1
|
McMillan HM, Kuehn MJ. Proteomic Profiling Reveals Distinct Bacterial Extracellular Vesicle Subpopulations with Possibly Unique Functionality. Appl Environ Microbiol 2023; 89:e0168622. [PMID: 36533919 PMCID: PMC9888257 DOI: 10.1128/aem.01686-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are 20- to 200-nm secreted packages of lipids, small molecules, and proteins that contribute to diverse bacterial processes. In plant systems, OMVs from pathogenic and beneficial strains elicit plant immune responses that inhibit seedling growth and protect against future pathogen challenge. Previous studies of OMV-plant interactions suggest functionally important differences in the protein composition of Pseudomonas syringae and Pseudomonas fluorescens OMVs, and that their composition and activity differ as a result of medium culture conditions. Here, we show that plant apoplast-mimicking minimal medium conditions impact OMV protein content dramatically in P. syringae but not in P. fluorescens relative to complete medium conditions. Comparative, 2-way analysis of the four conditions reveals subsets of proteins that may contribute to OMV-mediated bacterial virulence and plant immune activation as well as those involved in bacterial stress tolerance or adaptation to a beneficial relationship with plants. Additional localization enrichment analysis of these subsets suggests the presence of outer-inner membrane vesicles (OIMVs). Collectively, these results reveal distinct differences in bacterial extracellular vesicle cargo and biogenesis routes from pathogenic and beneficial plant bacteria in different medium conditions and point to distinct populations of vesicles with diverse functional roles. IMPORTANCE Recent publications have shown that bacterial vesicles play important roles in interkingdom communication between bacteria and plants. Indeed, our recently published data reveal that bacterial vesicles from pathogenic and beneficial strains elicit immune responses in plants that protect against future pathogen challenge. However, the molecules underlying these striking phenomena remain unknown. Our recent work indicated that proteins packaged in vesicles are critically important for vesicle-mediated seedling growth inhibition, often considered an indirect measure of plant immune activation. In this study, we characterize the protein cargo of vesicles from Pseudomonas syringae pathovar tomato DC3000 and Pseudomonas fluorescens from two different medium conditions and show that distinct subpopulations of vesicles contribute to bacterial virulence and stress tolerance. Furthermore, we reveal differences in how beneficial and pathogenic bacterial species respond to harsh environmental conditions through vesicle packaging. Importantly, we find that protein cargo implicates outer-inner membrane vesicles in bacterial stress responses, while outer membrane vesicles are packaged for virulence.
Collapse
Affiliation(s)
- Hannah M. McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Meta J. Kuehn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation. World J Microbiol Biotechnol 2022; 38:165. [PMID: 35861883 DOI: 10.1007/s11274-022-03349-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Pollution of the environment with petroleum hydrocarbons and phenolic compounds is one of the biggest problems in the age of industrialization and high technology. Species of the genus Pseudomonas, present in almost all hydrocarbon-contaminated areas, play a particular role in biodegradation of these xenobiotics, as the genus has the potential to decompose various hydrocarbons and phenolic compounds, using them as its only source of carbon. Plasticity of carbon metabolism is one of the adaptive strategies used by Pseudomonas to survive exposure to toxic organic compounds, so a good knowledge of its mechanisms of degradation enables the development of new strategies for the treatment of pollutants in the environment. The capacity of microorganisms to metabolize aromatic compounds has contributed to the evolutionally conserved oxygenases. Regardless of the differences in structure and complexity between mono- and polycyclic aromatic hydrocarbons, all these compounds are thermodynamically stable and chemically inert, so for their decomposition, ring activation by oxygenases is crucial. Genus Pseudomonas uses several upper and lower metabolic pathways to transform and degrade hydrocarbons, phenolic compounds, and petroleum hydrocarbons. Data obtained from newly developed omics analytical platforms have enormous potential not only to facilitate our understanding of processes at the molecular level but also enable us to instigate and monitor complex biodegradations by Pseudomonas. Biotechnological application of aromatic metabolic pathways in Pseudomonas to bioremediation of environments polluted with crude oil, biovalorization of lignin for production of bioplastics, biofuel, and bio-based chemicals, as well as Pseudomonas-assisted phytoremediation are also considered.
Collapse
Affiliation(s)
- Ana B Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia.
| | - Ivanka M Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia
| |
Collapse
|
3
|
Méndez García M, García de Llasera MP. A review on the enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149035. [PMID: 34303250 DOI: 10.1016/j.scitotenv.2021.149035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
High molecular weight PAHs (HMW PAHs) are dangerous pollutants widely distributed in the environment. The use of microorganisms represents an important tool for HMW PAHs bioremediation, so, the understanding of their biochemical pathways facilitates the development of biodegradation strategies. For this reason, the potential role of species of microalgae, bacteria, and microalga-bacteria consortia in the degradation of HMW PAHs is discussed. The identification of their metabolites, mostly by GC-MS and LC-MS, allows a better approach to the enzymes involved in the key steps of the metabolic pathways of HMW PAHs biodegradation. So, this review intends to address the proteomic research on enzyme activities and their involvement in regulating essential biochemical functions that help bacteria and microalgae in the biodegradation processes of HMW PAHs. It is noteworthy that, given that to the best of our knowledge, this is the first review focused on the mass spectrometry identification of the HMW PAHs metabolites; whereby and due to the great concern of the presence of HMW PAHs in the environment, this material could help the urgency of developing new bioremediation methods. The elucidation of the metabolic pathways of persistent pollutant degrading microorganisms should lead to a better knowledge of the enzymes involved, which could contribute to a very ecological route to the control of environmental contamination in the future.
Collapse
Affiliation(s)
- Manuel Méndez García
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F. 04510, Mexico
| | - Martha Patricia García de Llasera
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F. 04510, Mexico.
| |
Collapse
|
4
|
Cecchi G, Cutroneo L, Di Piazza S, Besio G, Capello M, Zotti M. Port Sediments: Problem or Resource? A Review Concerning the Treatment and Decontamination of Port Sediments by Fungi and Bacteria. Microorganisms 2021; 9:microorganisms9061279. [PMID: 34208305 PMCID: PMC8231108 DOI: 10.3390/microorganisms9061279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Contamination of marine sediments by organic and/or inorganic compounds represents one of the most critical problems in marine environments. This issue affects not only biodiversity but also ecosystems, with negative impacts on sea water quality. The scientific community and the European Commission have recently discussed marine environment and ecosystem protection and restoration by sustainable green technologies among the main objectives of their scientific programmes. One of the primary goals of sustainable restoration and remediation of contaminated marine sediments is research regarding new biotechnologies employable in the decontamination of marine sediments, to consider sediments as a resource in many fields such as industry. In this context, microorganisms—in particular, fungi and bacteria—play a central and crucial role as the best tools of sustainable and green remediation processes. This review, carried out in the framework of the Interreg IT-FR Maritime GEREMIA Project, collects and shows the bioremediation and mycoremediation studies carried out on marine sediments contaminated with ecotoxic metals and organic pollutants. This work evidences the potentialities and limiting factors of these biotechnologies and outlines the possible future scenarios of the bioremediation of marine sediments, and also highlights the opportunities of an integrated approach that involves fungi and bacteria together.
Collapse
Affiliation(s)
- Grazia Cecchi
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
| | - Laura Cutroneo
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
| | - Simone Di Piazza
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
| | - Giovanni Besio
- DICCA, University of Genoa, 1 Via Montallegro, I-16145 Genoa, Italy;
| | - Marco Capello
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
- Correspondence:
| | - Mirca Zotti
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
| |
Collapse
|
5
|
Kosek K, Kozioł K, Luczkiewicz A, Jankowska K, Chmiel S, Polkowska Ż. Environmental characteristics of a tundra river system in Svalbard. Part 2: Chemical stress factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1585-1596. [PMID: 30446169 DOI: 10.1016/j.scitotenv.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Bacterial communities in the Arctic environment are subject to multiple stress factors, including contaminants, although typically their concentrations are small. The Arctic contamination research has focused on persistent organic pollutants (POPs) because they are bioaccumulative, resistant to degradation and toxic for all organisms. Pollutants have entered the Arctic predominantly by atmospheric and oceanic long-range transport, and this was facilitated by their volatile or semi-volatile properties, while their chemical stability extended their lifetimes following emission. Chemicals present in the Arctic at detectable and quantifiable concentrations testify to their global impact. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. In this study, the abundance and the types of bacteria in the Arctic freshwater were examined and the microbial characteristics were compared to the amount of potentially harmful chemical compounds in particular elements of the Arctic catchment. The highest concentrations of all determined PAHs were observed in two samples in the vicinity of the estuary both in June and September 2016 and were 1964 ng L-1 (R12) and 3901 ng L-1 (R13) in June, and 2179 ng L-1 (R12) and 1349 ng L-1 (R13) in September. Remarkable concentrations of the sum of phenols and formaldehyde were detected also at the outflow of the Revelva river into the sea (R12) and were 0.24 mg L-1 in June and 0.35 mg L-1 in September 2016. The elevated concentrations of chemical compounds near the estuary suggest a potential impact of the water from the lower tributaries (including the glacier-fed stream measured at R13) or the sea currents and the sea aerosol as pollutant sources. The POPs' degradation at low temperature is not well understood but bacteria capable to degrading such compounds were noted in each sampling point.
Collapse
Affiliation(s)
- Klaudia Kosek
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Krystyna Kozioł
- Institute of Geography, Faculty of Geography and Biology, Pedagogical University in Cracow, Podchorążych 2, Cracow 30-084, Poland; Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., Warsaw 01-452, Poland
| | - Aneta Luczkiewicz
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Katarzyna Jankowska
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Stanisław Chmiel
- Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, 2 C-D Kraśnicka Ave., Lublin 20-718, Poland
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
6
|
Draft Genome Sequence of the Industrially Significant Bacterium Pseudomonas fluorescens ATCC 13525. Microbiol Resour Announc 2018; 7:MRA01368-18. [PMID: 30533753 PMCID: PMC6256488 DOI: 10.1128/mra.01368-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens is a Gram-negative bacterium with versatile metabolic functions and potential industrial uses. We sequenced P. fluorescens strain ATCC 13525 with the goal of determining virulence factors and antibiotic resistance genes to predict the potential impacts on human and environmental health in the event of exposure. Pseudomonas fluorescens is a Gram-negative bacterium with versatile metabolic functions and potential industrial uses. We sequenced P. fluorescens strain ATCC 13525 with the goal of determining virulence factors and antibiotic resistance genes to predict the potential impacts on human and environmental health in the event of exposure.
Collapse
|
7
|
Ud-Din AIMS, Roujeinikova A. Cloning, purification, crystallization and X-ray crystallographic analysis of the periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type A (CtaA). Biosci Trends 2016; 10:320-4. [PMID: 27251445 DOI: 10.5582/bst.2016.01059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotaxis towards nutrients plays a crucial role in root colonization by Pseudomonas fluorescens. The P. fluorescens chemotactic transducer of amino acids type A (CtaA) mediates movement towards amino acids present in root exudates. In this study, the periplasmic sensory domain of CtaA has been crystallized by the hanging-drop vapor diffusion method using ammonium sulfate as a precipitating agent. A complete data set was collected to 1.9 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group I222 or I212121, with unit-cell parameters a = 67.2, b = 76.0, c = 113.3 Å. This is an important step towards elucidation of the structural basis of how CtaA recognizes its signal molecules and transduces the signal across the membrane.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Australia; Department of Microbiology, Monash University
| | | |
Collapse
|
8
|
Tauler M, Vila J, Nieto JM, Grifoll M. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system. Appl Microbiol Biotechnol 2015; 100:3321-36. [DOI: 10.1007/s00253-015-7195-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/31/2022]
|
9
|
Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions. Biodegradation 2015; 27:1-13. [PMID: 26615425 DOI: 10.1007/s10532-015-9750-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg(-1). Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0% in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs.
Collapse
|
10
|
Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22. Appl Environ Microbiol 2013; 79:4410-20. [PMID: 23686261 DOI: 10.1128/aem.01129-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A soil bacterium, designated strain KK22, was isolated from a phenanthrene enrichment culture of a bacterial consortium that grew on diesel fuel, and it was found to biotransform the persistent environmental pollutant and high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. Nearly complete sequencing of the 16S rRNA gene of strain KK22 and phylogenetic analysis revealed that this organism is a new member of the genus Sphingobium. An 8-day time course study that consisted of whole-culture extractions followed by high-performance liquid chromatography (HPLC) analyses with fluorescence detection showed that 80 to 90% biodegradation of 2.5 mg liter(-1) benz[a]anthracene had occurred. Biodegradation assays where benz[a]anthracene was supplied in crystalline form (100 mg liter(-1)) confirmed biodegradation and showed that strain KK22 cells precultured on glucose were equally capable of benz[a]anthracene biotransformation when precultured on glucose plus phenanthrene. Analyses of organic extracts from benz[a]anthracene biodegradation by liquid chromatography negative electrospray ionization tandem mass spectrometry [LC/ESI(-)-MS/MS] revealed 10 products, including two o-hydroxypolyaromatic acids and two hydroxy-naphthoic acids. 1-Hydroxy-2- and 2-hydroxy-3-naphthoic acids were unambiguously identified, and this indicated that oxidation of the benz[a]anthracene molecule occurred via both the linear kata and angular kata ends of the molecule. Other two- and single-aromatic-ring metabolites were also documented, including 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid and salicylic acid, and the proposed pathways for benz[a]anthracene biotransformation by a bacterium were extended.
Collapse
|
11
|
John RC, Essien JP, Akpan SB, Okpokwasili GC. Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 88:1014-9. [PMID: 22456728 PMCID: PMC3339054 DOI: 10.1007/s00128-012-0598-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/10/2012] [Indexed: 05/19/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from aviation fuel contaminated soil at Inua Eyet Ikot in Ibeno, Nigeria. PAH-degrading bacteria in the contaminated soil were isolated by enrichment culture technique. Isolates with high PAH degrading potential characterized by their extensive growth on PAH-supplemented minimal salt medium were screened for their naphthalene, phenanthrene and chrysene degradability. The screening medium which contained selected PAHs as the sole source of carbon and energy showed that Micrococcus varians AFS-2, Pseudomonas putida AFS-3 and Alcaligenes faecalis AFS-5 exhibited a concentration-dependent growth in all the PAH-compounds tested. There were visible changes in the color of growth medium suggesting the production of different metabolites. Their acclimation to different PAH substrates was also evident as A. faecalis AFS-5 isolated from chrysene grew well on other less complex aromatic compounds. The isolate exhibited best growth (0.44 OD(600)) when exposed to 10 ppm of chrysene for 5 days and could utilize up to 90 ppm of chrysene. This isolate and others with strong PAH-degrading potentials are recommended for bioremediation of PAHs in aviation fuel-contaminated sites in the tropics.
Collapse
Affiliation(s)
- R C John
- Department of Microbiology, University of Port Hacourt, Port Hacourt, Rivers State, Nigeria.
| | | | | | | |
Collapse
|
12
|
Nayak AS, Sanjeev Kumar S, Santosh Kumar M, Anjaneya O, Karegoudar TB. A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp. PNK-04. FEMS Microbiol Lett 2011; 320:128-34. [DOI: 10.1111/j.1574-6968.2011.02301.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Lu S, Teng Y, Wang J, Sun Z. Enhancement of pyrene removed from contaminated soils by Bidens maximowicziana. CHEMOSPHERE 2010; 81:645-650. [PMID: 20832842 DOI: 10.1016/j.chemosphere.2010.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 05/27/2023]
Abstract
The research utilized Bidens maximowicziana along with pyrene-degrading bacteria to evaluate their potential in cleaning up pyrene contamination. The removal of pyrene from the planted soil was obviously higher than that from the unplanted soils. After 50 d of B. maximowicziana growth, the average removal ratio of pyrene in planted soil was 79%, which was 28% higher than that of pyrene in unplanted soil. In contrast to other plants, both roots and shoots of B. maximowicziana could accumulate a large amount of pyrene from the soil and pyrene uptake increased with the soil pyrene concentration. Through analysis of pathways of pyrene removal, this enhanced removal of pyrene by plant-microbial association might be mainly the result of B. maximowicziana-promoted microbial degradation. Both the catalase and polyphenol oxidase activities in soil were higher in planted soil than those in unplanted soil. And the bacteria populations in soil, especially in rhizosphere, were also inspired by the growth of B. maximowicziana. These could be explained by the rhizosphere effect. Therefore, bio-removal of pyrene in the contaminated soils was feasible using B. maximowicziana.
Collapse
Affiliation(s)
- Sijin Lu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | |
Collapse
|
14
|
Yin DLT, Bernhardt P, Morley KL, Jiang Y, Cheeseman JD, Purpero V, Schrag JD, Kazlauskas RJ. Switching catalysis from hydrolysis to perhydrolysis in Pseudomonas fluorescens esterase. Biochemistry 2010; 49:1931-42. [PMID: 20112920 DOI: 10.1021/bi9021268] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of epsilon-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k(cat), but K(m) also increased so the specificity constant, k(cat)/K(m), remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of epsilon-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds epsilon-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.
Collapse
Affiliation(s)
- De Lu Tyler Yin
- Department of Biochemistry, Molecular Biology, and Biophysics and The Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kanaly RA, Harayama S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 2010; 3:136-64. [PMID: 21255317 PMCID: PMC3836582 DOI: 10.1111/j.1751-7915.2009.00130.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022] Open
Abstract
Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome Systems, Faculty of Bionanoscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Kanagawa-ken, Yokohama 236-0027, Japan.
| | | |
Collapse
|
16
|
Dhote M, Juwarkar A, Kumar A, Kanade GS, Chakrabarti T. Biodegradation of chrysene by the bacterial strains isolated from oily sludge. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0180-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Fabiani A, Gamalero E, Castaldini M, Cossa GP, Musso C, Pagliai M, Berta G. Microbiological polyphasic approach for soil health evaluation in an Italian polluted site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:4954-4964. [PMID: 19520418 DOI: 10.1016/j.scitotenv.2009.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 05/27/2023]
Abstract
The use of microorganisms as bioindicators of soil health is quite a new feature, rarely considered for the soil health evaluation in chronically-polluted industrial sites, and still suffering of the bias related to the technique applied. In this work we applied a microbiological polyphasic approach, relying on soil indigenous microorganisms as bioindicators and combining culture-dependent and -independent methods, in order to evaluate soil health of four sites (1a, 1b, 2a and 2b) inside a chemical factory with a centenary activity. Functional as well as structural aspects were comprehensively considered. Results were related to the kind of pollutants found in each site. Heavy metal pollution was recorded in sites 1b and 2b, while both organic and inorganic substances were detected in sites 1a and 2a. Based on the chemical and physical properties of the four soils, site 1b and 2b grouped together, while 1a and 2a were separated from the others. The density of the culturable bacteria was very low in site 2a, where only gram-positive were found. According to the identification of culturable bacteria, site 2a showed the lowest similarity with the other sites. Microbial activity was detected only in sites 1b and 2b. PCR-DGGE (Denaturing Gradient Gel Electrophoresis), was performed on the culturable, total and active microbial communities. Consistently with the identification of culturable bacterial strains, the molecular profile of the culturable fraction of site 2a, was clearly separated from the molecular profiles of other sites in cluster analysis. Molecular fingerprintings of the whole and active bacterial communities differed among the sites, but clustered according to the pollutants present in each site. The presence of possible key species in each site has been discussed according to the whole and active species. Since the results obtained by microbiological analysis are consistent with the chemical data, we suggest that the use of this microbiological polyphasic approach and of microorganisms as intrinsic bioindicators, can be suitable for the evaluation of soil health.
Collapse
Affiliation(s)
- A Fabiani
- Centro di ricerca per l'Agrobiologia e la Pedologia, Piazza Massimo d'Azeglio 30, Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Bacterial degradation of aromatic compounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:278-309. [PMID: 19440284 PMCID: PMC2672333 DOI: 10.3390/ijerph6010278] [Citation(s) in RCA: 475] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/06/2009] [Indexed: 11/21/2022]
Abstract
Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.
Collapse
|
19
|
Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Amund OO. Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9790-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Moody JD, Freeman JP, Cerniglia CE. Degradation of benz[a]anthracene by Mycobacterium vanbaalenii strain PYR-1. Biodegradation 2005; 16:513-26. [PMID: 15865344 DOI: 10.1007/s10532-004-7217-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cultures of Mycobacterium vanbaalenii strain PYR-1 grown in mineral salts medium and nutrients in the presence of benz[a]anthracene metabolized 15% of the added benz[a]anthracene after 12 days of incubation. Neutral and acidic ethyl acetate extractable metabolites were isolated and characterized by high performance liquid chromatography (HPLC) and uv-visible absorption, gas chromatography/mass (GC/MS) and nuclear magnetic resonance (NMR) spectral analysis. Trimethylsilylation of the metabolites followed by GC/MS analysis facilitated identification of metabolites. The characterization of metabolites indicated that M. vanbaalenii initiated attack of benz[a]anthracene at the C-1,2-, C-5,6-, C-7,12- and C-10,11-positions to form dihydroxylated and methoxylated intermediates. The major site of enzymatic attack was in the C-10, C-11 positions. Subsequent ortho- and meta-cleavage of each of the aromatic rings led to the accumulation of novel ring-fission metabolites in the medium. The major metabolites identified were 3-hydrobenzo[f]isobenzofuran-1-one (3.2%), 6-hydrofuran[3,4-g]chromene-2,8-dione (1.3%), benzo[g]chromene-2-one (1.7%), naphtho[2,1-g]chromen-10-one (48.1%), 10-hydroxy-11-methoxybenz[a]anthracene (9.3%), and 10,11-dimethoxybenz[a]anthracene (36.4%). Enzymatic attack at the C-7 and C-12 positions resulted in the formation of benz[a]anthracene-7,12-dione, 1-(2-hydroxybenzoyl)-2-naphthoic acid, and 1-benzoyl-2-naphthoic acid. A phenyl-naphthyl metabolite, 3-(2-carboxylphenyl)-2-naphthoic acid, was formed when M. vanbaalenii was incubated with benz[a]anthracene cis-5,6-dihydrodiol, indicating ortho-cleavage of 5,6-dihydroxybenz[a]anthracene. A minor amount of 5,6-dimethoxybenz[a]anthracene was also formed. The data extend and propose novel pathways for the bacterial metabolism of benz[a]anthracene.
Collapse
Affiliation(s)
- Joanna D Moody
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079-9502, USA
| | | | | |
Collapse
|
21
|
Willison JC. Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source. FEMS Microbiol Lett 2005; 241:143-50. [PMID: 15598525 DOI: 10.1016/j.femsle.2004.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 09/06/2004] [Accepted: 10/07/2004] [Indexed: 11/23/2022] Open
Abstract
A bacterial strain able to grow in pure culture with chrysene as sole added carbon and energy source was isolated from PAH-contaminated soil after successive enrichment cultures in a biphasic growth medium. Initially, growth occurred in the form of a biofilm at the interface between the aqueous and non-aqueous liquid phases. However, after a certain time, a transition occurred in the enrichment cultures, with growth occurring in suspension and a concomitant increase in the rate of chrysene degradation. The strain responsible for chrysene degradation in these cultures, named Sphingomonas sp. CHY-1, was identified by 16S rDNA sequencing as a novel sphingomonad, the closest relative in the databases being Sphingomonas xenophaga BN6T (96% sequence identity). Both these strains clustered with members of the genera Sphingobium and Rhizomonas, but could not be categorically assigned to either genus. Sphingomonas sp. CHY-1 was characterized in terms of its growth on chrysene and other PAH, and the kinetics of chrysene degradation and 14C-chrysene mineralization were measured. At an initial chrysene concentration of 0.5 g l(-1) silicone oil, and an organic/aqueous phase ratio of 1:4, chrysene was 50% degraded after 5 days incubation and 97.5% degraded after 35 days. The protein content of cultures reached a maximum value of 11.5 microg ml(-1) aqueous phase, corresponding to 92 mg g(-1) chrysene. 14C-labelled chrysene was 50% mineralized after 6-8 weeks incubation, 10.7% of the radioactivity was incorporated into cell biomass and 8.4% was found in the aqueous culture supernatant. Sphingomonas sp. CHY-1 also grew on naphthalene, phenanthrene and anthracene, and naphthalene was the preferred substrate, with a doubling time of 6.9 h.
Collapse
Affiliation(s)
- John C Willison
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), DRDC/BBSI, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
22
|
Aitken MD, Long TC. Biotransformation, Biodegradation, and Bioremediation of Polycyclic Aromatic Hydrocarbons. SOIL BIOLOGY 2004. [DOI: 10.1007/978-3-662-06066-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Rogers SW, Ong SK, Kjartanson BH, Golchin J, Stenback GA. Natural Attenuation of Polycyclic Aromatic Hydrocarbon-Contaminated Sites: Review. ACTA ACUST UNITED AC 2002. [DOI: 10.1061/(asce)1090-025x(2002)6:3(141)] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Lee PH, Ong SK, Golchin J, Nelson GL. Use of solvents to enhance PAH biodegradation of coal tar-contaminated soils. WATER RESEARCH 2001; 35:3941-3949. [PMID: 12230177 DOI: 10.1016/s0043-1354(01)00115-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bioremediation of coal tar-contaminated soils containing polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs. Five coal tar-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with two solvents, acetone and ethanol to enhance the bioavailability of the PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactors. The total PAH degradation rates for soils pretreated with solvents were estimated to be about two times faster than soils that were not pretreated with solvents. For example, the total PAH first order degradation rate constants were 0.165+/-0.032, 0.147+/-0.020, and 0.076+/-0.009 day(-1) for Vandalia (EXC) soil that were pretreated with acetone, ethanol, and with no solvent, respectively. A distinctive advantage for soils pretreated with solvents was the enhanced removal of 5-ring PAH compounds such as benzo(a)pyrene and to a limited extent 4-ring compounds such as chrysene. Even for soils with 3.5% or more organic carbon content (two soils out of five), the degradation rate constants of chrysene were found to be two times faster than soils that were not pretreated. The degradation rate constants of benzo(a)pyrene were enhanced by 2-6 times for all five contaminated soils that were pretreated with solvents. To further elucidate trends that control the solvent treatment, the percent improvement in degradation rate constants (100 x rate constants for pretreated soils/rate constants for non-treated soils) for 16 PAHs were found to correlate well with the PAH partition coefficients (K(oc)). Except for phenanthrene and the clay fraction of the soil, correlations between the percent improvement in degradation rates constants and several physical properties of the soils were poor and sporadic. This implies that the enhancement in PAH availability using solvent treatment was driven by the distribution of the PAHs between the solvent and the adsorbed PAHs.
Collapse
Affiliation(s)
- P H Lee
- Resource Recycling and Management Research Center, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
25
|
Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 2000; 66:1834-43. [PMID: 10788347 PMCID: PMC101420 DOI: 10.1128/aem.66.5.1834-1843.2000] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.
Collapse
Affiliation(s)
- L Bastiaens
- Environmental Technology, Vlaamse Instelling voor Technologisch Onderzoek, B-2400 Mol, Belgium
| | | | | | | | | | | | | |
Collapse
|
26
|
Kanaly RA, Harayama S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 2000; 182:2059-67. [PMID: 10735846 PMCID: PMC111252 DOI: 10.1128/jb.182.8.2059-2067.2000] [Citation(s) in RCA: 534] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- R A Kanaly
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi City, Iwate 026-0001, Japan.
| | | |
Collapse
|
27
|
Dyke M, Prosser J. Effect of cell density and attachment on resuscitation in soil of starved Pseudomonas fluorescens MON787. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb01562.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|