1
|
Zhou X, Zhou X, Liu G, Xu Y, Balan V. Integrated production of gluconic acid and xylonic acid using dilute acid pretreated corn stover by two-stage fermentation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Zhou X, Zhou X, Huang L, Cao R, Xu Y. Efficient coproduction of gluconic acid and xylonic acid from lignocellulosic hydrolysate by Zn(II)-selective inhibition on whole-cell catalysis by Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2017; 243:855-859. [PMID: 28724257 DOI: 10.1016/j.biortech.2017.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
With Zn(II)-selective inhibition on the whole-cell catalysis of Gluconobacter oxydans NL71, gluconic acid and xylonic acid were coproduced efficiently from the hydrolysate of corn stover. Further metabolism of gluconic acid to the by-product 2-ketogluconic acid was prevented by addition of 10g/L ZnCl2. Remarkably, yields of 93.91% of gluconic acid and 93.36% of xylonic acid were obtained with the supplement of ZnCl2 in the synthetic medium, without by-product production. After optimization of the concentrations of ZnCl2 and inocula of the strain, maximum amounts of gluconic acid and xylonic acid were coproduced at titers of 63.01g/L and 33.81g/L, with an overall utilization of 100% of the sugars in the enzymatic hydrolysate of corn stover. The results showed execution of our objective to prove this novel bioconversion method for simultaneously producing gluconic acid and xylonic acid, which would benefit subsequent studies on the comprehensive utilization of lignocellulosic materials.
Collapse
Affiliation(s)
- Xuelian Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Lu Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Rou Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
3
|
Barad S, Horowitz SB, Moscovitz O, Lichter A, Sherman A, Prusky D. A Penicillium expansum glucose oxidase-encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:779-88. [PMID: 22352719 DOI: 10.1094/mpmi-01-12-0002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Penicillium expansum, the causal agent of blue mold rot, causes severe postharvest maceration of fruit through secretion of total, d-gluconic acid (GLA). Two P. expansum glucose oxidase (GOX)-encoding genes, GOX1 and GOX2, were analyzed. GOX activity and GLA accumulation were strongly related to GOX2 expression, which increased with pH to a maximum at pH 7.0, whereas GOX1 was expressed at pH 4.0, where no GOX activity or extracellular GLA were detected. This differential expression was also observed at the leading edge of the decaying tissue, where GOX2 expression was dominant. The roles of the GOX genes in pathogenicity were further studied through i) development of P. expansum goxRNAi mutants exhibiting differential downregulation of GOX2, ii) heterologous expression of the P. expansum GOX2 gene in the nondeciduous fruit-pathogen P. chrysogenum, and iii) modulation of GLA production by FeSO(4) chelation. Interestingly, in P. expansum, pH and GLA production elicited opposite effects on germination and biomass accumulation: 26% of spores germinated at pH 7.0 when GOX activity and GLA were highest whereas, in P. chrysogenum at the same pH, when GLA did not accumulate, 72% of spores germinated. Moreover, heterologous expression of P. expansum GOX2 in P. chrysogenum resulted in enhanced GLA production and reduced germination, suggesting negative regulation of spore germination and GLA production. These results demonstrate that pH modulation, mediated by GLA accumulation, is an important factor in generating the initial signal or signals for fungal development leading to host-tissue colonization by P. expansum.
Collapse
Affiliation(s)
- Shiri Barad
- Department of Postharvest Science of Fresh Produce, the Volcani Center, Bet Dagan, 50250, Israel
| | | | | | | | | | | |
Collapse
|
4
|
Exploration of fungal spores as a possible storehouse of proteolytic biocatalysts. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9829-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ramachandran S, Fontanille P, Pandey A, Larroche C. Permeabilization and inhibition of the germination of spores of Aspergillus niger for gluconic acid production from glucose. BIORESOURCE TECHNOLOGY 2008; 99:4559-65. [PMID: 17889524 DOI: 10.1016/j.biortech.2007.06.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 05/17/2007] [Accepted: 06/21/2007] [Indexed: 05/17/2023]
Abstract
In this study, the role of citral to permeabilize the spores of Aspergillus niger and replace sodium azide in the bioconversion medium was studied. Further, characterization of glucose oxidase of spores was carried out by exposing both permeabilized and unpermeabilized spores to different pressures (1, 2, 2.7 kb) and temperatures (60, 70, 80, 90 degrees C). Unpermeabilized spores after exposure to high temperatures were permeabilized by freezing before using as catalyst in the bioconversion reaction. Results showed that citral permeabilized the spores and could inhibit spore germination in the bioconversion medium. Rate of reaction was significantly increased from 1.5 to 4.35 g/Lh which was higher than the commercial glucose oxidase 2g/Lh). Glucose oxidase activity of A. niger was resistant to pressure. However, pressure treatment could not permeabilize them. Behaviour of fresh and permeabilized spores to temperature varied significantly. Glucose oxidase activity of fresh spores exposed to high temperature was unaffected at 70 degrees C till 15 min and 84% of relative activity was retained even after 1h at 70 degrees C while permeabilized spore got inactivated at 70 degrees C for 15 min, which followed the same pattern as commercial glucose oxidase. Cellular membrane integrity was lost due to permeabilization by freezing which resulted in heat-inactivation of glucose oxidase when spores were permeabilized before heat treatment. Thus, glucose oxidase of spore remains heat stable when unpermeabilized and active while permeabilized and its reaction rate is higher than the commercial glucose oxidase.
Collapse
Affiliation(s)
- Sumitra Ramachandran
- Laboratoire de Génie Chimique et Biochimique, Polytech' Clermont-Ferrand, Université Blaise Pascal, 24, Avenue des Landais, BP 206, F- 63174 Aubière Cedex, France
| | | | | | | |
Collapse
|
6
|
Fed-batch Production of Gluconic Acid by Terpene-treated Aspergillus niger Spores. Appl Biochem Biotechnol 2008; 151:413-23. [DOI: 10.1007/s12010-008-8209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
|
7
|
Singh OV, Kumar R. Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 2007; 75:713-22. [PMID: 17525864 DOI: 10.1007/s00253-007-0851-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/16/2007] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20-8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.
Collapse
Affiliation(s)
- Om V Singh
- Department of Pediatrics, The Johns Hopkins School of Medicine, 600 N. Wolfe St., CMSC, 3-106, Baltimore, MD 21287, USA.
| | | |
Collapse
|
8
|
Ramachandran S, Fontanille P, Pandey A, Larroche C. Spores of Aspergillus niger as reservoir of glucose oxidase synthesized during solid-state fermentation and their use as catalyst in gluconic acid production. Lett Appl Microbiol 2007; 44:155-60. [PMID: 17257254 DOI: 10.1111/j.1472-765x.2006.02051.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To exploit conidiospores of Aspergillus niger as a vector for glucose oxidase extraction from solid media, and their direct use as biocatalyst in the bioconversion of glucose to gluconic acid. METHODS AND RESULTS Spores of A. niger (200 h old) were shown to fully retain all the glucose oxidase synthesized by the mycelium during solid-state fermentation (SSF). They acted as catalyst and carried out the bioconversion reaction effectively, provided they were permeabilized by freezing and thawing. Glucose oxidase activity was found retained in the spores even after repeated washings. Average rate of reaction was 1.5 g l(-1) h(-1) with 102 g l(-1) of gluconic acid produced out of 100 g l(-1) glucose consumed after approx. 100 h reaction, which corresponded to a molar yield close to 93%. These results were obtained with permeabilized spores in the presence of a germination inhibitor, sodium azide. CONCLUSIONS Spores of A. niger served as efficient catalyst in the model bioconversion reaction after permeabilization. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first detailed study on the ability of A. niger spores to act as reservoir of enzyme synthesized during SSF without its release into solid media. Use of this material served as an innovative concept for enzyme extraction and purification from a solid medium. Moreover, this approach could compete efficiently with the conventional use of mycelial form of the fungus in gluconic acid production.
Collapse
Affiliation(s)
- S Ramachandran
- Laboratoire de Génie Chimique et Biochimique (LGCB), CUST-Université Blaise Pascal, 24 avenue des Landais, F-63174 Aubière Cedex, France
| | | | | | | |
Collapse
|
9
|
Singh OV, Singh RP. Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS-4.410. J Appl Microbiol 2006; 100:1114-22. [PMID: 16630012 DOI: 10.1111/j.1365-2672.2006.02870.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Analysis of regulators for modulated gluconic acid production under surface fermentation (SF) condition using grape must as the cheap carbohydrate source, by mutant Aspergillus niger ORS-4.410. Replacement of conventional fermentation condition by solid-state surface fermentation (SSF) for semi-continuous production of gluconic acid by pseudo-immobilization of A. niger ORS-4.410. METHODS AND RESULTS Grape must after rectification was utilized for gluconic acid production in batch fermentation in SF and SSF processes using mutant strain of A. niger ORS-4.410. Use of rectified grape must led to the improved levels of gluconic acid production (80-85 g l(-1)) in the fermentation medium containing 0.075% (NH4)2HPO4; 0.1% KH2PO4 and 0.015% MgSO4.7H2O at an initial pH 6.6 (+/-0.1) under surface fermentation. Gluconic acid production was modulated by incorporating the 2% soybean oil, 2% starch and 1% H2O2 in fermentation medium at continuously high aeration rate (2.0 l min(-1)). Interestingly, 95.8% yield of gluconic acid was obtained when A. niger ORS-4.410 was pseudo-immobilized on cellulose fibres (bagasse) under SSF. Four consecutive fermentation cycles were achieved with a conversion rate of 0.752-0.804 g g(-1) of substrate into gluconic acid under SSF. CONCLUSIONS Use of additives modulated the gluconic acid production under SF condition. Semi-continuous production of gluconic acid was achieved with pseudo-immobilized mycelia of A. niger ORS-4.410 having a promising yield (95.8%) under SSF condition. SIGNIFICANCE AND IMPACT OF THE STUDY The bioconversion of grape must into modulated gluconic acid production under SSF conditions can further be employed in fermentation industries by replacing the conventional carbohydrate sources and expensive, energy consuming fermentation processes.
Collapse
Affiliation(s)
- O V Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | | |
Collapse
|
10
|
Bapat PM, Kundu S, Wangikar PP. An optimized method for Aspergillus niger spore production on natural carrier substrates. Biotechnol Prog 2003; 19:1683-8. [PMID: 14656142 DOI: 10.1021/bp0341141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aspergillus niger spores have wide ranging applications in the fermentation industry as well as in wastewater treatment. We present an optimized method for production of A. niger spores on natural substrates such as rice, split pea, and millet. The specific productivity (number of spores per gram of dry substrate) was 31-fold greater and volumetric productivity was 750-fold greater compared to agar slopes. The important process variables were incubation temperature, moisture content, and inoculum quantity. We find that the optimal condition for total spore count is different from the viable spore count for millet. The optimum lies in a narrow region defined by the process parameters. Of the three substrates tested split pea gave the highest specific spore productivity of 3.1 x 10(10) spores per gram of dry substrate. This is the first report of systematic study on the effect of process parameters on spore viability. The method of A. niger spore production on natural substrate appears advantageous as compared to the currently practiced method in terms of scale-up, cost, and ease of operation.
Collapse
Affiliation(s)
- Prashant M Bapat
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 India
| | | | | |
Collapse
|
11
|
Roukas T, Liakopoulou-Kyriakides M. OPTIMIZATION STUDY FOR THE PRODUCTION OF CITRIC AND GLUCONIC ACID FROM FIG WATER EXTRACT BYASPERGILLUS NIGERIN SURFACE FERMENTATION. FOOD BIOTECHNOL 2002. [DOI: 10.1081/fbt-120004199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
|
13
|
Lee SY, Park BS, Kim JH, Kim BG, Kim DI. Sodium gluconate production byAspergillus niger with intermittent broth replacement. BIOTECHNOL BIOPROC E 1999. [DOI: 10.1007/bf02932378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Reyes I, Bernier L, Simard RÃR, Tanguay P, Antoun H. Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00584.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
|