1
|
Phycochemistry and bioactivity of cyanobacterial secondary metabolites. Mol Biol Rep 2022; 49:11149-11167. [PMID: 36161579 PMCID: PMC9513011 DOI: 10.1007/s11033-022-07911-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Microbes are a huge contributor to people's health around the world since they produce a lot of beneficial secondary metabolites. Cyanobacteria are photosynthetic prokaryotic bacteria cosmopolitan in nature. Adaptability of cyanobacteria to wide spectrum of environment can be contributed to the production of various secondary metabolites which are also therapeutic in nature. As a result, they are a good option for the development of medicinal molecules. These metabolites could be interesting COVID-19 therapeutic options because the majority of these compounds have demonstrated substantial pharmacological actions, such as neurotoxicity, cytotoxicity, and antiviral activity against HCMV, HSV-1, HHV-6, and HIV-1. They have been reported to produce a single metabolite active against wide spectrum of microbes like Fischerella ambigua produces ambigols active against bacteria, fungi and protozoa. Similarly, Moorea producens produces malygomides O and P, majusculamide C and somocystinamide which are active against bacteria, fungi and tumour cells, respectively. In addition to the above, Moorea sp. produce apratoxin A and dolastatin 15 possessing anti cancerous activity but unfortunately till date only brentuximab vedotin (trade name Adcetris), a medication derived from marine peptides, for the treatment of Hodgkin lymphoma and anaplastic large cell lymphoma has been approved by FDA. However, several publications have effectively described and categorised cyanobacterial medicines based on their biological action. In present review, an effort is made to categorize cyanobacterial metabolites on the basis of their phycochemistry. The goal of this review is to categorise cyanobacterial metabolites based on their chemical functional group, which has yet to be described.
Collapse
|
2
|
Antimicrobial Lipids from Plants and Marine Organisms: An Overview of the Current State-of-the-Art and Future Prospects. Antibiotics (Basel) 2020; 9:antibiotics9080441. [PMID: 32722192 PMCID: PMC7459900 DOI: 10.3390/antibiotics9080441] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
In the actual post-antibiotic era, novel ways of rethinking antimicrobial research approaches are more urgent than ever. Natural compounds with antimicrobial activity such as fatty acids and monoacylglycerols have been investigated for decades. Additionally, the interest in other lipid classes as antimicrobial agents is rising. This review provides an overview on the research about plant and marine lipids with potential antimicrobial activity, the methods for obtaining and analyzing these compounds, with emphasis on lipidomics, and future perspectives for bioprospection and applications for antimicrobial lipids. Lipid extracts or lipids isolated from higher plants, algae or marine invertebrates are promising molecules to inactivate a wide spectrum of microorganisms. These lipids include a variety of chemical structures. Present and future challenges in the research of antimicrobial lipids from natural origin are related to the investment and optimization of the analytical workflow based on lipidomics tools, complementary to the bioassay-guided fractionation, to identify the active compound(s). Also, further work is needed regarding the study of their mechanism of action, the structure-activity relationship, the synergistic effect with conventional antibiotics, and the eventual development of resistance to lipids, which, as far as is known, is unlikely.
Collapse
|
3
|
Mc Gee D, Archer L, Smyth TJ, Fleming GT, Touzet N. Bioprospecting and LED-based spectral enhancement of antimicrobial activity of microalgae isolated from the west of Ireland. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Pina-Pérez MC, Rivas A, Martínez A, Rodrigo D. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem 2017; 235:34-44. [PMID: 28554644 PMCID: PMC7131516 DOI: 10.1016/j.foodchem.2017.05.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
Algae are a valuable and never-failing source of bioactive compounds. The increasing efforts to use ingredients that are as natural as possible in the formulation of innovative products has given rise to the introduction of macro and microalgae in food industry. To date, scarce information has been published about algae ingredients as antimicrobials in food. The antimicrobial potential of algae is highly dependent on: (i) type, brown algae being the most effective against foodborne bacteria; (ii) the solvent used in the extraction of bioactive compounds, ethanolic and methanolic extracts being highly effective against Gram-positive and Gram-negative bacteria; and (iii) the concentration of the extract. The present paper reviews the main antimicrobial potential of algal species and their bioactive compounds in reference and real food matrices. The validation of the algae antimicrobial potential in real food matrices is still a research niche, being meat and bakery products the most studied substrates.
Collapse
Affiliation(s)
- M C Pina-Pérez
- Centro Avanzado de Microbiología de Alimentos (CAMA) - Universitat Politècnica de Valencia (UPV), Camino de Vera s/n, 46022 Valencia, Spain.
| | - A Rivas
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento Conservación y Calidad de los Alimentos, Avda. Agustin Escardino, 7, 46980 Paterna, Valencia, Spain
| | - A Martínez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento Conservación y Calidad de los Alimentos, Avda. Agustin Escardino, 7, 46980 Paterna, Valencia, Spain
| | - D Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento Conservación y Calidad de los Alimentos, Avda. Agustin Escardino, 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
5
|
El-Sheekh MM, El Kassas HY. Biosynthesis, characterization and synergistic effect of phytogenic gold nanoparticles by marine picoeukaryote Picochlorum sp. in combination with antimicrobials. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-014-0341-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Antifouling potential of the marine microalga Dunaliella salina. World J Microbiol Biotechnol 2014; 30:2899-905. [PMID: 25096202 DOI: 10.1007/s11274-014-1717-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds.
Collapse
|
7
|
Stabili L, Acquaviva MI, Biandolino F, Cavallo RA, De Pascali SA, Fanizzi FP, Narracci M, Cecere E, Petrocelli A. Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract. N Biotechnol 2014; 31:436-44. [PMID: 24852224 DOI: 10.1016/j.nbt.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/06/2014] [Indexed: 11/24/2022]
Abstract
Recently, with the advent of modern technologies, various marine organisms including algae are being studied as sources of natural substances effective on classical microorganisms and able to also combat the new trend of acquired resistance in microbes. In the present study the antimicrobial activity of the lipidic extract of the green seaweed Cladophora rupestris collected in a Mediterranean area, in two sampling periods (January and April), was assayed. The chemical characterization of the lipidic fractions was performed by gas-chromatography and multinuclear and multidimensional NMR spectroscopy. In the lipidic extract of C. rupestris collected in January an antibacterial activity against Enterococcus sp., Streptococcus agalactiae and Vibrio cholerae non-O1 was recorded; by contrast, bacterial inhibition was measured on several Vibrio species only in April. The fatty acid profile of C. rupestris lipidic extract, analyzed by gas chromatography, resulted mainly composed of palmitic, myristic, oleic, α linolenic, palmitoleic and linoleic acids. Moreover, since α-linolenic acid was the predominant ω3 fatty acid in April, we suggest its involvement in the antibacterial activity observed in this month, taking also into account that pure α-linolenic acid resulted effective towards some vibrios strains. C. rupestris fatty acid profile revealed also an interesting composition in polyunsaturated fatty acids in both the considered periods with the ω6/ω3 ratio lower than 1, leading to conclude that this macroalga may be employed as a natural source of ω3. Finally, the (1)H NMR spectrum in CDCl3 of algal lipid fractions showed the characteristic signals of saturated (SAFAs) and unsaturated fatty acids (UFAs) as well as other metabolites and a marked difference in free fatty acids (FFAs) content for the two examined algal lipid fractions. It is noteworthy that C. rupestris lipidic extracts show, by NMR spectroscopy, the signal pattern of polyhydroxybutyrate, a natural biocompatible and biodegradable polymer. In conclusion, on account of its antimicrobial activity, nutritional value and bioplastic content, C. rupestris lipidic extract can be considered a promising source for future biotechnological applications.
Collapse
Affiliation(s)
- L Stabili
- Institute for Marine Coastal Environment (IAMC), C.N.R., via Roma 3, 74123 Taranto, Italy; Department of Biological and Environmental Sciences and Technologies, University of Salento, Centro Ecotekne Pal. B, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy.
| | - M I Acquaviva
- Institute for Marine Coastal Environment (IAMC), C.N.R., via Roma 3, 74123 Taranto, Italy
| | - F Biandolino
- Institute for Marine Coastal Environment (IAMC), C.N.R., via Roma 3, 74123 Taranto, Italy
| | - R A Cavallo
- Institute for Marine Coastal Environment (IAMC), C.N.R., via Roma 3, 74123 Taranto, Italy
| | - S A De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Centro Ecotekne Pal. B, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy
| | - F P Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Centro Ecotekne Pal. B, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy
| | - M Narracci
- Institute for Marine Coastal Environment (IAMC), C.N.R., via Roma 3, 74123 Taranto, Italy
| | - E Cecere
- Institute for Marine Coastal Environment (IAMC), C.N.R., via Roma 3, 74123 Taranto, Italy
| | - A Petrocelli
- Institute for Marine Coastal Environment (IAMC), C.N.R., via Roma 3, 74123 Taranto, Italy
| |
Collapse
|
8
|
Ganesan B, Brothersen C, McMahon DJ. Fortification of foods with omega-3 polyunsaturated fatty acids. Crit Rev Food Sci Nutr 2014; 54:98-114. [PMID: 24188235 DOI: 10.1080/10408398.2011.578221] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A $600 million nutritional supplements market growing at 30% every year attests to consumer awareness of, and interests in, health benefits attributed to these supplements. For over 80 years the importance of polyunsaturated fatty acid (PUFA) consumption for human health has been established. The FDA recently approved the use of ω-3 PUFAs in supplements. Additionally, the market for ω-3 PUFA ingredients grew by 24.3% last year, which affirms their popularity and public awareness of their benefits. PUFAs are essential for normal human growth; however, only minor quantities of the beneficial ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are synthesized by human metabolism. Rather PUFAs are obtained via dietary or nutritional supplementation and modified into other beneficial metabolites. A vast literature base is available on the health benefits and biological roles of ω-3 PUFAs and their metabolism; however, information on their dietary sources and palatability of foods incorporated with ω-3 PUFAs is limited. DHA and EPA are added to many foods that are commercially available, such as infant and pet formulae, and they are also supplemented in animal feed to incorporate them in consumer dairy, meat, and poultry products. The chief sources of EPA and DHA are fish oils or purified preparations from microalgae, which when added to foods, impart a fishy flavor that is considered unacceptable. This fishy flavor is completely eliminated by extensively purifying preparations of n-3 PUFA sources. While n-3 PUFA lipid autoxidation is considered the main cause of fishy flavor, the individual oxidation products identified thus far, such as unsaturated carbonyls, do not appear to contribute to fishy flavor or odor. Alternatively, various compound classes such as free fatty acids and volatile sulfur compounds are known to impart fishy flavor to foods. Identification of the causative compounds to reduce and eventually eliminate fishy flavor is important for consumer acceptance of PUFA-fortified foods.
Collapse
Affiliation(s)
- Balasubramanian Ganesan
- a Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences , Utah State University , Logan , UT , 84322 , USA
| | | | | |
Collapse
|
9
|
Park NH, Choi JS, Hwang SY, Kim YC, Hong YK, Cho KK, Choi IS. Antimicrobial activities of stearidonic and gamma-linolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteria. BOTANICAL STUDIES 2013; 54:39. [PMID: 28510876 PMCID: PMC5432978 DOI: 10.1186/1999-3110-54-39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 06/07/2023]
Abstract
BACKGROUND We found that the edible green seaweed Enteromorpha linza displayed potent antimicrobial activity against Prevotella intermedia and Porphyromonas gingivalis. To elucidate the active component of E. linza, isolation procedures were performed. RESULTS The main active compound was isolated by polarity fractionation, Sephadex LH-20 gel chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The active compounds were eluted at isocratic 95% acetonitrile by RP-HPLC and identified as unsaturated fatty acids, stearidonic acid (SA, C18:4 n-3) and gamma-linolenic acid (GLA, C18:3 n-6) by gas chromatography-mass spectrometry, 1H nuclear magnetic resonance (NMR) spectroscopy, and 13C NMR spectroscopy. The yields of SA and GLA from dried seaweed tissue were 6.33 × 10-3% and 6.47 × 10-3%, respectively. The minimal inhibitory concentration values of SA and GLA were 39.06 μg/mL against P. intermedia and 9.76 μg/mL against P. gingivalis, respectively. SA and GLA were also active against several other oral pathogens, including Aggregatibacter actinomycetemcomitans, Candida albicans, Fusobacterium nucleatum subsp. vincenti, and Streptococcus mutans, at micromolar concentrations. CONCLUSIONS These data suggest that the E. linza extracts SA and GLA are useful antimicrobial agents for the prevention and/or treatment of periodontitis.
Collapse
Affiliation(s)
- Nam-Hee Park
- Gijang Local Products Co. Ltd, Ilgwang-myeon, Gijang-gun, Busan, 619-911 Republic of Korea
| | - Jae-Suk Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736 Republic of Korea
| | - Seon-Yeong Hwang
- Gijang Local Products Co. Ltd, Ilgwang-myeon, Gijang-gun, Busan, 619-911 Republic of Korea
| | - Yang-Chun Kim
- Gijang Local Products Co. Ltd, Ilgwang-myeon, Gijang-gun, Busan, 619-911 Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Nam-gu, Busan, 608-737 Republic of Korea
| | - Kwang Keun Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, Gyeongnam, 660-758 Republic of Korea
| | - In Soon Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736 Republic of Korea
- Depertment of Biological Science, Silla University, Sasang-gu, Busan, 617-736 Republic of Korea
| |
Collapse
|
10
|
Leone A, Lecci RM, Durante M, Piraino S. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures. Mar Drugs 2013; 11:1728-62. [PMID: 23697954 PMCID: PMC3707171 DOI: 10.3390/md11051728] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 12/13/2022] Open
Abstract
On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.
Collapse
Affiliation(s)
- Antonella Leone
- Institute of Sciences of Food Production, National Research Council, Unit of Lecce (CNR, ISPA), Via Prov.le Lecce-Monteroni, Lecce 73100, Italy; E-Mails: (R.M.L.); (M.D.)
- CoNISMa, National Interuniversity Consortium on Marine Sciences, Local Unit of Lecce, Via Prov.le Lecce-Monteroni, Lecce 73100, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0832-422-615; Fax: +39-0832-422-620
| | - Raffaella Marina Lecci
- Institute of Sciences of Food Production, National Research Council, Unit of Lecce (CNR, ISPA), Via Prov.le Lecce-Monteroni, Lecce 73100, Italy; E-Mails: (R.M.L.); (M.D.)
- CoNISMa, National Interuniversity Consortium on Marine Sciences, Local Unit of Lecce, Via Prov.le Lecce-Monteroni, Lecce 73100, Italy; E-Mail:
| | - Miriana Durante
- Institute of Sciences of Food Production, National Research Council, Unit of Lecce (CNR, ISPA), Via Prov.le Lecce-Monteroni, Lecce 73100, Italy; E-Mails: (R.M.L.); (M.D.)
| | - Stefano Piraino
- CoNISMa, National Interuniversity Consortium on Marine Sciences, Local Unit of Lecce, Via Prov.le Lecce-Monteroni, Lecce 73100, Italy; E-Mail:
- University of Salento, Via Prov.le Lecce-Monteroni, Lecce 73100, Italy
| |
Collapse
|
11
|
Smith VJ, Desbois AP, Dyrynda EA. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8:1213-62. [PMID: 20479976 PMCID: PMC2866484 DOI: 10.3390/md8041213] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/02/2010] [Accepted: 04/12/2010] [Indexed: 12/31/2022] Open
Abstract
All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.
Collapse
Affiliation(s)
- Valerie J Smith
- Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | | |
Collapse
|
12
|
Desbois AP, Mearns-Spragg A, Smith VJ. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:45-52. [PMID: 18575935 DOI: 10.1007/s10126-008-9118-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/23/2008] [Indexed: 05/21/2023]
Abstract
Pathogenic bacteria, such as multidrug-resistant Staphylococcus aureus (MRSA), which are not susceptible to most conventional antibiotics, are causing increased concern in healthcare institutions worldwide. The discovery of novel antibacterial compounds for biomedical exploitation is one avenue that is being pursued to combat these problematic bacteria. Marine eukaryotic microalgae are known to produce numerous useful products but have attracted little attention in the search for novel antibiotic compounds. Cell lysates of the marine diatom, Phaeodactylum tricornutum Bohlin, have been reported to display antibacterial activity in vitro, but the compounds responsible have not been fully identified. In this paper, using column chromatography and reversed-phase high-performance liquid chromatography, we report the isolation of an antibacterial fatty acid. Mass spectrometry and (1)H-nuclear magnetic resonance spectroscopy revealed it to be the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). We show that EPA is active against a range of both Gram-positive and Gram-negative bacteria, including MRSA, at micromolar concentrations. These data indicate that it could find application in the topical and systemic treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Andrew P Desbois
- Gatty Marine Laboratory, University of St Andrews, Fife, Scotland
| | | | | |
Collapse
|
13
|
|