1
|
Armstrong TS, Grant R, Gilbert MR, Lee JW, Norden AD. Epilepsy in glioma patients: mechanisms, management, and impact of anticonvulsant therapy. Neuro Oncol 2015; 18:779-89. [PMID: 26527735 DOI: 10.1093/neuonc/nov269] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
Seizures are a well-recognized symptom of primary brain tumors, and anticonvulsant use is common. This paper provides an overview of epilepsy and the use of anticonvulsants in glioma patients. Overall incidence and mechanisms of epileptogenesis are reviewed. Factors to consider with the use of antiepileptic drugs (AEDs) including incidence during the disease trajectory and prophylaxis along with considerations in the selection of anticonvulsant use (ie, potential side effects, drug interactions, adverse effects, and impact on survival) are also reviewed. Finally, areas for future research and exploring the pathophysiology and use of AEDs in this population are also discussed.
Collapse
Affiliation(s)
- Terri S Armstrong
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| | - Robin Grant
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| | - Mark R Gilbert
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| | - Jong Woo Lee
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| | - Andrew D Norden
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| |
Collapse
|
2
|
Laquintana V, Denora N, Lopalco A, Lopedota A, Cutrignelli A, Lasorsa FM, Agostino G, Franco M. Translocator Protein Ligand–PLGA Conjugated Nanoparticles for 5-Fluorouracil Delivery to Glioma Cancer Cells. Mol Pharm 2014; 11:859-71. [DOI: 10.1021/mp400536z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Valentino Laquintana
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Antonio Lopalco
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Angela Lopedota
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Annalisa Cutrignelli
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | | | - Giulia Agostino
- Dipartimento
di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| | - Massimo Franco
- Dipartimento
di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
3
|
Rasagiline prevents apoptosis induced by PK11195, a ligand of the outer membrane translocator protein (18 kDa), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria. J Neural Transm (Vienna) 2013; 120:1539-51. [PMID: 23681678 DOI: 10.1007/s00702-013-1033-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022]
Abstract
Rasagiline protects neuronal cells from cell death caused by various lines of insults. Its neuroprotective function is due to suppression of mitochondrial apoptosis signaling and induction of neuroprotective genes, including Bcl-2 and neurotrophic factors. Rasagiline inhibits the mitochondrial membrane permeabilization, an initial stage in apoptosis, but the mechanism has been elusive. In this paper, it was investigated how rasagiline regulates mitochondrial death cascade in apoptosis induced in SH-SY5Y cells by PK11195, a ligand of the outer membrane translocator protein of 18 kDa. Rasagiline prevented release of cytochrome c (Cyt-c), and the following caspase 3 activation, ATP depletion and apoptosis, but did not inhibit the mitochondrial membrane potential collapse, in contrast to Bcl-2 overexpression. Rasagiline stabilized the mitochondrial contact site and suppressed Cyt-c release into cytoplasm, which should be the critical point for the regulation of apoptosis. Monoamine oxidase was not associated with anti-apoptotic activity of rasagiline in PK11195-induced apoptosis.
Collapse
|
4
|
Radlinska BA, Ghinani SA, Lyon P, Jolly D, Soucy JP, Minuk J, Schirrmacher R, Thiel A. Multimodal microglia imaging of fiber tracts in acute subcortical stroke. Ann Neurol 2009; 66:825-32. [DOI: 10.1002/ana.21796] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Samuelson LE, Dukes MJ, Hunt CR, Casey JD, Bornhop DJ. TSPO targeted dendrimer imaging agent: synthesis, characterization, and cellular internalization. Bioconjug Chem 2009; 20:2082-9. [PMID: 19863077 PMCID: PMC3038571 DOI: 10.1021/bc9002053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While it has become common practice for dendrimers to deliver imaging and therapeutic agents, there are few reported examples of cellular internalization of dendrimers. Moreover, targeting of dendrimers to the mitochondria in cells has not yet been reported. Previously, we have delivered small molecule imaging agents into glioma and breast cancer cells by targeting the translocator protein (TSPO; formerly known as the peripheral benzodiazepine receptor or PBR) with a family of high-affinity conjugable ligands. The 18 kDa multimeric TSPO is expressed in steroid-producing cells, primarily on the outer mitochondrial membrane. This protein is a prime candidate for molecular targeting because tumors and other disease-related cells contain high densities of TSPO. Here, we present the synthesis, characterization, and cellular internalization into C6 rat glioma cells of a TSPO targeted dendrimer imaging agent.
Collapse
Affiliation(s)
- Lynn E. Samuelson
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Madeline J. Dukes
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Colette R. Hunt
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Jonathan D. Casey
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Darryl J. Bornhop
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| |
Collapse
|
6
|
Cagnin A, Kassiou M, Meikle SR, Banati RB. Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 2007; 4:443-52. [PMID: 17599710 PMCID: PMC7479716 DOI: 10.1016/j.nurt.2007.04.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the diseased brain, upon activation microglia express binding sites for synthetic ligands designed to recognize the 18-kDa translocator protein TP-18, which is part of the so-called peripheral benzodiazepine receptor complex. PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide], the prototype synthetic ligand, has been widely used for the functional characterization of TP-18. Its cellular source in activated microglia has been established using high-resolution, single-cell autoradiography with the R-enantiomer [3H](R)-PK11195. Radiolabeled [11C](R)-PK11195 has been used to image active brain disease with positron emission tomography. Consistent with experimental and postmortem observations of a characteristically distributed pattern of microglia activation in areas of focal pathology, as well as in anterograde and retrograde projection areas, the in vivo regional [11C](R)-PK11195 signal is found in active focal lesions and over time also along the affected neural tracts and their respective cortical and subcortical projection areas. Thus, a profile of active disease emerges that matches some of the typical distribution patterns known from structural neuroimaging techniques, but additionally shows involvement of brain regions linked through neural pathways. In the context of cell-based in vivo neuropathology, the image data are thus best interpreted in the context of the emerging cellular understanding of brain disease or damage, rather than the definitions of clinical diagnosis. One important observation, borne out by experiment, is the long latency with which activated microglia or increased PK11195 retention appear to gradually emerge and remain in distal areas secondarily affected by disease, supporting speculations that the presence of activated microglia is an important corollary of brain plasticity.
Collapse
Affiliation(s)
- Annachiara Cagnin
- Department of Neuroscience, University of Padova, Via Giustiniani 5, 35128, Padova, Italy.
| | | | | | | |
Collapse
|
7
|
Manning HC, Smith SM, Sexton M, Haviland S, Bai M, Cederquist K, Stella N, Bornhop DJ. A peripheral benzodiazepine receptor targeted agent for in vitro imaging and screening. Bioconjug Chem 2006; 17:735-40. [PMID: 16704212 DOI: 10.1021/bc060020b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a molecular imaging agent (MIA), a conjugable form of PK11195 (conPK11195) coupled to a lissamine dye (Liss-ConPK11195), which targets the peripheral benzodiazepine receptor (PBR). To determine that our compound specifically binds to this 18 kDa protein, primarily expressed on the mitochondria, we performed classic binding studies on live MDA-MB-231 breast cancer cells and measured fluorescence in cell fractions of C6 glioma cells. We found that conPK11195 conjugated to the fluorophore retained significant binding to its target. Here we demonstrate the utility of the agent for in vitro imaging of live cells by specific binding to the protein of interest.
Collapse
Affiliation(s)
- H Charles Manning
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Schaller B, Rüegg SJ. Brain tumor and seizures: pathophysiology and its implications for treatment revisited. Epilepsia 2003; 44:1223-32. [PMID: 12919395 DOI: 10.1046/j.1528-1157.2003.05203.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seizures affect approximately 50% of patients with primary and metastatic brain tumors. Partial seizures have the highest incidence, followed by secondarily generalized, depending on histologic subtype, location, and tumor extent. The underlying pathophysiologic mechanisms of tumor-associated seizures are poorly understood and include theories of altered peritumoral amino acids, regional metabolism, pH, neuronal or glial enzyme and protein expression, as well as immunologic activity. An involvement of changed distribution and function of N-methyl-d-aspartate subclass of glutamate receptors also has been suggested. The often unpredictable responses to seizures after surgical tumor removal add substantial evidence that multiple factors are involved. The therapy of tumor-related seizures is far from perfect. Several factors contribute to these treatment difficulties, such as tumor growth and drug interactions; however, one of the main reasons for poor seizure control may result from the insufficient or even absent influence of the currently available antiepileptic drugs (AEDs) on most of the pathophysiologic mechanisms of tumor-related seizures. Studies are needed to elucidate more clearly the pathophysiologic mechanisms of tumor-related seizures and to identify and develop the optimal AEDs.
Collapse
|
9
|
Derlon JM. The in vivo metabolic investigation of brain gliomas with positron emission tomography. Adv Tech Stand Neurosurg 1999; 24:41-76. [PMID: 10050211 DOI: 10.1007/978-3-7091-6504-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J M Derlon
- Service de Neurochirurgie, CHU, Caen, France
| |
Collapse
|
10
|
Abstract
Much of our present knowledge of glial cell function stems from studies of glioma cell lines, both rodent (C6, C6 polyploid, and TR33B) and human (1321N1, 138MG, D384, R-111, T67, Tp-276MG, Tp-301MG, Tp-483MG, Tp-387MG, U-118MG, U-251MG, U-373MG, U-787MG, U-1242MG, and UC-11MG). New methods such as patch clamp and Ca2+ imaging have lead to rapid progress the last few years in our knowledge about glial cells, where an unexpected presence and diversity of receptors and ion channels have emerged. Basic mechanisms related to membrane potential and K+ transport and the presence of voltage gated ion channels (Na+, inwardly rectifying K+, Ca(2+)-activated K+, Ca2+, and Cl- channels) have been identified. Receptor function and intracellular signaling for glutamate, acetylcholine, histamine, serotonin, cathecolamines, and a large number of neuropeptides (bradykinin, cholecystokinin, endothelin, opioids, and tachykinins) have been characterized. Such studies are facilitated in cell lines which offer a more homogenous material than primary cultures. Although the expression of ion channels and receptors vary considerably between different cell lines and comparative studies are rare, a few differences (compared to astrocytes in primary culture) have been identified which may turn out to be characteristic for glioma cells. Future identification of specific markers for receptors on glial and glioma cells related to cell type and growth properties may have great potential in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- T Brismar
- Department of Clinical Neurophysiology, University Hospital, Linköping, Sweden
| |
Collapse
|