed by an intralumenal domain enriched in positively charged amino acids. Northern and Western blot analyses reveal that the protein is mainly expressed in skeletal muscle. The mRNA encoding JP-45 appears in 17-day-old mouse embryos; expression of the protein peaks during the second month of postnatal development and then decreases approximately 3-fold during aging. Double immunofluorescence of adult skeletal muscle fibers demonstrates that JP-45 co-localizes with the sarcoplasmic reticulum calcium release channel. Co-immunoprecipitation experiments with a monoclonal antibody against JP-45 show that JP-45 interacts with the alpha1.1 subunit voltage-gated calcium channel and calsequestrin. These results are consistent with the localization of JP-45 in the junctional sarcoplasmic reticulum and with its involvement in the molecular mechanism underlying skeletal muscle excitation-contraction coupling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- COS Cells
- Calcium Channels, L-Type/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental
- Humans
- In Vitro Techniques
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rabbits
- Rats
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sarcoplasmic Reticulum/metabolism
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- Ayuk A Anderson
- Department of Anesthesia, Zentrum Für Lehr und Forschung Kantonsspital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
6
|
Cavalli AL, O'Brien NW, Barlow SB, Betto R, Glembotski CC, Palade PT, Sabbadini RA. Expression and functional characterization of SCaMPER: a sphingolipid-modulated calcium channel of cardiomyocytes. Am J Physiol Cell Physiol 2003; 284:C780-90. [PMID: 12421694 DOI: 10.1152/ajpcell.00382.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium channels are important in a variety of cellular events including muscle contraction, signaling, proliferation, and apoptosis. Sphingolipids have been recognized as mediators of intracellular calcium release through their actions on a calcium channel, sphingolipid calcium release-mediating protein of the endoplasmic reticulum (SCaMPER). The current study investigates the expression and function of SCaMPER in cardiomyocytes. Northern analyses and RT-PCR cloning and sequencing revealed SCaMPER expression in both human and rat cardiac tissue. Immunofluorescence and Western blot analyses demonstrated that SCaMPER is abundant in cardiac tissue and is localized to the sarcotubular junction. This was confirmed by the colocalization of SCaMPER with dihydropyridine and ryanodine receptors by confocal microscopy. Purified T tubules were shown to contain SCaMPER and immunoelectron micrographs suggested that SCaMPER is located to the junctional T tubules, but a junctional SR localization cannot be ruled out. The sphingolipid ligand for SCaMPER, sphingosylphosphorylcholine (SPC), initiated calcium release from the cardiomyocyte SR. Importantly, antisense knockdown of SCaMPER mRNA produced a substantial reduction of sphingolipid-induced calcium release, suggesting that SCaMPER is a potentially important calcium channel of cardiomyocytes.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/genetics
- Cell Membrane/genetics
- Cell Membrane/metabolism
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Dimerization
- Immunohistochemistry
- Intracellular Membranes/metabolism
- Intracellular Membranes/ultrastructure
- Microscopy, Electron
- Microtubules/genetics
- Microtubules/metabolism
- Microtubules/ultrastructure
- Molecular Sequence Data
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Protein Structure, Quaternary/genetics
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Rats
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum/genetics
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/ultrastructure
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sphingolipids/metabolism
Collapse
Affiliation(s)
- Amy L Cavalli
- SDSU Heart Institute and Department of Biology, San Diego State University, California 92182-4614, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Chockalingam PS, Cholera R, Oak SA, Zheng Y, Jarrett HW, Thomason DB. Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am J Physiol Cell Physiol 2002; 283:C500-11. [PMID: 12107060 DOI: 10.1152/ajpcell.00529.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dystrophin-glycoprotein complex (DGC) is a sarcolemmal complex whose defects cause muscular dystrophies. The normal function of this complex is not clear. We have proposed that this is a signal transduction complex, signaling normal interactions with matrix laminin, and that the response is normal growth and homeostasis. If so, the complex and its signaling should be altered in other physiological states such as atrophy. The amount of some of the DGC proteins, including dystrophin, beta-dystroglycan, and alpha-sarcoglycan, is reduced significantly in rat skeletal muscle atrophy induced by tenotomy. Furthermore, H-Ras, RhoA, and Cdc42 decrease in expression levels and activities in muscle atrophy. When the small GTPases were assayed after laminin or beta-dystroglycan depletion, H-Ras, Rac1, and Cdc42 activities were reduced, suggesting a physical linkage between the DGC and the GTPases. Dominant-negative Cdc42, introduced with a retroviral vector, resulted in fibers that appeared atrophic. These data support a putative role for the DGC in transduction of mechanical signals in muscle.
Collapse
Affiliation(s)
- Priya Sethu Chockalingam
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
8
|
Jasmin BJ, Angus LM, Bélanger G, Chakkalakal JV, Gramolini AO, Lunde JA, Stocksley MA, Thompson J. Multiple regulatory events controlling the expression and localization of utrophin in skeletal muscle fibers: insights into a therapeutic strategy for Duchenne muscular dystrophy. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:31-42. [PMID: 11755781 DOI: 10.1016/s0928-4257(01)00078-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is the most prevalent inherited muscle disease and results from mutations/deletions in the X-linked dystrophin gene. Although several approaches have been envisaged to counteract the effects of this progressive disease, there is currently no cure available. One strategy consists in utilizing a protein normally expressed in DMD muscle which, once expressed at appropriate levels and at the correct subcellular location, could compensate for the lack of dystrophin. A candidate for such a role is the dystrophin-related protein now referred to as utrophin. In contrast to dystrophin, which is expressed along the length of healthy muscle fibers, utrophin accumulates at the neuromuscular junction in both normal and DMD fibers. Several years ago, we began a series of experiments to determine the mechanisms responsible for the expression of utrophin at the neuromuscular synapse. Initially, we showed that utrophin transcripts accumulate preferentially within the postsynaptic sarcoplasm. To determine whether selective transcription of the utrophin gene accounts for this synaptic accumulation of utrophin mRNAs, we injected several utrophin promoter-reporter constructs directly into mouse muscle and demonstrated the preferential synaptic expression of the reporter gene. These results suggested that local transcriptional activation of the utrophin gene is responsible for the accumulation of utrophin mRNAs at the neuromuscular junction. In these studies, we also demonstrated that an N-box motif contained within the utrophin promoter plays a critical role in directing the synapse-specific expression of the utrophin gene. Additionally, our studies have shown that the ets-factors GABP alpha and beta are part of a protein complex that can bind to the N-box motif to transactivate the gene in muscle cells in culture and in vivo. In these experiments, we also noted that the nerve-derived trophic factors agrin and ARIA/heregulin regulate expression of utrophin via the activation of GABP alpha and beta which in turn, transactivate the utrophin gene via the N-box motif. Although these studies demonstrate that transcriptional activation can regulate utrophin mRNA levels, it is possible that additional mechanisms are also involved. In particular, the association of mRNAs with cytoskeletal elements and RNA-binding proteins may contribute to the accumulation of utrophin transcripts within the postsynaptic sarcoplasm. In recent studies, we have begun to examine this and we have now identified specific regions within the 3' untranslated region that are necessary for targeting and stabilizing utrophin mRNAs in skeletal muscle cells. A series of in vivo studies have also led us to conclude that post-transcriptional mechanisms are indeed important in regulating the abundance of utrophin transcripts in muscle. Together, these studies should lead to the identification of cis- and trans-acting elements regulating transcription of the utrophin gene as well as the stability and targeting of its mRNA in muscle cells. The results should therefore, identify specific targets that may become important in designing specific pharmacological interventions directed at increasing the expression of utrophin into extrasynaptic regions of DMD muscle fibers. In addition, these findings will contribute to our basic understanding of the cellular and molecular events involved in the formation, maintenance and plasticity of the neuromuscular synapse.
Collapse
Affiliation(s)
- Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, and Ottawa Health Research Institute, Ottawa, Ontario, Canada K1H 8M5.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tews DS. Role of nitric oxide and nitric oxide synthases in experimental models of denervation and reinnervation. Microsc Res Tech 2001; 55:181-6. [PMID: 11747093 DOI: 10.1002/jemt.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nitric oxide (NO) is a short-living free molecule synthesized by three different isoforms of nitric oxide synthases (NOS)-neuronal NOS, endothelial NOS, and inducible NOS-associated with neuromuscular transmission, muscle contractility, mitochondrial respiration, and carbohydrate metabolism in skeletal muscle. Neuronal NOS is constitutively expressed at the muscle fiber sarcolemma linked to the dystrophin-glycoprotein complex and concentrated at the neuromuscular endplate. There is increasing evidence that altered expression of neuronal NOS plays a role in muscle fiber damage in neuromuscular diseases such as dystrophinopathies and denervating disorders. Although there have been some previous conflicting results on the neuronal NOS expression pattern in denervated muscle fibers, it is now well established that denervation is associated with a down-regulation and disappearance of sarcolemmal neuronal NOS at synaptic/extrasynaptic or both sites. As NO has been shown to induce collapse and growth arrest on neuronal growth cones, down-regulation of sarcolemmal neuronal NOS may contribute to axonal regeneration and attraction to muscle fibers aiming at the formation of new motor endplates providing reinnervation and reconstitution of NOS expression. As NO serves as a retrograde messenger, it may trigger structural downstream events responsible for neuromuscular synaptogenesis and preventing polyneural innervation. Nevertheless, decreased NO production in denervation reduces the cytoprotective scavenger function of NO for superoxide anions promoting oxidative stress that is likely to be involved in muscle fiber damage and death. However, the multifaced role of NOS and NO under physiological and pathological conditions remains poorly understood on the basis of the current knowledge.
Collapse
Affiliation(s)
- D S Tews
- Division of Neuropathology, Johannes Gutenberg-University Hospital, Langenbeckstrasse 1, D-55101 Mainz, Germany 2001.
| |
Collapse
|
10
|
Jergović D, Stål P, Lidman D, Lindvall B, Hildebrand C. Changes in a rat facial muscle after facial nerve injury and repair. Muscle Nerve 2001; 24:1202-12. [PMID: 11494274 DOI: 10.1002/mus.1133] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study describes changes in a rat facial muscle innervated by the mandibular and buccal facial nerve branches 4 months after nerve injury and repair. The following groups were studied: (A) normal controls; (B) spontaneous reinnervation by collateral or terminal sprouting; (C) reinnervation after surgical repair of the mandibular branch; and (D) chronic denervation. The normal muscle contained 1200 exclusively fast fibers, mainly myosin heavy chain (MyHC) IIB fibers. In group B, fiber number and fiber type proportions were normal. In group C, fiber number was subnormal. Diameters and proportions of MyHC IIA and hybrid fibers were above normal. The proportion of MyHC IIB fibers was subnormal. Immediate and delayed repair gave similar results with respect to the parameters examined. Group D rats underwent severe atrophic and degenerative changes. Hybrid fibers prevailed. These data suggest that spontaneous regeneration of the rat facial nerve is superior to regeneration after surgical repair and that immediacy does not give better results than moderate delay with respect to surgical repair. Long delays are shown to be detrimental.
Collapse
Affiliation(s)
- D Jergović
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, University of Linköping, S-581 85 Linköping, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Jimi T, Wakayama Y, Murahashi M, Shibuya S, Inoue M, Hara H, Matsuzaki Y, Uemura N. Aquaporin 4: lack of mRNA expression in the rat regenerating muscle fiber under denervation. Neurosci Lett 2000; 291:93-6. [PMID: 10978582 DOI: 10.1016/s0304-3940(00)01382-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recently identified water channel aquaporin 4 is a major component of the orthogonal arrays observed with freeze-fracture electron microscopy. We examined the expression of aquaporin 4 mRNA and protein in rat regenerating muscle under innervated and denervated conditions. We found decreased sarcolemmal immunostaining of aquaporin 4 in denervated regenerating muscle as opposed to innervated muscle. Quantitative reverse transcription-polymerase chain reaction revealed that aquaporin 4 mRNA was expressed in the innervated regenerating muscle; whereas it was not expressed in denervated muscle. Thus, lack of aquaporin 4 protein may be due to lack of aquaporin 4 mRNA in the denervated regenerating muscle. We conclude that the nerve supply influences expression of aquaporin 4 at the mRNA level in regenerating muscle.
Collapse
Affiliation(s)
- T Jimi
- Division of Neurology, Department of Medicine, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, 227-8501, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nakajima N, Cavalli AL, Biral D, Glembotski CC, McDonough PM, Ho PD, Betto R, Sandoná D, Palade PT, Dettbarn CA, Klepper RE, Sabbadini RA. Expression and characterization of Edg-1 receptors in rat cardiomyocytes: calcium deregulation in response to sphingosine 1-phosphate. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5679-86. [PMID: 10971577 DOI: 10.1046/j.1432-1327.2000.01656.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent evidence indicates that sphingolipids are produced by the heart during hypoxic stress and by blood platelets during thrombus formation. It is therefore possible that sphingolipids may influence heart cell function by interacting with G-protein-coupled receptors of the Edg family. In the present study, it was found that sphingosine 1-phosphate (Sph1P), the prototypical ligand for Edg receptors, produced calcium overload in rat cardiomyocytes. The cDNA for Edg-1 was cloned from rat cardiomyocytes and, when transfected in an antisense orientation, effectively blocked Edg-1 protein expression and reduced the Sph1P-mediated calcium deregulation. Taken together, these results demonstrate that cardiomyocytes express an extracellular lipid-sensitive receptorsystem that can respond to sphingolipid mediators. Because the major source of Sph1P is from blood platelets, we speculate that Edg-mediated Sph1P negative inotropic and cardiotoxic effects may play important roles in acute myocardial ischemia where Sph1P levels are probably elevated in response to thrombus.
Collapse
Affiliation(s)
- N Nakajima
- Department of Biology and Heart Institute, San Diego State University, CA 92182-4614, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gramolini AO, Wu J, Jasmin BJ. Regulation and functional significance of utrophin expression at the mammalian neuromuscular synapse. Microsc Res Tech 2000; 49:90-100. [PMID: 10757882 DOI: 10.1002/(sici)1097-0029(20000401)49:1<90::aid-jemt10>3.0.co;2-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of full-length dystrophin molecules in skeletal muscle fibers. In normal muscle, dystrophin is found along the length of the sarcolemma where it links the intracellular actin cytoskeleton to the extracellular matrix, via the dystrophin-associated protein (DAP) complex. Several years ago, an autosomal homologue to dystrophin, termed utrophin, was identified and shown to be expressed in a variety of tissues, including skeletal muscle. However, in contrast to the localization of dystrophin in extrajunctional regions of muscle fibers, utrophin preferentially accumulates at the postsynaptic membrane of the neuromuscular junction in both normal and DMD adult muscle fibers. Since it has recently been suggested that the upregulation of utrophin might functionally compensate for the lack of dystrophin in DMD, considerable interest is now directed toward the elucidation of the various regulatory mechanisms presiding over expression of utrophin in normal and dystrophic skeletal muscle fibers. In this review, we discuss some of the most recent data relevant to our understanding of the impact of myogenic differentiation and innervation on the expression and localization of utrophin in skeletal muscle fibers.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | | | | |
Collapse
|
14
|
Abstract
We used confocal microscopy and immunoblotting to study membrane skeletal proteins of fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles of the adult rat. In the extensor digitorum longus (EDL), beta-spectrin concentrates in costameres, whereas dystrophin is enriched at costameres but is also present in intercostameric regions. In the soleus, beta-spectrin and dystrophin underlie much of the sarcolemma, and intercostameric regions are difficult to detect. The EDL sarcolemma reorganizes following denervation to resemble soleus sarcolemma, but denervation does not significantly affect the latter. Consistent with these observations, soleus contains similar amounts of dystrophin but more beta-spectrin than EDL. Denervation increases beta-spectrin levels only in the EDL and dystrophin levels in both muscles. Denervation does not affect beta-fodrin, a beta-spectrin homolog expressed in embryonic myofibers. Thus, neuromuscular activity controls sarcolemmal organization and the levels of beta-spectrin and dystrophin, but not postnatal downregulation of beta-fodrin. The differences in organization of the sarcolemma may underlie the differential susceptibility of fast and slow myofibers to dystrophinopathies.
Collapse
Affiliation(s)
- M W Williams
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | | |
Collapse
|
15
|
Chopard A, Pons F, Charpiot P, Marini JF. Quantitative analysis of relative protein contents by Western blotting: comparison of three members of the dystrophin-glycoprotein complex in slow and fast rat skeletal muscle. Electrophoresis 2000; 21:517-22. [PMID: 10726751 DOI: 10.1002/(sici)1522-2683(20000201)21:3<517::aid-elps517>3.0.co;2-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have developed a method for accurate quantitative analysis and statistical comparison of the relative contents of the dystrophin-glycoprotein complex (DGC) in skeletal muscle. This method was applied to compare DGC contents in slow (soleus) and in fast (extensor digitorum longus, EDL) rat skeletal muscles. The quantitative analysis combines a modified bicinchoninic acid (BCA) assay with Western blotting and enhanced chemiluminescence (ECL). This combination allows the use of high levels of detergents and reducing reagents essential for extracting DGC. In addition, the evaluation of the total amount of proteins in each sample makes it possible to have a reference and to accurately compare relative protein levels without using a specific standard. With a large gradient gel, we could concomitantly compare two groups (n = 9) and quantify all protein contents differing highly in their molecular masses (from 35 kDa to 427 kDa). Each experiment was triplicated and normalized; the two muscles were compared using the Mann-Whitney test (P<0.001) to establish their protein content. The DGC relative levels for the slow muscle soleus and the fast muscle EDL differed significantly: dystrophin, beta-dystroglycan, and gamma-sarcoglycan levels were 130%, 110% and 120% higher in the soleus, respectively. The differences observed in the expression level of cytoskeletal associated protein (dystrophin) and transmembranous anchorage components may correspond to a physiological response of the muscle fibers to duration, magnitude, and frequency of the imposed mechanical loading.
Collapse
Affiliation(s)
- A Chopard
- Laboratoire de Physiologie Cellulaire et Moléculaire des Systèmes Intégrés, Faculté des Sciences, Nice, France.
| | | | | | | |
Collapse
|
16
|
Leschziner A, Moukhles H, Lindenbaum M, Gee SH, Butterworth J, Campbell KP, Carbonetto S. Neural regulation of alpha-dystroglycan biosynthesis and glycosylation in skeletal muscle. J Neurochem 2000; 74:70-80. [PMID: 10617107 DOI: 10.1046/j.1471-4159.2000.0740070.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alpha-dystroglycan (alpha-DG) is part of a complex of cell surface proteins linked to dystrophin or utrophin, which is distributed over the myofiber surface and is concentrated at neuromuscular junctions. In laminin overlays of muscle extracts from developing chick hindlimb muscle, alpha-DG first appears at embryonic day (E) 10 with an apparent molecular mass of 120 kDa. By E15 it is replaced by smaller (approximately 100 kDa) and larger (approximately 150 kDa) isoforms. The larger form increases in amount and in molecular mass (>200 kDa) as the muscle is innervated and the postsynaptic membrane differentiates (E10-E20), and then decreases dramatically in amount after hatching. In myoblasts differentiating in culture the molecular mass of alpha-DG is not significantly increased by their replication, fusion, or differentiation into myotubes. Monoclonal antibody IIH6, which recognizes a carbohydrate epitope on alpha-DG, preferentially binds to the larger forms, suggesting that the core protein is differentially glycosylated beginning at E16. Consistent with prior observations implicating the IIH6 epitope in laminin binding, the smaller forms of alpha-DG bind more weakly to laminin affinity columns than the larger ones. In blots of adult rat skeletal muscle probed with radiolabeled laminin or monoclonal antibody IIH6, alpha-DG appears as a >200-kDa band that decreases in molecular mass but increases in intensity following denervation. Northern blots reveal a single mRNA transcript, indicating that the reduction in molecular mass of alpha-DG after denervation is not obviously a result of alternative splicing but is likely due to posttranslational modification of newly synthesized molecules. The regulation of alpha-DG by the nerve and its increased affinity for laminin suggest that glycosylation of this protein may be important in myofiber-basement membrane interactions during development and after denervation.
Collapse
Affiliation(s)
- A Leschziner
- Centre for Research in Neuroscience, McGill University, Montreal General Hospital Research Institute, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Gramolini AO, Jasmin BJ. Expression of the utrophin gene during myogenic differentiation. Nucleic Acids Res 1999; 27:3603-9. [PMID: 10446253 PMCID: PMC148607 DOI: 10.1093/nar/27.17.3603] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The process of myogenic differentiation is known to be accompanied by large increases ( approximately 10-fold) in the expression of genes encoding cytoskeletal and membrane proteins including dystrophin and the acetylcholine receptor (AChR) subunits, via the effects of transcription factors belonging to the MyoD family. Since in skeletal muscle (i) utrophin is a synaptic homolog to dystrophin, and (ii) the utrophin promoter contains an E-box, we examined, in the present study, expression of the utrophin gene during myogenic differentiation using the mouse C2 muscle cell line. We observed that in comparison to myoblasts, the levels of utrophin and its transcript were approximately 2-fold higher in differentiated myotubes. In order to address whether a greater rate of transcription contributed to the elevated levels of utrophin transcripts, we performed nuclear run-on assays. In these studies we determined that the rate of transcription of the utrophin gene was approximately 2-fold greater in myotubes as compared to myoblasts. Finally, we examined the stability of utrophin mRNAs in muscle cultures by two separate methods: following transcription blockade with actinomycin D and by pulse-chase experiments. Under these conditions, we determined that the half-life of utrophin mRNAs in myoblasts was approximately 20 h and that it remained largely unaffected during myogenic differentiation. Altogether, these results show that in comparison to other synaptic proteins and to dystrophin, expression of the utrophin gene is only moderately increased during myogenic differentiation.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|
18
|
Gramolini AO, Angus LM, Schaeffer L, Burton EA, Tinsley JM, Davies KE, Changeux JP, Jasmin BJ. Induction of utrophin gene expression by heregulin in skeletal muscle cells: role of the N-box motif and GA binding protein. Proc Natl Acad Sci U S A 1999; 96:3223-7. [PMID: 10077665 PMCID: PMC15923 DOI: 10.1073/pnas.96.6.3223] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The modulation of utrophin gene expression in muscle by the nerve-derived factor agrin plausibly involves the trophic factor ARIA/heregulin. Here we show that heregulin treatment of mouse and human cultured myotubes caused a approximately 2.5-fold increase in utrophin mRNA levels. Transient transfection experiments with utrophin promoter-reporter gene constructs showed that this increase resulted from an enhanced transcription of the utrophin gene. In the case of the nicotinic acetylcholine receptor delta and epsilon subunit genes, heregulin was previously reported to stimulate transcription via a conserved promoter element, the N-box, which binds the multimeric Ets-related transcription factor GA binding protein (GABP). Accordingly, site-directed mutagenesis of a single N-box motif in the utrophin gene promoter abolished the transcriptional response to heregulin. In addition, overexpression of heregulin, or of the two GABP subunits in cultured myotubes, caused an N-box-dependent increase of the utrophin promoter activity. In vivo, direct gene transfer into muscle confirmed that heregulin regulates utrophin gene expression. Finally, electrophoretic mobility shift assays and supershift experiments performed with muscle extracts revealed that the N-box of the utrophin promoter binds GABP. These findings suggest that the subsynaptic activation of transcription by heregulin via the N-box motif and GABP are conserved among genes expressed at the neuromuscular junction. Because utrophin can functionally compensate for the lack of dystrophin, the elucidation of the molecular mechanisms regulating utrophin gene transcription may ultimately lead to therapies based on utrophin expression throughout the muscle fibers of Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5 Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gramolini AO, Jasmin BJ. Molecular mechanisms and putative signalling events controlling utrophin expression in mammalian skeletal muscle fibres. Neuromuscul Disord 1998; 8:351-61. [PMID: 9713851 DOI: 10.1016/s0960-8966(98)00052-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The absence of full-length dystrophin molecules in skeletal muscle fibres results in the most severe form of muscular dystrophy, the Duchenne form (DMD). Several years ago, an autosomal homologue to dystrophin, termed utrophin, was identified. Although utrophin is expressed along the sarcolemma in developing, regenerating and DMD muscles, it nonetheless accumulates at the postsynaptic membrane of the neuromuscular junction in both normal and DMD adult muscle fibres. Due to the high degree of sequence identity between dystrophin and utrophin, it has been previously suggested that utrophin could in fact functionally compensate for the lack of dystrophin. Recent studies using transgenic mouse model systems have directly tested this hypothesis and revealed that upregulation of utrophin throughout dystrophic muscle fibres represents indeed, a viable approach for the treatment of DMD. Current studies are therefore focusing on the elucidation of the various regulatory mechanisms presiding over expression of utrophin in muscle fibres in attempts to ultimately identify small molecules which could systematically increase utrophin levels in extrasynaptic compartments of dystrophic muscle fibres. This review presents some of the recent data relevant for our understanding of the transcriptional regulatory mechanisms involved in maintaining expression of utrophin at the neuromuscular junction. In addition, the contribution of specific cues originating from motoneurons and the putative involvement of signalling events are also discussed.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
20
|
Górecki DC, Lukasiuk K, Szklarczyk A, Kaczmarek L. Kainate-evoked changes in dystrophin messenger RNA levels in the rat hippocampus. Neuroscience 1998; 84:467-77. [PMID: 9539217 DOI: 10.1016/s0306-4522(97)00562-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dystrophin and dystroglycan messenger RNAs are expressed in specific brain areas, including regions of the cortex and the hippocampus, and in such neurons dystrophin has been localized to postsynaptic densities. In the present study we examined by in situ hybridization the effect of neuronal activation and neurotoxicity induced by kainate and pentylenetetrazole administered in vivo on dystrophin and dystroglycan expression in the rat brain. Kainate injection resulted in a transient but dramatic decrease in dystrophin transcript levels in the dentate gyrus granule cells, neurons not affected by kainate neurotoxicity, 6 h after injection. There was also a strong, concomitant increase in dystrophin messenger RNA levels in the CA3 subfield. At 24-72 h after kainate injection, the dystrophin transcript in the dentate granule cells returned to control levels, while it decreased gradually in the CA subfields, coinciding with the neurodegeneration observed in these areas. Comparable results were obtained with pan-dystrophin probes and probes specific to the short, G-dystrophin (Dp71) isoform that predominates in the dentate gyrus. This indicates that any dystrophin transcript that might be expressed in these areas responds to kainate in the same manner. In contrast, kainate insult had no significant effect on the dystroglycan messenger RNA levels in these hippocampal areas at 6 h post-injection. At later times. however, there was a gradual decrease in the dystroglycan messenger RNA in those areas which respond to the kainate insult with extensive neuronal death. For comparison, seizures which are not associated with progressive neurodegeneration were induced by pentylenetetrazole: in this situation the dystrophin and dystroglycan messenger RNA levels remained unchanged in all areas of the hippocampal formation. Since activation of glutamate receptors is thought to be involved in some forms of synaptic plasticity in the adult hippocampus, our data indicate that the dystrophin gene behaves as a candidate plasticity-related gene responding to glutamate.
Collapse
Affiliation(s)
- D C Górecki
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, London, UK
| | | | | | | |
Collapse
|