1
|
Stubbusch AKM, Keegstra JM, Schwartzman J, Pontrelli S, Clerc EE, Charlton S, Stocker R, Magnabosco C, Schubert OT, Ackermann M, D'Souza GG. Polysaccharide breakdown products drive degradation-dispersal cycles of foraging bacteria through changes in metabolism and motility. eLife 2024; 13:RP93855. [PMID: 39429128 PMCID: PMC11493405 DOI: 10.7554/elife.93855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Most of Earth's biomass is composed of polysaccharides. During biomass decomposition, polysaccharides are degraded by heterotrophic bacteria as a nutrient and energy source and are thereby partly remineralized into CO2. As polysaccharides are heterogeneously distributed in nature, following the colonization and degradation of a polysaccharide hotspot the cells need to reach new polysaccharide hotspots. Even though many studies indicate that these degradation-dispersal cycles contribute to the carbon flow in marine systems, we know little about how cells alternate between polysaccharide degradation and motility, and which environmental factors trigger this behavioral switch. Here, we studied the growth of the marine bacterium Vibrio cyclitrophicus ZF270 on the abundant marine polysaccharide alginate, both in its soluble polymeric form as well as on its breakdown products. We used microfluidics coupled to time-lapse microscopy to analyze motility and growth of individual cells, and RNA sequencing to study associated changes in gene expression. We found that single cells grow at reduced rate on alginate until they form large groups that cooperatively break down the polymer. Exposing cell groups to digested alginate accelerates cell growth and changes the expression of genes involved in alginate degradation and catabolism, central metabolism, ribosomal biosynthesis, and transport. However, exposure to digested alginate also triggers cells to become motile and disperse from cell groups, proportionally increasing with the group size before the nutrient switch, and this is accompanied by high expression of genes involved in flagellar assembly, chemotaxis, and quorum sensing. The motile cells chemotax toward polymeric but not digested alginate, likely enabling them to find new polysaccharide hotspots. Overall, our findings reveal cellular mechanisms that might also underlie bacterial degradation-dispersal cycles, which influence the remineralization of biomass in marine environments.
Collapse
Affiliation(s)
- Astrid Katharina Maria Stubbusch
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Geological Institute, Department of Earth Sciences, ETH ZurichZurichSwitzerland
| | - Johannes M Keegstra
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Julia Schwartzman
- Department of Civil and Environmental Engineering, MITCambridgeUnited States
- Department of Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Estelle E Clerc
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Samuel Charlton
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
| | - Cara Magnabosco
- Geological Institute, Department of Earth Sciences, ETH ZurichZurichSwitzerland
| | - Olga T Schubert
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Laboratory of Microbial Systems Ecology, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédéral de Lausanne (EPFL)LausanneSwitzerland
| | - Glen G D'Souza
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
2
|
McNichol SM, Sanchez-Quete F, Loeb SK, Teske AP, Shah Walter SR, Mahmoudi N. Dynamics of carbon substrate competition among heterotrophic microorganisms. THE ISME JOURNAL 2024; 18:wrae018. [PMID: 38366177 PMCID: PMC10942773 DOI: 10.1093/ismejo/wrae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/06/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Growing evidence suggests that interactions among heterotrophic microorganisms influence the efficiency and rate of organic matter turnover. These interactions are dynamic and shaped by the composition and availability of resources in their surrounding environment. Heterotrophic microorganisms inhabiting marine environments often encounter fluctuations in the quality and quantity of carbon inputs, ranging from simple sugars to large, complex compounds. Here, we experimentally tested how the chemical complexity of carbon substrates affects competition and growth dynamics between two heterotrophic marine isolates. We tracked cell density using species-specific polymerase chain reaction (PCR) assays and measured rates of microbial CO2 production along with associated isotopic signatures (13C and 14C) to quantify the impact of these interactions on organic matter remineralization. The observed cell densities revealed substrate-driven interactions: one species exhibited a competitive advantage and quickly outgrew the other when incubated with a labile compound whereas both species seemed to coexist harmoniously in the presence of more complex organic matter. Rates of CO2 respiration revealed that coincubation of these isolates enhanced organic matter turnover, sometimes by nearly 2-fold, compared to their incubation as mono-cultures. Isotopic signatures of respired CO2 indicated that coincubation resulted in a greater remineralization of macromolecular organic matter. These results demonstrate that simple substrates promote competition whereas high substrate complexity reduces competitiveness and promotes the partitioning of degradative activities into distinct niches, facilitating coordinated utilization of the carbon pool. Taken together, this study yields new insight into how the quality of organic matter plays a pivotal role in determining microbial interactions within marine environments.
Collapse
Affiliation(s)
- Samuel M McNichol
- Department of Earth and Planetary Sciences, McGill University, 3450 University St, Montréal, Quebec H3A 0E8, Canada
| | - Fernando Sanchez-Quete
- Department of Civil Engineering, McGill University, 817 Rue Sherbrooke Ouest, Montréal, Quebec H3A 0C3, Canada
| | - Stephanie K Loeb
- Department of Civil Engineering, McGill University, 817 Rue Sherbrooke Ouest, Montréal, Quebec H3A 0C3, Canada
| | - Andreas P Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Sunita R Shah Walter
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd, Lewes, DE 19958, United States
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, 3450 University St, Montréal, Quebec H3A 0E8, Canada
| |
Collapse
|
3
|
Yu XA, McLean C, Hehemann JH, Angeles-Albores D, Wu F, Muszyński A, Corzett CH, Azadi P, Kujawinski EB, Alm EJ, Polz MF. Low-level resource partitioning supports coexistence among functionally redundant bacteria during successional dynamics. THE ISME JOURNAL 2024; 18:wrad013. [PMID: 38365244 PMCID: PMC10811730 DOI: 10.1093/ismejo/wrad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate. We allowed ocean microbial communities to self-assemble on leachates of the brown seaweed Fucus vesiculosus and then analyzed the competition among 10 taxonomically diverse isolates representing two distinct stages of the succession. All, but two isolates, exhibited an average of 90% ± 6% pairwise overlap in resource use, and functional redundancy of isolates from the same assembly stage was higher than that from between assembly stages, leading us to construct a simpler four-isolate community with two isolates from each of the early and late stages. We found that, although the short-term dynamics of the four-isolate communities in F. vesiculosus leachate was dependent on initial isolate ratios, in the long term, the four isolates stably coexist in F. vesiculosus leachate, albeit with some strains at low abundance. We therefore explored the potential for nonredundant substrate use by genomic content analysis and RNA expression patterns. This analysis revealed that the four isolates mainly differed in peripheral metabolic pathways, such as the ability to degrade pyrimidine, leucine, and tyrosine, as well as aromatic substrates. These results highlight the importance of fine-scale differences in metabolic strategies for supporting the frequently observed coexistence of large numbers of rare organisms in natural microbiomes.
Collapse
Affiliation(s)
- Xiaoqian Annie Yu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Division of Microbial Ecology, Department of Microbiology and Ecosystems Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Craig McLean
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
- MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Jan-Hendrik Hehemann
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David Angeles-Albores
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Fuqing Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Christopher H Corzett
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Eric J Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Martin F Polz
- Division of Microbial Ecology, Department of Microbiology and Ecosystems Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
4
|
D’Souza G, Schwartzman J, Keegstra J, Schreier JE, Daniels M, Cordero OX, Stocker R, Ackermann M. Interspecies interactions determine growth dynamics of biopolymer-degrading populations in microbial communities. Proc Natl Acad Sci U S A 2023; 120:e2305198120. [PMID: 37878716 PMCID: PMC10622921 DOI: 10.1073/pnas.2305198120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
Microbial communities perform essential ecosystem functions such as the remineralization of organic carbon that exists as biopolymers. The first step in mineralization is performed by biopolymer degraders, which harbor enzymes that can break down polymers into constituent oligo- or monomeric forms. The released nutrients not only allow degraders to grow, but also promote growth of cells that either consume the degradation products, i.e., exploiters, or consume metabolites released by the degraders or exploiters, i.e., scavengers. It is currently not clear how such remineralizing communities assemble at the microscale-how interactions between the different guilds influence their growth and spatial distribution, and hence the development and dynamics of the community. Here, we address this knowledge gap by studying marine microbial communities that grow on the abundant marine biopolymer alginate. We used batch growth assays and microfluidics coupled to time-lapse microscopy to quantitatively investigate growth and spatial distribution of single cells. We found that the presence of exploiters or scavengers alters the spatial distribution of degrader cells. In general, exploiters and scavengers-which we collectively refer to as cross-feeder cells-slowed down the growth of degrader cells. In addition, coexistence with cross-feeders altered the production of the extracellular enzymes that break down polymers by degrader cells. Our findings reveal that ecological interactions by nondegrading community members have a profound impact on the functions of microbial communities that remineralize carbon biopolymers in nature.
Collapse
Affiliation(s)
- Glen D’Souza
- Microbial Systems Ecology Group, Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollutant Dynamics, ETH-Zurich, Zurich8006, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Sciences, Duebendorf8600, Switzerland
| | - Julia Schwartzman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Johannes Keegstra
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich8093, Switzerland
| | | | - Michael Daniels
- Microbial Systems Ecology Group, Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollutant Dynamics, ETH-Zurich, Zurich8006, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Sciences, Duebendorf8600, Switzerland
| | - Otto X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich8093, Switzerland
| | - Martin Ackermann
- Microbial Systems Ecology Group, Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollutant Dynamics, ETH-Zurich, Zurich8006, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Sciences, Duebendorf8600, Switzerland
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École polytechnique fédérale de Lausanne, CH-1015Lausanne, Switzerland
| |
Collapse
|
5
|
Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria. THE ISME JOURNAL 2023; 17:703-711. [PMID: 36813911 PMCID: PMC10119383 DOI: 10.1038/s41396-023-01385-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Polysaccharide breakdown by bacteria requires the activity of enzymes that degrade polymers either intra- or extra-cellularly. The latter mechanism generates a localized pool of breakdown products that are accessible to the enzyme producers themselves as well as to other organisms. Marine bacterial taxa often show marked differences in the production and secretion of degradative enzymes that break down polysaccharides. These differences can have profound effects on the pool of diffusible breakdown products and hence on the ecological dynamics. However, the consequences of differences in enzymatic secretions on cellular growth dynamics and interactions are unclear. Here we study growth dynamics of single cells within populations of marine Vibrionaceae strains that grow on the abundant marine polymer alginate, using microfluidics coupled to quantitative single-cell analysis and mathematical modelling. We find that strains that have low extracellular secretions of alginate lyases aggregate more strongly than strains that secrete high levels of enzymes. One plausible reason for this observation is that low secretors require a higher cellular density to achieve maximal growth rates in comparison with high secretors. Our findings indicate that increased aggregation increases intercellular synergy amongst cells of low-secreting strains. By mathematically modelling the impact of the level of degradative enzyme secretion on the rate of diffusive oligomer loss, we find that enzymatic secretion capability modulates the propensity of cells within clonal populations to cooperate or compete with each other. Our experiments and models demonstrate that enzymatic secretion capabilities can be linked with the propensity of cell aggregation in marine bacteria that extracellularly catabolize polysaccharides.
Collapse
|
6
|
Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, Fernandez-Guerra A, Liebeke M, Schweder T, Polz MF, Hehemann JH. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol 2020; 5:1026-1039. [PMID: 32451471 DOI: 10.1038/s41564-020-0720-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae. Here, we show that 'Lentimonas' sp. CC4, belonging to the Verrucomicrobia, acquired a remarkably complex machinery for the degradation of six different fucoidans. The strain accumulated 284 putative fucoidanases, including glycoside hydrolases, sulfatases and carbohydrate esterases, which are primarily located on a 0.89-megabase pair plasmid. Proteomics reveals that these enzymes assemble into substrate-specific pathways requiring about 100 enzymes per fucoidan from different species of brown algae. These enzymes depolymerize fucoidan into fucose, which is metabolized in a proteome-costly bacterial microcompartment that spatially constrains the metabolism of the toxic intermediate lactaldehyde. Marine metagenomes and microbial genomes show that Verrucomicrobia including 'Lentimonas' are abundant and highly specialized degraders of fucoidans and other complex polysaccharides. Overall, the complexity of the pathways underscores why fucoidans are probably recalcitrant and more slowly degraded, since only highly specialized organisms can effectively degrade them in the ocean.
Collapse
Affiliation(s)
- Andreas Sichert
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany
| | - Christopher H Corzett
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Frank Unfried
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Antonio Fernandez-Guerra
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Bremen, Germany.
| |
Collapse
|
7
|
Context-dependent dynamics lead to the assembly of functionally distinct microbial communities. Nat Commun 2020; 11:1440. [PMID: 32188849 PMCID: PMC7080782 DOI: 10.1038/s41467-020-15169-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/18/2020] [Indexed: 11/15/2022] Open
Abstract
Niche construction through interspecific interactions can condition future community states on past ones. However, the extent to which such history dependency can steer communities towards functionally different states remains a subject of active debate. Using bacterial communities collected from wild pitchers of the carnivorous pitcher plant, Sarracenia purpurea, we test the effects of history on composition and function across communities assembled in synthetic pitcher plant microcosms. We find that the diversity of assembled communities is determined by the diversity of the system at early, pre-assembly stages. Species composition is also contingent on early community states, not only because of differences in the species pool, but also because the same species have different dynamics in different community contexts. Importantly, compositional differences are proportional to differences in function, as profiles of resource use are strongly correlated with composition, despite convergence in respiration rates. Early differences in community structure can thus propagate to mature communities, conditioning their functional repertoire. Historical contingency can affect community composition and function, but the extent to which this occurs is unclear. Here the authors use pitcher plant microbial communities to demonstrate that community dynamics and key metabolic functions at equilibrium depend on history and initial composition.
Collapse
|
8
|
Badur AH, Ammar EM, Yalamanchili G, Hehemann JH, Rao CV. Characterization of the GH16 and GH17 laminarinases from Vibrio breoganii 1C10. Appl Microbiol Biotechnol 2019; 104:161-171. [PMID: 31754764 DOI: 10.1007/s00253-019-10243-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Laminarin is an abundant glucose polymer used as an energy reserve by micro- and macroalgae. Bacteria digest and consume laminarin with laminarinases. Their genomes frequently contain multiple homologs; however, the biological role for this replication remains unclear. We investigated the four laminarinases of glycoside hydrolase families GH16 and GH17 from the marine bacterium Vibrio breoganii 1C10, which can use laminarin as its sole carbon source. All four laminarinases employ an endolytic mechanism and specifically cleave the β-1,3-glycosidic bond. Two primarily produce low-molecular weight laminarin oligomers (DP 3-4) whereas the others primarily produce high-molecular weight oligomers (DP > 8), which suggests that these enzymes sequentially degrade laminarin. The results from this work provide an overview of the laminarinases from a single marine bacterium and also provide insights regarding how multiple laminarinases are used to degrade laminarin.
Collapse
Affiliation(s)
- Ahmet H Badur
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Ehab M Ammar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA.,Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El Sadat City, Egypt
| | - Geethika Yalamanchili
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Jan-Hendrik Hehemann
- MARUM MPG Bridge Group Marine Glycobiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Khachikyan A, Milucka J, Littmann S, Ahmerkamp S, Meador T, Könneke M, Burg T, Kuypers MMM. Direct Cell Mass Measurements Expand the Role of Small Microorganisms in Nature. Appl Environ Microbiol 2019; 85:e00493-19. [PMID: 31076432 PMCID: PMC6606879 DOI: 10.1128/aem.00493-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Microbial biomass is a key parameter needed for the quantification of microbial turnover rates and their contribution to the biogeochemical element cycles. However, estimates of microbial biomass rely on empirically derived mass-to-volume relationships, and large discrepancies exist between the available empirical conversion factors. Here we report a significant nonlinear relationship between carbon mass and cell volume ([Formula: see text]; [Formula: see text]) based on direct cell mass, volume, and elemental composition measurements of 12 prokaryotic species with average volumes between 0.011 and 0.705 μm3 The carbon mass density of our measured cells ranged from 250 to 1,800 fg of C μm-3 for the measured cell volumes. Compared to other currently used models, our relationship yielded up to 300% higher carbon mass values. A compilation of our and previously published data showed that cells with larger volumes (>0.5 μm3) display a constant (carbon) mass-to-volume ratio, whereas cells with volumes below 0.5 μm3 exhibit a nonlinear increase in (carbon) mass density with decreasing volume. Small microorganisms dominate marine and freshwater bacterioplankton as well as soils and marine and terrestrial subsurface. The application of our experimentally determined conversion factors will help to quantify the true contribution of these microorganisms to ecosystem functions and global microbial biomass.IMPORTANCE Microorganisms are a major component of Earth's biosphere, and their activity significantly affects the biogeochemical cycling of bioavailable elements. To correctly determine the flux of carbon and energy in the environment, reliable estimates of microbial abundances and cellular carbon content are necessary. However, accurate assessments of cellular carbon content and dry weight are not trivial to obtain. Here we report direct measurements of cell dry and carbon mass of environmentally relevant prokaryotic microorganisms using a microfluidic mass sensor. We show a significant nonlinear relationship between carbon mass and cell volume and discuss this relationship in the light of currently used cellular mass models.
Collapse
Affiliation(s)
- Alexander Khachikyan
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Soeren Ahmerkamp
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Travis Meador
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Martin Könneke
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Thomas Burg
- Biological Micro- and Nanotechnology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
10
|
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018; 13:e0210118. [PMID: 30596794 PMCID: PMC6312309 DOI: 10.1371/journal.pone.0210118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) is a generalist and facultative pathogen that causes disease in a wide range of marine animals including fish species of importance in aquaculture. Disease outbreaks in fish farms have been correlated with an increased water temperature during summer months. In this study, we have used RNA sequencing to analyze the transcriptome of Pdd RM-71 cultured at two different temperatures, which simulated temperature conditions experienced during free swimming lifestyle at mid latitudes in winter months (15°C) and during outbreaks in aquaculture in warm summer months (25°C). The enhanced bacterial growth of Pdd observed at 25°C in comparison to 15°C suggests that an elevated seawater temperature contributes to the build-up of a sufficient bacterial population to cause disease. In comparison to growth at 15°C, growth at 25°C resulted in the upregulation of genes involved in DNA synthesis, nutrient uptake, chemotaxis, flagellar motility, secretion systems and antimicrobial resistance. Plasmid-encoded virulence factors, which include a putative adhesin/invasin OmpU, a transferrin receptor and a serum resistance protein, were also upregulated. Transcription factor RpoS, genes involved in cold shock response, modulation of cell envelope and amino acid metabolism, as well as genes of yet unknown function were downregulated at 25°C. Notably, the gene encoding damselysin cytotoxin (Dly) was among the most highly transcribed genes at the two assayed temperatures, at levels comparable to the most highly expressed housekeeping genes. This study contributes to our understanding of the regulatory networks and biology of a generalist marine bacterial pathogen, and provides evidence that temperature regulates multiple physiological and virulence-related functions in Pdd.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Evolution of a Vegetarian Vibrio: Metabolic Specialization of Vibrio breoganii to Macroalgal Substrates. J Bacteriol 2018; 200:JB.00020-18. [PMID: 29632094 DOI: 10.1128/jb.00020-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
While most Vibrionaceae are considered generalists that thrive on diverse substrates, including animal-derived material, we show that Vibrio breoganii has specialized for the consumption of marine macroalga-derived substrates. Genomic and physiological comparisons of V. breoganii with other Vibrionaceae isolates revealed the ability to degrade alginate, laminarin, and additional glycans present in algal cell walls. Moreover, the widely conserved ability to hydrolyze animal-derived polymers, including chitin and glycogen, was lost, along with the ability to efficiently grow on a variety of amino acids. Ecological data showing associations with particulate algal material but not zooplankton further support this shift in niche preference, and the loss of motility appears to reflect a sessile macroalga-associated lifestyle. Together, these findings indicate that algal polysaccharides have become a major source of carbon and energy in V. breoganii, and these ecophysiological adaptations may facilitate transient commensal associations with marine invertebrates that feed on algae.IMPORTANCE Vibrios are often considered animal specialists or generalists. Here, we show that Vibrio breoganii has undergone massive genomic changes to become specialized on algal carbohydrates. Accompanying genomic changes include massive gene import and loss. These vibrios may help us better understand how algal biomass is degraded in the environment and may serve as a blueprint on how to optimize the conversion of algae to biofuels.
Collapse
|
12
|
Takemura AF, Corzett CH, Hussain F, Arevalo P, Datta M, Yu X, Le Roux F, Polz MF. Natural resource landscapes of a marine bacterium reveal distinct fitness-determining genes across the genome. Environ Microbiol 2017; 19:2422-2433. [PMID: 28419782 DOI: 10.1111/1462-2920.13765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Heterotrophic bacteria exploit diverse microhabitats in the ocean, from particles to transient gradients. Yet the degree to which genes and pathways can contribute to an organism's fitness on such complex and variable natural resource landscapes remains poorly understood. Here, we determine the gene-by-gene fitness of a generalist saprophytic marine bacterium (Vibrio sp. F13 9CS106) on complex resources derived from its natural habitats - copepods (Apocyclops royi) and brown algae (Fucus vesiculosus) - and as reference substrates, glucose and the polysaccharide alginate, derived from brown algal cell walls. We find that resource complexity strongly buffers fitness costs of mutations, and that anabolic rather than catabolic pathways are more stringently required, likely due to functional redundancy in the latter. Moreover, while carbohydrate-rich algae requires several synthesis pathways, protein-rich Apocyclops does not, suggesting this ancestral habitat for Vibrios is a replete medium with metabolically redundant substrates. We also identify a candidate fitness trade-off for algal colonization: deletion of mshA increases mutant fitness. Our results demonstrate that gene fitness depends on habitat composition, and suggest that this generalist uses distinct resources in different natural habitats. The results further indicate that substrate replete conditions may lead to relatively relaxed selection on catabolic genes.
Collapse
Affiliation(s)
- Alison F Takemura
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Christopher H Corzett
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Fatima Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Philip Arevalo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Manoshi Datta
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Xiaoqian Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Frederique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
13
|
Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat Commun 2016; 7:12860. [PMID: 27653556 PMCID: PMC5036157 DOI: 10.1038/ncomms12860] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022] Open
Abstract
Adaptive radiations are important drivers of niche filling, since they rapidly adapt a single clade of organisms to ecological opportunities. Although thought to be common for animals and plants, adaptive radiations have remained difficult to document for microbes in the wild. Here we describe a recent adaptive radiation leading to fine-scale ecophysiological differentiation in the degradation of an algal glycan in a clade of closely related marine bacteria. Horizontal gene transfer is the primary driver in the diversification of the pathway leading to several ecophysiologically differentiated Vibrionaceae populations adapted to different physical forms of alginate. Pathway architecture is predictive of function and ecology, underscoring that horizontal gene transfer without extensive regulatory changes can rapidly assemble fully functional pathways in microbes. Adaptive radiations are well-known for animals and plants, but not for microbes. Here, Hehemann et al. show that there has been a recent adaptive radiation of bacteria in the Vibrionaceae to use different forms of alginate and that this radiation has been mediated by horizontal gene transfer.
Collapse
|
14
|
Jiang X, Dang H, Jiao N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLoS One 2015; 10:e0117473. [PMID: 25647610 PMCID: PMC4315400 DOI: 10.1371/journal.pone.0117473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/25/2014] [Indexed: 12/15/2022] Open
Abstract
Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities.
Collapse
Affiliation(s)
- Xuexia Jiang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China
| |
Collapse
|
15
|
Yung CM, Vereen MK, Herbert A, Davis KM, Yang J, Kantorowska A, Ward CS, Wernegreen JJ, Johnson ZI, Hunt DE. Thermally adaptive tradeoffs in closely related marine bacterial strains. Environ Microbiol 2015; 17:2421-9. [DOI: 10.1111/1462-2920.12714] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Cheuk-Man Yung
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
| | - Marissa K. Vereen
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
| | - Amy Herbert
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
| | - Katherine M. Davis
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
| | - Jiayu Yang
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
| | - Agata Kantorowska
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
| | - Christopher S. Ward
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
- Integrated Toxicology and Environmental Health Program; Duke University; Durham NC 27708 USA
| | | | - Zackary I. Johnson
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
- Biology Department; Duke University; Durham NC 27708 USA
| | - Dana E. Hunt
- Nicholas School of the Environment; Duke University; Durham NC 27708 USA
- Biology Department; Duke University; Durham NC 27708 USA
| |
Collapse
|
16
|
Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc Natl Acad Sci U S A 2014; 111:5622-7. [PMID: 24706766 DOI: 10.1073/pnas.1318943111] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although competition-dispersal tradeoffs are commonly invoked to explain species coexistence for animals and plants in spatially structured environments, such mechanisms for coexistence remain unknown for microorganisms. Here we show that two recently speciated marine bacterioplankton populations pursue different behavioral strategies to exploit nutrient particles in adaptation to the landscape of ephemeral nutrient patches characteristic of ocean water. These differences are mediated primarily by differential colonization of and dispersal among particles. Whereas one population is specialized to colonize particles by attaching and growing biofilms, the other is specialized to disperse among particles by rapidly detecting and swimming toward new particles, implying that it can better exploit short-lived patches. Because the two populations are very similar in their genomic composition, metabolic abilities, chemotactic sensitivity, and swimming speed, this fine-scale behavioral adaptation may have been responsible for the onset of the ecological differentiation between them. These results demonstrate that the principles of spatial ecology, traditionally applied at macroscales, can be extended to the ocean's microscale to understand how the rich spatiotemporal structure of the resource landscape contributes to the fine-scale ecological differentiation and species coexistence among marine bacteria.
Collapse
|
17
|
Donnelly AP, Herbert RA. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons. J Appl Microbiol 2011; 85 Suppl 1:151S-160S. [PMID: 21182704 DOI: 10.1111/j.1365-2672.1998.tb05294.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rooted phanerogam communities in the shallow intertidal and subtidal coastal zone represent productive and healthy ecosystems. Inorganic nutrients are assimilated into seagrass biomass. Much of the organic matter resulting from moribund seagrass is rapidly mineralized, principally by bacteria. The microbial community of the rhizosphere is also highly active due to the supply of organic matter released during photosynthesis. This active sediment community plays an important role through carbon, nitrogen and phosphorous cycling in maintaining the stability and productivity of seagrass meadows. Over the last two decades, however, seagrass meadows in European coastal areas have declined due to increasing pollution. As eutrophication advances a trasition occurs from rooted phanerogram dominated communities to planktonic algal blooms and/or cyanobacterial blooms. Such changes represent the decline of a stable, high biodiversity habitat to an unstable one dominated by a few species. These changes of community structure can occur rapidly once the internal nutrient and organic matter control cycles are exceeded. A field investigation was undertaken to establish the spatial distribution of bacterial populations of Zostera noltii colonized and uncolonized sediment in the Bassin d'Arcachon, France. Bacteria were enumerated using both plate count and MPN techniques for different functional groups as well as determining the total bacterial populations present. Nitrogen fixation, ammonification, sulphate reduction rates, as well as alkaline phosphatase activity were also determined. Colonization of the Z. noltii roots and rhizomes was studied by light and scanning electron microscopy. Results confirmed that higher bacterial populations were present in the rhizosphere of Z. noltii compared to uncolonized sediments. Furthermore, electron microscopy identified the rhizome as the main site of colonization for a diverse range of morphological groups of bacteria. Sulphate reducing bacteria were identified as the key group of bacteria involved in N-fixation in the rhizosphere of Z. noltii. The data will be discussed in relation to the role played by the rhizosphere microflora in supplying and mobilising nutrients in Z. noltii.
Collapse
Affiliation(s)
- A P Donnelly
- Department of Biological Sciences, University of Dundee, Dundee, UK
| | | |
Collapse
|
18
|
Cai H, Jiao N. Diversity and abundance of nitrate assimilation genes in the northern South china sea. MICROBIAL ECOLOGY 2008; 56:751-764. [PMID: 18481138 DOI: 10.1007/s00248-008-9394-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 02/26/2008] [Accepted: 04/03/2008] [Indexed: 05/26/2023]
Abstract
Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.
Collapse
Affiliation(s)
- Haiyuan Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, People's Republic of China
| | | |
Collapse
|
19
|
Boström KH, Riemann L, Kühl M, Hagström A. Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ Microbiol 2007; 9:152-64. [PMID: 17227420 DOI: 10.1111/j.1462-2920.2006.01124.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacteria are regarded as the main N(2)-fixing organisms in marine waters. However, recent clone libraries from various oceans show a wide distribution of the dinitrogenase reductase gene (nifH) originating from heterotrophic bacterioplankton. We isolated heterotrophic N(2)-fixing bacteria from Baltic Sea bacterioplankton using low-nitrogen plates and semi-solid diazotroph medium (SSDM) tubes. Isolates were analysed for the nitrogenase (nifH) gene and active N(2) fixation by nested polymerase chain reaction (PCR) and acetylene reduction respectively. A primer-probe set targeting the nifH gene from a gamma-proteobacterial isolate, 97% 16S rDNA similarity to Pseudomonas stutzeri, was designed for measuring in situ dynamics using quantitative real-time PCR. This nifH gene sequence was detected at two of 11 stations in a Baltic Proper transect at abundances of 3 x 10(4) and 0.8 x 10(3) copies per litre seawater respectively. Oxygen requirements of isolates were examined by cultivation in SSDM tubes where oxygen gradients were determined with microelectrodes. Growth, and thereby N(2) fixation, was observed as horizontal bands formed at oxygen levels of 0-6% air saturation. The apparent microaerophilic or facultative anaerobic nature of the isolates explains why the SSDM approach is the most appropriate isolation method. Our study illustrates how combined isolation, functional analyses and in situ quantification yielded insights into the oxygen requirements of heterotrophic N(2)-fixing bacterioplankton isolates, which were confirmed to be present in situ.
Collapse
Affiliation(s)
- Kjärstin H Boström
- Department of Biology and Environmental Science, Kalmar University, S-391 82 Kalmar, Sweden
| | | | | | | |
Collapse
|
20
|
Bird C, Martinez Martinez J, O'Donnell AG, Wyman M. Spatial distribution and transcriptional activity of an uncultured clade of planktonic diazotrophic gamma-proteobacteria in the Arabian sea. Appl Environ Microbiol 2005; 71:2079-85. [PMID: 15812041 PMCID: PMC1082540 DOI: 10.1128/aem.71.4.2079-2085.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spatial distribution of an uncultured clade of marine diazotrophic gamma-proteobacteria in the Arabian Sea was investigated by the development of a specific primer pair to amplify an internal fragment of nifH by PCR. These organisms were most readily detected in highly oligotrophic surface waters but could also be found in deeper waters below the nutricline. nifH transcripts originating from this clade were detected in oligotrophic surface waters and, in addition, in the deeper and the more productive near-coastal waters. The nifH sequences most closely related to the unidentified marine bacterial group are from environmental clones amplified from the Atlantic and Pacific Oceans. These findings suggest that these gamma-proteobacteria are widespread and likely to be an important component of the heterotrophic diazotrophic microbial community of the tropical and subtropical oceans.
Collapse
Affiliation(s)
- Clare Bird
- School of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA United Kingdom
| | | | | | | |
Collapse
|
21
|
Allen AE, Booth MG, Frischer ME, Verity PG, Zehr JP, Zani S. Diversity and detection of nitrate assimilation genes in marine bacteria. Appl Environ Microbiol 2001; 67:5343-8. [PMID: 11679368 PMCID: PMC93313 DOI: 10.1128/aem.67.11.5343-5348.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and sequenced nasA genes. Our results indicate that several groups of heterotrophic bacterial nasA genes are common and widely distributed in oceanic environments.
Collapse
Affiliation(s)
- A E Allen
- Institute of Ecology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zehr JP, Mellon MT, Zani S. New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of Nitrogenase (nifH) genes. Appl Environ Microbiol 1998; 64:3444-50. [PMID: 9726895 PMCID: PMC106745 DOI: 10.1128/aem.64.9.3444-3450.1998] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oligotrophic oceanic waters of the central ocean gyres typically have extremely low dissolved fixed inorganic nitrogen concentrations, but few nitrogen-fixing microorganisms from the oceanic environment have been cultivated. Nitrogenase gene (nifH) sequences amplified directly from oceanic waters showed that the open ocean contains more diverse diazotrophic microbial populations and more diverse habitats for nitrogen fixers than previously observed by classical microbiological techniques. Nitrogenase genes derived from unicellular and filamentous cyanobacteria, as well as from the alpha and gamma subdivisions of the class Proteobacteria, were found in both the Atlantic and Pacific oceans. nifH sequences that cluster phylogenetically with sequences from sulfate reducers or clostridia were found associated with planktonic crustaceans. Nitrogenase sequence types obtained from invertebrates represented phylotypes distinct from the phylotypes detected in the picoplankton size fraction. The results indicate that there are in the oceanic environment several distinct potentially nitrogen-fixing microbial assemblages that include representatives of diverse phylotypes.
Collapse
Affiliation(s)
- J P Zehr
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA.
| | | | | |
Collapse
|
23
|
Koene-Cottaar FH, Schraa G. Anaerobic reduction of ethene to ethane in an enrichment culture. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00477.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
Steppe T, Olson J, Paerl H, Litaker R, Belnap J. Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol Ecol 1996. [DOI: 10.1111/j.1574-6941.1996.tb00342.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|