1
|
Zhu YG, Peng J, Chen C, Xiong C, Li S, Ge A, Wang E, Liesack W. Harnessing biological nitrogen fixation in plant leaves. TRENDS IN PLANT SCIENCE 2023; 28:1391-1405. [PMID: 37270352 DOI: 10.1016/j.tplants.2023.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
The importance of biological nitrogen fixation (BNF) in securing food production for the growing world population with minimal environmental cost has been increasingly acknowledged. Leaf surfaces are one of the biggest microbial habitats on Earth, harboring diverse free-living N2-fixers. These microbes inhabit the epiphytic and endophytic phyllosphere and contribute significantly to plant N supply and growth. Here, we summarize the contribution of phyllosphere-BNF to global N cycling, evaluate the diversity of leaf-associated N2-fixers across plant hosts and ecosystems, illustrate the ecological adaptation of N2-fixers to the phyllosphere, and identify the environmental factors driving BNF. Finally, we discuss potential BNF engineering strategies to improve the nitrogen uptake in plant leaves and thus sustainable food production.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jingjing Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shule Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anhui Ge
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| |
Collapse
|
2
|
Álvarez C, Jiménez-Ríos L, Iniesta-Pallarés M, Jurado-Flores A, Molina-Heredia FP, Ng CKY, Mariscal V. Symbiosis between cyanobacteria and plants: from molecular studies to agronomic applications. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6145-6157. [PMID: 37422707 PMCID: PMC10575698 DOI: 10.1093/jxb/erad261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Nitrogen-fixing cyanobacteria from the order Nostocales are able to establish symbiotic relationships with diverse plant species. They are promiscuous symbionts, as the same strain of cyanobacterium is able to form symbiotic biological nitrogen-fixing relationships with different plants species. This review will focus on the different types of cyanobacterial-plant associations, both endophytic and epiphytic, and provide insights from a structural viewpoint, as well as our current understanding of the mechanisms involved in the symbiotic crosstalk. In all these symbioses, the benefit for the plant is clear; it obtains from the cyanobacterium fixed nitrogen and other bioactive compounds, such as phytohormones, polysaccharides, siderophores, or vitamins, leading to enhanced plant growth and productivity. Additionally, there is increasing use of different cyanobacterial species as bio-inoculants for biological nitrogen fixation to improve soil fertility and crop production, thus providing an eco-friendly, alternative, and sustainable approach to reduce the over-reliance on synthetic chemical fertilizers.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Lucía Jiménez-Ríos
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Macarena Iniesta-Pallarés
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Carl K Y Ng
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
3
|
Álvarez C, Brenes-Álvarez M, Molina-Heredia FP, Mariscal V. Quantitative Proteomics at Early Stages of the Symbiotic Interaction Between Oryza sativa and Nostoc punctiforme Reveals Novel Proteins Involved in the Symbiotic Crosstalk. PLANT & CELL PHYSIOLOGY 2022; 63:1433-1445. [PMID: 35373828 PMCID: PMC9620832 DOI: 10.1093/pcp/pcac043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Symbiosis between cyanobacteria and plants is considered pivotal for biological nitrogen deposition in terrestrial ecosystems. Despite extensive knowledge of the ecology of plant-cyanobacterium symbioses, little is known about the molecular mechanisms involved in recognition between partners. Here, we conducted a quantitative sequential window acquisition of all theoretical fragment ion spectra mass spectrometry pipeline to analyze protein changes in Oryza sativa and Nostoc punctiforme during early events of symbiosis. We found differentially expressed proteins in both organisms linked to several biological functions, including signal transduction, adhesion, defense-related proteins and cell wall modification. In N. punctiforme we found increased expression of 62 proteins that have been previously described in other Nostoc-plant symbioses, reinforcing the robustness of our study. Our findings reveal new proteins activated in the early stages of the Nostoc-Oryza symbiosis that might be important for the recognition between the plant and the host. Oryza mutants in genes in the common symbiosis signaling pathway (CSSP) show reduced colonization efficiency, providing first insights on the involvement of the CSSP for the accommodation of N. punctiforme inside the plant cells. This information may have long-term implications for a greater understanding of the symbiotic interaction between Nostoc and land plants.
Collapse
Affiliation(s)
- Consolación Álvarez
- *Corresponding authors: Vicente Mariscal, E-mail, ; Consolación Álvarez, E-mail,
| | - Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Américo Vespucio 49, Seville 41092, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, cicCartuja, Américo Vespucio 49, Seville 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes s/n, Seville 41012, Spain
| | - Vicente Mariscal
- *Corresponding authors: Vicente Mariscal, E-mail, ; Consolación Álvarez, E-mail,
| |
Collapse
|
4
|
de Vries S, de Vries J. Evolutionary genomic insights into cyanobacterial symbioses in plants. QUANTITATIVE PLANT BIOLOGY 2022; 3:e16. [PMID: 37077989 PMCID: PMC10095879 DOI: 10.1017/qpb.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 05/03/2023]
Abstract
Photosynthesis, the ability to fix atmospheric carbon dioxide, was acquired by eukaryotes through symbiosis: the plastids of plants and algae resulted from a cyanobacterial symbiosis that commenced more than 1.5 billion years ago and has chartered a unique evolutionary path. This resulted in the evolutionary origin of plants and algae. Some extant land plants have recruited additional biochemical aid from symbiotic cyanobacteria; these plants associate with filamentous cyanobacteria that fix atmospheric nitrogen. Examples of such interactions can be found in select species from across all major lineages of land plants. The recent rise in genomic and transcriptomic data has provided new insights into the molecular foundation of these interactions. Furthermore, the hornwort Anthoceros has emerged as a model system for the molecular biology of cyanobacteria-plant interactions. Here, we review these developments driven by high-throughput data and pinpoint their power to yield general patterns across these diverse symbioses.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| |
Collapse
|
5
|
The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow (Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Biochar as C Carrier for Fertilizers via Torrefaction Process. ENERGIES 2021. [DOI: 10.3390/en14175262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of foliar application of Cyanobacteria and Chlorella sp. monocultures on physiological activity, element composition, development and biomass weight of basket willow (Salix viminalis L.) and the possibility to prepare biofuel from it in the fortification process was studied. Triple foliar plant spraying with non-sonicated monocultures of Cyanobacteria (Anabaena sp. PCC 7120, Microcystis aeruginosa MKR 0105) and Chlorella sp. exhibited a considerably progressive impact on metabolic activity and development of plants. This biofertilization increased cytomembrane impermeability, the amount of chlorophyll in plants, photosynthesis productivity and transpiration, as well as degree of stomatal opening associated with a decreased concentration of intercellular CO2, in comparison to control (treatments with water, Bio-Algeen S90 or with environmental sample). The applied strains markedly increased the element content (N, P, K) in shoots and the productivity of crucial growth enzymes: alkaline or acid phosphorylase, total dehydrogenases, RNase and nitrate reductase. Treatments did not affect energy properties of the burnt plants. These physiological events were associated with the improved growth of willow plants, namely height, length and amount of all shoots and their freshly harvested dry mass, which were increased by over 25% compared to the controls. The effectiveness of these treatments depended on applied monoculture. The plant spraying with Microcystis aeruginosa MKR 0105 was a little more effective than treatment with Chlorella sp. and Anabaena sp. or the environmental sample. The research demonstrate that the studied Cyanobacteria and Chlorella sp. monocultures have prospective and useful potential in production of Salix viminalis L., which is the basic energy plant around the word. In this work, a special batch reactor was used to produce torrefaction material in an inert atmosphere: nitrogen, thermogravimetric analysis and DTA analysis, like Fourier-transform infrared spectroscopy. The combustion process of Salix viminalis L. with TG-MS analysis was conducted as well as study on a willow torrefaction process, obtaining 30% mass reduction with energy loss close to 10%. Comparing our research results to other types of biomasses, the isothermal temperature of 245 °C during thermo-chemical conversion of willow for the carbonized solid biofuel production from Salix viminalis L. biomass fertilized with Cyanobacteria and Chlorella sp. is relatively low. At the end, a SEM-EDS analysis of ash from torrefied Salix viminalis L. after carbonization process was conducted.
Collapse
|
6
|
Bennett AB, Pankievicz VCS, Ané JM. A Model for Nitrogen Fixation in Cereal Crops. TRENDS IN PLANT SCIENCE 2020; 25:226-235. [PMID: 31954615 DOI: 10.1016/j.tplants.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 05/06/2023]
Abstract
Nitrogen-fixing microbial associations with cereals have been of intense interest for more than a century (Roesch et al., Plant Soil 2008;302:91-104; Triplett, Plant Soil 1996;186:29-38; Mus et al., Appl. Environ. Microbiol. 2016;82:3698-3710; Beatty and Good, Science 2011;333:416-417). A recent report demonstrated that an indigenous Sierra Mixe maize landrace, characterized by an extensive development of aerial roots that secrete large amounts of mucilage, can acquire 28-82% of its nitrogen from atmospheric dinitrogen (Van Deynze et al., PLoS Biol. 2018;16:e2006352). Although the Sierra Mixe maize landrace is unique in the large quantity of mucilage produced, other cereal crops secrete mucilage from underground and aerial roots and we hypothesize that this may represent a general mechanism for cereals to support associations with microbial diazotrophs. We propose a model for the association of nitrogen-fixing microbes with maize mucilage and identify the four main functionalities for such a productive diazotrophic association.
Collapse
Affiliation(s)
- Alan B Bennett
- Department of Plant Sciences, University of California, Davis, CA, USA.
| | | | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Muro-Pastor AM, Hess WR. Regulatory RNA at the crossroads of carbon and nitrogen metabolism in photosynthetic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194477. [PMID: 31884117 DOI: 10.1016/j.bbagrm.2019.194477] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are photosynthetic bacteria that populate widely different habitats. Accordingly, cyanobacteria exhibit a wide spectrum of lifestyles, physiologies, and morphologies and possess genome sizes and gene numbers which may vary by up to a factor of ten within the phylum. Consequently, large differences exist between individual species in the size and complexity of their regulatory networks. Several non-coding RNAs have been identified that play crucial roles in the acclimation responses of cyanobacteria to changes in the environment. Some of these regulatory RNAs are conserved throughout the cyanobacterial phylum, while others exist only in a few taxa. Here we give an overview on characterized regulatory RNAs in cyanobacteria, with a focus on regulators of photosynthesis, carbon and nitrogen metabolism. However, chances are high that these regulators represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
8
|
Farci D, Sanna C, Medda R, Pintus F, Kalaji HM, Kirkpatrick J, Piano D. Shedding light on the presymbiontic phase of C. arietinum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:224-231. [PMID: 31521050 DOI: 10.1016/j.plaphy.2019.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
A complex network of symbiotic events between plants and bacteria allows the biosphere to exploit the atmospheric reservoir of molecular nitrogen. In seeds, a series of presymbiotic steps are already identified during imbibition, while interactions between the host and its symbiont begin in the early stages of germination. In the present study, a detailed analysis of the substances' complex delivered by Cicer arietinum seeds during imbibition showed a relevant presence of proteins and amino acids, which, except for cysteine, occurred with the whole proteinogenic pool. The imbibing solution was found to provide essential probiotic properties able to sustain the growth of the specific chickpea symbiont Mesorhizobium ciceri. Moreover, the imbibing solution, behaving as a complete medium, was found to be critically important for the symbiont's attraction, a fact this that is strictly related to the presence of the amino acids glycine, serine, and threonine. Here, the presence of these amino acids is constantly supported by the presence of the enzymes serine hydroxymethyltransferase and formyltetrahydrofolate deformylase, which are both involved in their biosynthesis. The reported findings are discussed in the light of the pivotal role played by the imbibing solution in attracting and sustaining symbiosis between the host and its symbiont.
Collapse
Affiliation(s)
- Domenica Farci
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy; White Hill Company, Ciołkowskiego 161, 15-545, Białystok, Poland; Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Nowoursynowska Str. 159, 02776, Warsaw, Poland
| | - Cinzia Sanna
- Laboratory of Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy
| | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Italy
| | - Hazem M Kalaji
- White Hill Company, Ciołkowskiego 161, 15-545, Białystok, Poland; Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Nowoursynowska Str. 159, 02776, Warsaw, Poland
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstraβe 11, 07745, Jena, Germany
| | - Dario Piano
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy; Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Nowoursynowska Str. 159, 02776, Warsaw, Poland.
| |
Collapse
|
9
|
Parniske M. Uptake of bacteria into living plant cells, the unifying and distinct feature of the nitrogen-fixing root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:164-174. [PMID: 30071473 DOI: 10.1016/j.pbi.2018.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 05/09/2023]
Abstract
Despite the presence of complex microbiota on the surfaces of all plants, the uptake of bacteria into plant cells and the subsequent accommodation in a membrane-enclosed compartment is restricted to the nitrogen-fixing root nodule and the Gunnera-Nostoc symbiosis. The plant cell wall and the outward-directed turgor pressure are major constraints for bacterial uptake because localised lysis of the cell wall endangers the integrity of the protoplast. Host cell integrity is consistently maintained by turgescent neighbours, connected via apoplastic polymers that seal a bacteria-containing extracellular compartment prior to localized cell wall lysis. Its unifying and almost exclusive phylogenetic distribution pinpoints the ability to take up bacteria into living plant cells as a key step during the evolution of the nitrogen-fixing root nodule symbiosis.
Collapse
Affiliation(s)
- Martin Parniske
- Institute of Genetics, Faculty of Biology, Biocenter Martinsried, LMU Munich, Germany.
| |
Collapse
|
10
|
Liaimer A, Jensen JB, Dittmann E. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L. Front Microbiol 2016; 7:1693. [PMID: 27847500 PMCID: PMC5088731 DOI: 10.3389/fmicb.2016.01693] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin.
Collapse
Affiliation(s)
- Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - John B. Jensen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
11
|
Liaimer A, Helfrich EJN, Hinrichs K, Guljamow A, Ishida K, Hertweck C, Dittmann E. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme. Proc Natl Acad Sci U S A 2015; 112:1862-7. [PMID: 25624477 PMCID: PMC4330735 DOI: 10.1073/pnas.1419543112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme.
Collapse
Affiliation(s)
- Anton Liaimer
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology, Molecular Environments Group, University of Tromsø, 9037 Tromsø, Norway
| | - Eric J N Helfrich
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany; and
| | - Katrin Hinrichs
- Institute for Biochemistry and Biology, Department of Microbiology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Arthur Guljamow
- Institute for Biochemistry and Biology, Department of Microbiology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Keishi Ishida
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany; and
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany; and
| | - Elke Dittmann
- Institute for Biochemistry and Biology, Department of Microbiology, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Jäger KM, Johansson C, Kunz U, Lehmann H. Sub-Cellular Element Analysis of a Cyanobacterium (Nostocsp.) in Symbiosis withGunnera manicataby ESI and EELS. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1997.tb00622.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Chua JPS, Wallace EJS, Yardley JA, Duncan EJ, Dearden PK, Summerfield TC. Gene expression indicates a zone of heterocyst differentiation within the thallus of the cyanolichen Pseudocyphellaria crocata. THE NEW PHYTOLOGIST 2012; 196:862-872. [PMID: 22931432 DOI: 10.1111/j.1469-8137.2012.04272.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Development of the symbiotic association in the bipartite lichen Pseudocyphellaria crocata was investigated by characterizing two regions of the thallus. Thallus organization was examined using microscopy. A HIP1-based differential display technique was modified for use on Nostoc strains, including lichenized strains. Northern hybridization and quantitative real-time polymerase chain reaction were used to confirm differential display results, and determine expression levels of key cyanobacterial genes. Photosystem II yield across the thallus was measured using pulse-amplitude modulated fluorescence. Microscopy revealed structural differences in the thallus margins compared with the centre and identified putative heterocysts in both regions. Differential display identified altered transcript levels in both Nostoc punctiforme and a lichenized Nostoc strain. Transcript abundance of cox2, atpA, and ribA was increased in the thallus margin compared with the centre. Expression of cox2 is heterocyst specific and expression of other heterocyst-specific genes (hetR and nifK) was elevated in the margin, whereas, expression of psbB and PSII yield were not. Structural organization of the thallus margin differed from the centre. Both regions contained putative heterocysts but gene expression data indicated increased heterocyst differentiation in the margins where photosystem II yield was decreased. This is consistent with a zone of heterocyst differentiation within the thallus margin.
Collapse
Affiliation(s)
- Jocelyn P S Chua
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Emma J S Wallace
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Jessica A Yardley
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Elizabeth J Duncan
- National Research Centre for Growth and Development and Genetics Otago, Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Peter K Dearden
- National Research Centre for Growth and Development and Genetics Otago, Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Tina C Summerfield
- Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
14
|
Thomas H, Huang L, Young M, Ougham H. Evolution of plant senescence. BMC Evol Biol 2009; 9:163. [PMID: 19602260 PMCID: PMC2716323 DOI: 10.1186/1471-2148-9-163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 07/14/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. RESULTS Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. CONCLUSION The expression and phylogenetic characteristics of senescence-related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts.
Collapse
Affiliation(s)
- Howard Thomas
- IBERS, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Lin Huang
- IBERS, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Mike Young
- IBERS, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Helen Ougham
- IBERS, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|
15
|
Osborne B, Bergman B. Why Does Gunnera Do It and Other Angiosperms Don't? An Evolutionary Perspective on the Gunnera–Nostoc Symbiosis. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/7171_2007_116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
16
|
Physiological Adaptations in Nitrogen-fixing Nostoc–Plant Symbiotic Associations. MICROBIOLOGY MONOGRAPHS 2007. [DOI: 10.1007/7171_2007_101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Ekman M, Tollbäck P, Klint J, Bergman B. Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1251-61. [PMID: 17073307 DOI: 10.1094/mpmi-19-1251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Molecular mechanisms behind adaptations in the cyanobacterium (Nostoc sp.) to a life in endosymbiosis with plants are still not clarified, nor are the interactions between the partners. To get further insights, the proteome of a Nostoc strain, freshly isolated from the symbiotic gland tissue of the angiosperm Gunnera manicata Linden, was analyzed and compared with the proteome of the same strain when free-living. Extracted proteins were separated by two-dimensional gel electrophoresis and were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with tandem mass spectrometry. Even when the higher percentage of differentiated cells (heterocysts) in symbiosis was compensated for, the majority of the proteins detected in the symbiotic cyanobacteria were present in the free-living counterpart, indicating that most cellular processes were common for both stages. However, differential expression profiling revealed a significant number of proteins to be down-regulated or missing in the symbiotic stage, while others were more abundant or only expressed in symbiosis. The differential protein expression was primarily connected to i) cell envelope-associated processes, including proteins involved in exopolysaccharide synthesis and surface and membrane associated proteins, ii) to changes in growth and metabolic activities (C and N), including upregulation of nitrogenase and proteins involved in the oxidative pentose phosphate pathway and downregulation of Calvin cycle enzymes, and iii) to the dark, microaerobic conditions offered inside the Gunnera gland cells, including changes in relative phycobiliprotein concentrations. This is the first comprehensive analysis of proteins in the symbiotic state.
Collapse
Affiliation(s)
- Martin Ekman
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|
18
|
Chiu WL, Peters GA, Levieille G, Still PC, Cousins S, Osborne B, Elhai J. Nitrogen deprivation stimulates symbiotic gland development in Gunnera manicata. PLANT PHYSIOLOGY 2005; 139:224-30. [PMID: 16113217 PMCID: PMC1203372 DOI: 10.1104/pp.105.064931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 06/30/2005] [Accepted: 07/11/2005] [Indexed: 05/04/2023]
Abstract
Gunnera is the only genus of angiosperms known to host cyanobacteria and the only group of land plants that hosts cyanobacteria intracellularly. Motile filaments of cyanobacteria, known as hormogonia, colonize Gunnera plants through cells in the plant's specialized stem glands. It is commonly held that Gunnera plants always possess functional glands for symbiosis. We found, however, that stem gland development did not occur when Gunnera manicata plants were grown on nitrogen (N)-replete medium but, rather, was initiated at predetermined positions when plants were deprived of combined N. While N status was the main determinant for gland development, an exogenous carbon source (sucrose) accelerated the process. Furthermore, a high level of sucrose stimulated the formation of callus-like tissue in place of the gland under N-replete conditions. Treatment of plants with the auxin transport inhibitor 1-naphthylphthalamic acid prevented gland development on N-limited medium, most likely by preventing resource reallocation from leaves to the stem. Optimized conditions were found for in vitro establishment of the Nostoc-Gunnera symbiosis by inoculating mature glands with hormogonia from Nostoc punctiforme, a cyanobacterium strain for which the full genome sequence is available. In contrast to uninoculated plants, G. manicata plants colonized by N. punctiforme were able to continue their growth on N-limited medium. Understanding the nature of the Gunnera plant's unusual adaptation to an N-limited environment may shed light on the evolution of plant-cyanobacterium symbioses and may suggest a route to establish productive associations between N-fixing cyanobacteria and crop plants.
Collapse
Affiliation(s)
- Wan-Ling Chiu
- Department of Biology, Virginia Commonwealth University, Richmond, 23284, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp. and cycads. PLANT ECOPHYSIOLOGY 2005. [DOI: 10.1007/1-4020-4099-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Wang CM, Ekman M, Bergman B. Expression of cyanobacterial genes involved in heterocyst differentiation and dinitrogen fixation along a plant symbiosis development profile. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:436-443. [PMID: 15077676 DOI: 10.1094/mpmi.2004.17.4.436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Members of the cyanobiont genus Nostoc, forming an endosymbiosis with members of the angiosperm genus Gunnera, undergo a number of characteristic phenotypic changes during the development of the symbiosis, the genetic background of which is largely unknown. Transcription patterns of genes related to heterocyst differentiation and dinitrogen fixation and corresponding protein profiles were examined, using reverse transcription-polymerase chain reaction and Western blots, along a developmental (apex to mature parts) sequence in Gunnera magellanica and G. manicata and under mimicked symbiotic conditions in a free-living Gunnera isolate (Nostoc strain 0102). The hetR gene was highly expressed and correlated positively with an increase in heterocyst frequency and with ntcA expression, whereas nifH expression was already high close to the growing apex and glnB (P(II)) expression decreased along the symbiotic profile. Although gene expression appeared to be regulated to a large extent in the same fashion as in free-living cyanobacteria, significant differences were apparent, such as the overexpression of both hetR and ntcA and the contrasting down-regulation of glnB, features indicating important regulatory differences between symbiotic and free-living cyanobacteria. The significance of these findings is discussed in a symbiotic context.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Department of Biological Pharmaceutics, School of Chinese Pharmacy, Beijing University of Chinese Medicine, 100029 Beijing, China
| | | | | |
Collapse
|
21
|
Wouters J, Bergman B, Janson S. Cloning and expression of a putative cyclodextrin glucosyltransferase from the symbiotically competent cyanobacterium Nostoc sp. PCC 9229. FEMS Microbiol Lett 2003; 219:181-5. [PMID: 12620618 DOI: 10.1016/s0378-1097(02)01204-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A polymerase chain reaction-based method was used to isolate a Nostoc sp. PCC 9229 cDNA from infected glands of Gunnera chilensis. The complete gene sequence was isolated from a genomic Nostoc sp. PCC 9229 library. Sequence analysis showed 84% amino acid similarity to a putative cyclodextrin glycosyltransferase from Nostoc sp. PCC 7120 and the gene was therefore termed cgt. Southern blot revealed that the cgt gene was present in symbiotically competent cyanobacteria. The cgt gene was expressed in free-living nitrogen-fixing cultures in light or in darkness when supplemented with fructose. This is the first expression analysis of a cgt gene from a cyanobacterium.
Collapse
Affiliation(s)
- Johanna Wouters
- Department of Biology and Environmental Science, Kalmar University, Barlastgatan 1, S-391 82, Kalmar, Sweden.
| | | | | |
Collapse
|
22
|
Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 2002; 66:94-121; table of contents. [PMID: 11875129 PMCID: PMC120779 DOI: 10.1128/mmbr.66.1.94-121.2002] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain filamentous nitrogen-fixing cyanobacteria generate signals that direct their own multicellular development. They also respond to signals from plants that initiate or modulate differentiation, leading to the establishment of a symbiotic association. An objective of this review is to describe the mechanisms by which free-living cyanobacteria regulate their development and then to consider how plants may exploit cyanobacterial physiology to achieve stable symbioses. Cyanobacteria that are capable of forming plant symbioses can differentiate into motile filaments called hormogonia and into specialized nitrogen-fixing cells called heterocysts. Plant signals exert both positive and negative regulatory control on hormogonium differentiation. Heterocyst differentiation is a highly regulated process, resulting in a regularly spaced pattern of heterocysts in the filament. The evidence is most consistent with the pattern arising in two stages. First, nitrogen limitation triggers a nonrandomly spaced cluster of cells (perhaps at a critical stage of their cell cycle) to initiate differentiation. Interactions between an inhibitory peptide exported by the differentiating cells and an activator protein within them causes one cell within each cluster to fully differentiate, yielding a single mature heterocyst. In symbiosis with plants, heterocyst frequencies are increased 3- to 10-fold because, we propose, either differentiation is initiated at an increased number of sites or resolution of differentiating clusters is incomplete. The physiology of symbiotically associated cyanobacteria raises the prospect that heterocyst differentiation proceeds independently of the nitrogen status of a cell and depends instead on signals produced by the plant partner.
Collapse
Affiliation(s)
- John C Meeks
- Section of Microbiology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
23
|
Uheda E, Silvester WB. The role of papillae during the infection process in the Gunnera-Nostoc symbiosis. PLANT & CELL PHYSIOLOGY 2001; 42:780-3. [PMID: 11479387 DOI: 10.1093/pcp/pce097] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gunnera manicata L. glands consist of up to nine separate papillae. Surgical removal of papillae showed that more than two papillae were needed for successful infection with Nostoc. Infection occurs only in the enclosed space between adjacent papillae. Dividing Gunnera cells in the enclosed space are the sites of infection.
Collapse
Affiliation(s)
- E Uheda
- Research Institute for Advanced Science and Technology, University of Osaka Prefecture, Gakuen-cho, Sakai, Osaka, 599-8570, Japan.
| | | |
Collapse
|
24
|
|
25
|
|
26
|
Abstract
Gunnera L. develops a complex and intimate symbiosis with N2 -fixing cyanobacteria of the genus Nostoc, which renders the plant independent of combined nitrogen. The Nostoc-Gunnera symbiosis exhibits unique features compared to other cyanobacterial-plant symbioses: it is for example the only one that involves a flowering plant (angiosperm), the cyanobacterium infects specialized gland organs located on the stems of the host and once it has passed into the interior of the gland the cyanobacterium also enters the Gunnera cells where it starts to differentiate the highest frequency of heterocysts (the N2 -fixing cells) recorded in any cyanobacterial population. Gunnera has attracted scientific attention also for the following reasons: the genus has a peculiar geographic distribution of its subgenera and species in the Southern Hemisphere. It differs morphologically and anatomically from related plants and also shows an anomalous polystelic vascular system (polystely). This review gives an updated account of present knowledge concerning the Nostoc-Gunnera symbiosis. Emphasis will be on the development of the symbiotic tissue (the gland), the structure and function of the prokaryotic N2 -fixing cyanobacterium, the infection process and on the relationship between the pro- and eukaryotic partners prior to and following the establishment of symbiosis. CONTENTS Summary 379 I. Introduction 379 II. The Gunner a plant 380 III. The microsymbiont(s) 383 IV. The symbiosis 384 V. The gland 385 VI. The infection process 388 VII. Specificity 391 VIII. Impacts on the cyanobiont 392 IX. N2 fixation and release 393 X. Photosynthesis 396 XI. Concluding remarks 397 Acknowledgements 398 References 398.
Collapse
Affiliation(s)
- B Bergman
- Department of Botany, Stockholm University, S-106 91 Stockholm, Sweden
| | - C Johansson
- Department of Botany, Stockholm University, S-106 91 Stockholm, Sweden
| | - E Söderbäck
- Department of Botany, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|