1
|
Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj J 2022; 39:177-195. [PMID: 35267131 DOI: 10.1007/s10719-021-10032-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Expression profiles of glycosphingolipids (GSLs) in human embryonic stem cell (hESC) lines and their differentiated embryoid body (EB) outgrowth cells, consisting of three germ layers, were surveyed systematically. Several globo- and lacto-series GSLs were identified in undifferentiated hESCs and during differentiation of hESCs to EB outgrowth cells, and core structure switching of these GSLs to gangliosides was observed. Such switching was attributable to altered expression of key glycosyltransferases (GTs) in GSL biosynthetic pathways, reflecting the unique stage-specific transitions and mechanisms characteristic of the differentiation process. Lineage-specific differentiation of hESCs was associated with further GSL alterations. During differentiation of undifferentiated hESCs to neural progenitor cells, core structure switching from globo- and lacto-series to primarily gangliosides (particularly GD3) was again observed. During differentiation to endodermal cells, alterations of GSL profiles were distinct from those in differentiation to EB outgrowth or neural progenitor cells, with high expression of Gb4Cer and low expression of stage-specific embryonic antigen (SSEA)-3, -4, or GD3 in endodermal cells. Again, such profile changes resulted from alterations of key GTs in GSL biosynthetic pathways. Novel glycan structures identified on hESCs and their differentiated counterparts presumably play functional roles in hESCs and related cancer or cancer stem cells, and will be useful as surface biomarkers. We also examined GSL expression profiles in breast cancer stem cells (CSCs), using a model of epithelial-mesenchymal transition (EMT)-induced human breast CSCs. We found that GD2 and GD3, together with their common upstream GTs, GD3 synthase (GD3S) and GD2/GM2 synthase, maintained stem cell phenotype in breast CSCs. Subsequent studies showed that GD3 was associated with epidermal growth factor receptor (EGFR), and activated EGFR signaling in breast CSCs and breast cancer cell lines. GD3S knockdown enhanced cytotoxicity of gefitinib (an EGFR kinase inhibitor) in resistant MDA-MB468 cells, both in vitro and in vivo. Our findings indicate that GD3S contributes to gefitinib resistance in EGFR-positive breast cancer cells, and is a potentially useful therapeutic target in drug-resistant breast cancers.
Collapse
|
2
|
Yu J, Hung JT, Wang SH, Cheng JY, Yu AL. Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett 2020; 594:3602-3618. [PMID: 32860713 DOI: 10.1002/1873-3468.13917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/07/2022]
Abstract
Aberrant expression of glycosphingolipids (GSLs) is a unique feature of cancer and stromal cells in tumor microenvironments. Although the impact of GSLs on tumor progression remains largely unclear, anticancer immunotherapies directed against GSLs are attracting growing attention. Here, we focus on GD2, a disialoganglioside expressed in tumors of neuroectodermal origin, and Globo H ceramide (GHCer), the most prevalent cancer-associated GSL overexpressed in a variety of epithelial cancers. We first summarize recent advances on our understanding of GD2 and GHCer biology and then discuss the clinical development of the first immunotherapeutic agent targeting a glycolipid, the GD2-specific antibody dinutuximab, its approved indications, and new strategies to improve its efficacy for neuroblastoma. Next, we review ongoing clinical trials on Globo H-targeted immunotherapeutics. We end with highlighting how these studies provide sound scientific rationales for targeting GSLs in cancer and may facilitate a rational design of new GSL-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Yan Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, University of California in San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Ryu JS, Ko K, Ko K, Kim JS, Kim SU, Chang KT, Choo YK. Roles of gangliosides in the differentiation of mouse pluripotent stem cells to neural stem cells and neural cells. Mol Med Rep 2017; 16:987-993. [DOI: 10.3892/mmr.2017.6719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/12/2017] [Indexed: 11/06/2022] Open
|
4
|
Ryu JS, Chang KT, Lee JT, Lim MU, Min HK, Na YJ, Lee SB, Moussavou G, Kim SU, Kim JS, Ko K, Ko K, Hwang KA, Jeong EJ, Lee JW, Choo YK. Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells. BMB Rep 2013; 45:713-8. [PMID: 23261057 PMCID: PMC4133816 DOI: 10.5483/bmbrep.2012.45.12.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gangliosides play important roles in the control of several biological processes, including proliferation and transmembrane signaling. In this study, we demonstrate the effect of ganglioside GM1 on the proliferation of mouse induced pluripotent stem cells (miPSCs). The proliferation rate of miPSCs was lower than in mouse embryonic stem cells (mESCs). Fluorescence activated cell sorting analysis showed that the percentage of cells in the G2/M phase in miPSCs was lower than that in mESCs. GM1 was expressed in mESCs, but not miPSCs. To confirm the role of GM1 in miPSC proliferation, miPSCs were treated with GM1. GM1-treated miPSCs exhibited increased cell proliferation and a larger number of cells in the G2/M phase. Furthermore, phosphorylation of mitogen-activated protein kinases was increased in GM1- treated miPSCs.
Collapse
Affiliation(s)
- Jae-Sung Ryu
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kwak DH, Seo BB, Chang KT, Choo YK. Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation. Exp Mol Med 2011; 43:379-88. [PMID: 21654188 DOI: 10.3858/emm.2011.43.7.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the ma ternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells).
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Department of Biological Science College of Natural Sciences Biotechnology Institute Wonkwang University Iksan, Korea
| | | | | | | |
Collapse
|
6
|
Williams SA, Stanley P. Roles for N- and O-Glycans in Early Mouse Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:397-410. [DOI: 10.1007/978-1-4419-7877-6_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
|
8
|
Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc Natl Acad Sci U S A 2010; 107:22564-9. [PMID: 21149694 DOI: 10.1073/pnas.1007290108] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A systematic survey of expression profiles of glycosphingolipids (GSLs) in two hESC lines and their differentiated embryoid body (EB) outgrowth with three germ layers was carried out using immunofluorescence, flow cytometry, and MALDI-MS and MS/MS analyses. In addition to the well-known hESC-specific markers stage-specific embryonic antigen 3 (SSEA-3) and SSEA-4, we identified several globosides and lacto-series GSLs, previously unrevealed in hESCs, including Gb(4)Cer, Lc(4)Cer, fucosyl Lc(4)Cer, Globo H, and disialyl Gb(5)Cer. During hESC differentiation into EBs, MS analysis revealed a clear-cut switch in the core structures of GSLs from globo- and lacto- to ganglio-series, which was not as evident by immunostaining with antibodies against SSEA-3 and SSEA-4, owing to their cross-reactivities with various glycosphingolipids. Such a switch was attributable to altered expression of key glycosyltransferases (GTs) in the biosynthetic pathways by the up-regulation of ganglio-series-related GTs with simultaneous down-regulation of globo- and lacto-series-related GTs. Thus, these results provide insights into the unique stage-specific transition and mechanism for alterations of GSL core structures during hESC differentiation. In addition, unique glycan structures uncovered by MS analyses may serve as surface markers for further delineation of hESCs and help identify of their functional roles not only in hESCs but also in cancers.
Collapse
|
9
|
Jung JU, Ko K, Lee DH, Ko K, Chang KT, Choo YK. The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 2010; 41:935-45. [PMID: 19745600 DOI: 10.3858/emm.2009.41.12.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycosphingolipids including gangliosides play important regulatory roles in cell proliferation and differentiation. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyze the initial step in glycosphingolipids biosynthesis pathway. In this study, Ugcg expression was reduced to approximately 80% by short hairpin RNAs (shRNAs) to evaluate the roles of glycosphingolipids in proliferation and neural differentiation of mouse embryonic stem cells (mESCs). HPTLC/immunofluorescence analyses of shRNA- transfected mESCs revealed that treatment with Ugcg-shRNA decreased expression of major gangliosides, GM3 and GD3. Furthermore, MTT and Western blot/immunofluorescence analyses demonstrated that inhibition of the Ugcg expression in mESCs resulted in decrease of cell proliferation (P<0.05) and decrease of activation of the ERK1/2 (P<0.05), respectively. To further investigate the role of glycosphingolipids in neural differentiation, the embryoid bodies formed from Ugcg-shRNA transfected mESCs were differentiated into neural cells by treatment with retinoic acid. We found that inhibition of Ugcg expression did not affect embryoid body (EB) differentiation, as judged by morphological comparison and expression of early neural precursor cell marker, nestin, in differentiated EBs. However, RT-PCR/immunofluorescence analyses showed that expression of microtubule-associated protein 2 (MAP-2) for neurons and glial fibrillary acidic protein (GFAP) for glial cells was decreased in neural cells differentiated from the shRNA-transfected mESCs. These results suggest that glycosphingolipids are involved in the proliferation of mESCs through ERK1/2 activation, and that glycosphingolipids play roles in differentiation of neural precursor cells derived from mESCs.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Yu RK, Suzuki Y, Yanagisawa M. Membrane glycolipids in stem cells. FEBS Lett 2009; 584:1694-9. [PMID: 19716368 DOI: 10.1016/j.febslet.2009.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 01/13/2023]
Abstract
Stem cells, such as embryonic stem cells, hematopoietic stem cells, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells, are undifferentiated cells that are endowed with a high potential for proliferation and the capacity for self-renewal with retention of pluri/multipotency to differentiate into their progenies. Recently, studies regarding the biological functions of glycolipids and cell surface microdomains (caveolae, lipid rafts, or glycolipid-enriched microdomains) in stem cells are emerging. In this review, we introduce the expression patterns of glycolipids and the functional roles of cell surface microdomains in stem cells.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
11
|
Complex N-glycans or core 1-derived O-glycans are not required for the expression of stage-specific antigens SSEA-1, SSEA-3, SSEA-4, or Le(Y) in the preimplantation mouse embryo. Glycoconj J 2008; 26:335-47. [PMID: 18773292 DOI: 10.1007/s10719-008-9181-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/13/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
The glycan epitopes termed stage-specific embryonic antigens (SSEA) occur on glycoproteins and glycolipids in mammals. However, it is not known whether these epitopes are attached to N- or O-glycans on glycoproteins and/or on glycolipids in the developing mouse embryo. In this paper the expression of the antigens SSEA-1, SSEA-3, SSEA-4 and Le(Y) was examined on ovulated eggs, early embryos and blastocysts lacking either complex and hybrid N-glycans or core-1 derived O-glycans. In all cases, antigen expression determined by fluorescence microscopy of bound monoclonal antibodies to embryos at the stage of development of maximal expression was similar in mutant and control embryos. Thus, none of these developmental antigens are expressed solely on either complex N- or core 1-derived O-glycans attached to glycoproteins in the preimplantation mouse embryo. Furthermore, neither of these classes of glycan is essential for the expression of SSEA-1, SSEA-3, SSEA-4 or Le(Y) on mouse embryos.
Collapse
|
12
|
Fouladi-Nashta A, Mohamet L, Heath J, Kimber S. Interleukin 1 Signaling Is Regulated by Leukemia Inhibitory Factor (LIF) and Is Aberrant in Lif−/− Mouse Uterus1. Biol Reprod 2008; 79:142-53. [DOI: 10.1095/biolreprod.107.065219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
13
|
Ponnampalam AP, Rogers PAW. Expression and regulation of fucosyltransferase 4 in human endometrium. Reproduction 2008; 136:117-23. [DOI: 10.1530/rep-07-0548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been suggested that selectin ligands expressed by the endometrial epithelium are essential for the initial adhesion of the blastocyst to the luminal epithelium of human endometrium. One of the enzymes responsible for the production of selectin ligands is fucosyltransferase 4 (FUT4), a member of α1,3 fucosyltransferases. The aims of the present study were to characterizeFUT4mRNA and protein in human endometrium during the menstrual cycle and to investigate the hormonal regulation ofFUT4whose mRNA expression was quantified by real-time PCR in fresh endometrial tissue from cycling women and protein expression was analyzed by immunohistochemistry and Western blotting. Hormonal regulation ofFUT4transcription was investigated using an endometrial explant system.FUT4mRNA was significantly upregulated in fresh tissues during early and mid-secretory phases when compared with other phases of the menstrual cycle. FUT4 protein was localized to glandular and luminal epithelium and the expression levels followed the same pattern as forFUT4mRNA. Our data also show that, in proliferative explants, progesterone significantly increasedFUT4transcription and translation after 24 h in culture. The inductive effect of progesterone onFUT4transcription was lost after 48 h of treatment. Estrogen did not have any significant effects. These data suggest that the upregulation of selectin ligands in the human endometrium at the time of implantation may be mediated, at least in part, by the regulation ofFUT4expression.
Collapse
|
14
|
Abstract
This review covers the sequence of cell adhesion events occurring during implantation of the mammalian embryo, concentrating on data from mouse and human. The analogy is explored between initial attachment of trophoblast to the uterine lining epithelium and that of neutrophils to the endothelial lining of blood vessels at sites of inflammation. The possible role of various carbohydrate ligands in initial attachment of the blastocyst is reviewed. The evidence for subsequent stabilization of cell adhesion via integrins or the trophinin-tastin complex is discussed.
Collapse
Affiliation(s)
- S J Kimber
- School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Rd, Manchester, M13 9PT, UK
| | | |
Collapse
|
15
|
Dvorák P, Hampl A, Jirmanová L, Pacholíková J, Kusakabe M. Embryoglycan ectodomains regulate biological activity of FGF-2 to embryonic stem cells. J Cell Sci 1998; 111 ( Pt 19):2945-52. [PMID: 9730986 DOI: 10.1242/jcs.111.19.2945] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Basic fibroblast growth factor (FGF-2) functions as a natural inducer of mesoderm, regulator of cell differentiation and autocrine modulator of cell growth and transformation. The FGF-2 signals are transduced through receptors with intrinsic protein tyrosine kinase activity. However, receptor binding and activation is governed by extracellular matrix, cell surface or soluble proteoglycans. This paper focuses on the role of proteoglycans synthesized by embryonic cells, embryoglycans, in FGF-2 signaling via FGF receptor-1 (FGFR-1). We found that embryoglycan ectodomain Lewis X, analog of developmentally regulated embryonic cell surface epitope TEC 1, promotes oligomerization of FGF-2 in the cell free chemical crosslinking. In vitro assays show that a large molar excess of extracellular Lewis X does not inhibit binding of FGF-2 to embryonic stem (ES) cells, but prevents the mitogenic effect of FGF-2. Western blot analysis of ES cells revealed the presence of abundant 52 kDa and trace amounts of 67 and 125 kDa isoforms of FGFR-1. However, none of these isoforms undergo any detectable changes in tyrosine phosphorylation under the conditions that modulate the mitogenic effect of FGF-2. Rather, a primary substrate of all receptor tyrosine kinases, phospholipase C gamma (PLC gamma), is activated by both FGF-2 and Lewis X. The combination, FGF-2 plus Lewis X, leads to weak inhibition, when compared with the effects of FGF-2 and Lewis X, respectively. In accordance, the level of phosphorylation of non-receptor tyrosine kinase c-Src is reduced in a reversed pattern to PLC(gamma). Furthermore, in this particular cell type we show the presence of activated forms of extracellular signal-related kinase (ERK) in all nontreated and treated cells. These findings demonstrate that embryoglycan ectodomains may act as negative regulators of FGF-2-induced ES cell proliferation, most likely through the FGFR-1-independent signaling pathway.
Collapse
Affiliation(s)
- P Dvorák
- Laboratory of Molecular Embryology, Mendel University Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Dvorák P, Flechon JE, Thompson EM, Horák V, Adenot P, Renard JP. Embryoglycans regulate FGF-2-mediated mesoderm induction in the rabbit embryo. J Cell Sci 1997; 110 ( Pt 1):1-10. [PMID: 9010779 DOI: 10.1242/jcs.110.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several peptide growth factors, including members of the fibroblast growth factor (FGF) superfamily, are potential inducers of mesoderm in vertebrates. Receptor binding of basic FGF (FGF-2) is promoted by cell surface or extracellular matrix proteoglycans. The substantial biosynthesis of proteoglycans by embryonic cells (called embryoglycans) and their potential role as ligands for growth factor receptors led us to examine the role of embryoglycans that carry the developmentally regulated oligosaccharide epitope TEC 1, in the binding of FGF-2 to cultured rabbit inner cell masses (ICMs). Culture of isolated ICMs in the presence of FGF-2 gave rise to well delimited colonies with migrating cells at the periphery. In these cells, TEC 1 staining shifts from a punctate pattern over the entire membrane, to an apical, finely granular distribution with some internalization. This shift occurs after 96 hours in culture. Here we show that: (1) migrating cells are mesoderm-like in phenotype; (2) antibodies against TEC 1 blocked FGF-2 mediated differentiation in vitro; (3) antibodies against TEC 1 selectively blocked binding of FGF-2 to ectodermal receptors and, vice versa, the binding of TEC 1-specific antibodies to ectodermal cells can be competed by excess FGF-2; (4) the same switch in TEC 1 staining patterns was observed in vivo, between the day 7 and the day 9 rabbit embryo. These data suggest the involvement of defined species of embryonic cell surface epitopes in the regulation of FGF-2 receptor binding. Moreover, this proposed binding activity is temporally restricted to ectodermal cells and disappears early during differentiation. Thus, the apical TEC 1 redistribution can be considered as the earliest indicator of mesoderm formation.
Collapse
Affiliation(s)
- P Dvorák
- Developmental Biology Unit, Institute of Animal Physiology and Genetics, Czech Republic
| | | | | | | | | | | |
Collapse
|
17
|
Jones WK, Grupp IL, Doetschman T, Grupp G, Osinska H, Hewett TE, Boivin G, Gulick J, Ng WA, Robbins J. Ablation of the murine alpha myosin heavy chain gene leads to dosage effects and functional deficits in the heart. J Clin Invest 1996; 98:1906-17. [PMID: 8878443 PMCID: PMC507631 DOI: 10.1172/jci118992] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The alpha-myosin heavy chain (alpha-MyHC) is the major contractile protein expressed in the myocardium of adult mice. We have produced mice carrying a null mutation of alpha-MyHC by homologous recombination in murine ES cells. Homozygous null animals die between 11 and 12 d in utero of gross heart defects, while alpha-MyHC+/- heterozygotes survive and appear externally normal. The presence of a single functional alpha-MyHC+ allele in heterozygous animals results in reduced levels of the transcript and protein as well as fibrosis and alterations in sarcomeric structure. Examination of heart function using a working heart preparation revealed severe impairment of both contractility and relaxation in a subset of the alpha-MyHC+/- animals. Thus, two alpha-MyHC+ alleles are necessary for normal cardiac development, and hemizygosity for the normal allele can result in altered cardiac function.
Collapse
Affiliation(s)
- W K Jones
- Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van Inzen WG, Peppelenbosch MP, van den Brand MW, Tertoolen LG, de Laat SW. Neuronal differentiation of embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1312:21-6. [PMID: 8679712 DOI: 10.1016/0167-4889(96)00011-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuronal differentiation from totipotent precursors in vitro, is thought to require two signals: first a biophysical state (cellular aggregation) followed by a biochemical signal (retinoic acid treatment). In investigating the properties of retinoic acid-differentiated embryonic stem cell lines. However, we noted that retinoic acid treatment without prior aggregation, is sufficient to induce expression of the neuronal markers GAP-43 and NF-165. In agreement, immunohistochemistry revealed the presence of GAP-43 positive cells in these embryonic stem cell monolayers after three days of retinoic acid (RA) treatment. Furthermore an NF-165 positive subpopulation of cells was clearly observed after 4-5 days of RA treatment. The expression of these neuronal markers coincided with the appearance of electrically excitable cells, as assayed with whole cell patch clamp recording. We conclude that for neuronal differentiation of totipotent embryonic stem cells in vitro, one biochemical signal, i.e. retinoic acid treatment, is sufficient.
Collapse
Affiliation(s)
- W G van Inzen
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Reinhold BB, Chan SY, Chan S, Reinhold VN. Profiling glycosphingolipid structural detail: Periodate oxidation, electrospray, collision-induced dissociation and tandem mass spectrometry. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/oms.1210291206] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Krupnick JG, Damjanov I, Damjanov A, Zhu ZM, Fenderson BA. Globo-series carbohydrate antigens are expressed in different forms on human and murine teratocarcinoma-derived cells. Int J Cancer 1994; 59:692-8. [PMID: 7960243 DOI: 10.1002/ijc.2910590518] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The glycolipids of human teratocarcinoma-derived cell line NCCIT were compared with those of 5 murine teratocarcinoma-derived cell lines. Glycolipid antigens were identified by cell surface immunofluorescence and high-performance thin-layer chromatography (HPTLC) immunostaining with a panel of monoclonal anti-carbohydrate antibodies. Human NCCIT embryonal carcinoma (EC) cells contained extended globo-series glycolipids Gb5 (galactosyl globoside) and GL7 (sialyl galactosyl globoside) recognized by antibodies to stage-specific embryonic antigens 3 and 4 (SSEA-3 and -4). SSEA-4 was not detected by immunofluorescence on the surface of any of the 5 murine teratocarcinoma-derived cell lines examined; however, SSEA-3 was detected on the surface of murine cell lines resembling primitive endoderm (JC44, NF-PE) and trophectoderm (E6496D). HPTLC analysis revealed a large amount of globoside (Gb4) in these differentiated cells, which may account for their labeling with anti-SSEA-3 antibody. Globo-series glycolipids were also detected in murine EC cells; however, differences were noted between the 2 cell lines examined. F9 cells contained primarily Gb4 and Forssman glycolipid, whereas NF-1 cells contained only minor amounts of Gb4 and lacked Forssman glycolipid entirely. Our results, coupled with the known distribution of Forssman antigen in the egg cylinder-stage mouse embryo, suggest that F9 and NF-1 murine EC cells are replicas of cells at different stages of development of the embryonic ectoderm. Glycolipids of normal mouse embryos were examined for comparison. Gb4 and Forssman glycolipid were presents in both embryonic and extra-embryonic tissues, whereas Gb5 and GL7 were restricted to visceral yolk sac and placenta. Our results demonstrate that human and murine teratocarcinoma-derived cells both synthesize extended globo-series glycolipids; however, oligosaccharide chain elongation takes different pathways in the 2 species. These differences reflect species-related and cell type-specific patterns of glycosylation.
Collapse
Affiliation(s)
- J G Krupnick
- Department of Pathology and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | | | |
Collapse
|