1
|
Berber E, Mulik S, Rouse BT. Meeting the Challenge of Controlling Viral Immunopathology. Int J Mol Sci 2024; 25:3935. [PMID: 38612744 PMCID: PMC11011832 DOI: 10.3390/ijms25073935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The mission of this review is to identify immune-damaging participants involved in antiviral immunoinflammatory lesions. We argue these could be targeted and their activity changed selectively by maneuvers that, at the same time, may not diminish the impact of components that help resolve lesions. Ideally, we need to identify therapeutic approaches that can reverse ongoing lesions that lack unwanted side effects and are affordable to use. By understanding the delicate balance between immune responses that cause tissue damage and those that aid in resolution, novel strategies can be developed to target detrimental immune components while preserving the beneficial ones. Some strategies involve rebalancing the participation of immune components using various approaches, such as removing or blocking proinflammatory T cell products, expanding regulatory cells, restoring lost protective cell function, using monoclonal antibodies (moAb) to counteract inhibitory molecules, and exploiting metabolic differences between inflammatory and immuno-protective responses. These strategies can help reverse ongoing viral infections. We explain various approaches, from model studies and some clinical evidence, that achieve innate and adaptive immune rebalancing, offering insights into potential applications for controlling chronic viral-induced lesions.
Collapse
Affiliation(s)
- Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Mulik S, Berber E, Sehrawat S, Rouse BT. Controlling viral inflammatory lesions by rebalancing immune response patterns. Front Immunol 2023; 14:1257192. [PMID: 37671156 PMCID: PMC10475736 DOI: 10.3389/fimmu.2023.1257192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we discuss a variety of immune modulating approaches that could be used to counteract tissue-damaging viral immunoinflammatory lesions which typify many chronic viral infections. We make the point that in several viral infections the lesions can be largely the result of one or more aspects of the host response mediating the cell and tissue damage rather than the virus itself being directly responsible. However, within the reactive inflammatory lesions along with the pro-inflammatory participants there are also other aspects of the host response that may be acting to constrain the activity of the damaging components and are contributing to resolution. This scenario should provide the prospect of rebalancing the contributions of different host responses and hence diminish or even fully control the virus-induced lesions. We identify several aspects of the host reactions that influence the pattern of immune responsiveness and describe approaches that have been used successfully, mainly in model systems, to modulate the activity of damaging participants and which has led to lesion control. We emphasize examples where such therapies are, or could be, translated for practical use in the clinic to control inflammatory lesions caused by viral infections.
Collapse
Affiliation(s)
- Sachin Mulik
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Engin Berber
- Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Department of Biological Sciences, Mohali, Punjab, India
| | - Barry Tyrrell Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Dose of Retroviral Infection Determines Induction of Antiviral NK Cell Responses. J Virol 2017; 91:JVI.01122-17. [PMID: 28904191 PMCID: PMC5660477 DOI: 10.1128/jvi.01122-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are part of the innate immune system and recognize virus-infected cells as well as tumor cells. Conflicting data about the beneficial or even detrimental role of NK cells in different infectious diseases have been described previously. While the type of pathogen strongly influences NK cell functionality, less is known about how the infection dose influences the quality of a NK cell response against retroviruses. In this study, we used the well-established Friend retrovirus (FV) mouse model to investigate the impact of virus dose on the induction of antiviral NK cell functions. High-dose virus inoculation increased initial virus replication compared to that with medium- or low-dose viral challenge and significantly improved NK cell activation. Antiviral NK cell activity, including in vivo cytotoxicity toward infected target cells, was also enhanced by high-dose virus infection. NK cell activation following high-dose viral challenge was likely mediated by activated dendritic cells (DCs) and macrophages and the NK cell-stimulating cytokines interleukin 15 (IL-15) and IL-18. Neutralization of these cytokines decreased NK cell functions and increased viral loads, whereas IL-15 and IL-18 therapy improved NK cell activity. Here we demonstrate that virus dose positively correlates with antiviral NK cell activity and function, which are at least partly driven by IL-15 and IL-18. Our results suggest that NK cell activity may be therapeutically enhanced by administering IL-15 and IL-18 in virus infections that inadequately activate NK cells. IMPORTANCE In infections with retroviruses, like HIV and FV infection of mice, NK cells clearly mediate antiviral activities, but they are usually not sufficient to prevent severe pathology. Here we show that the initial infection dose impacts the induction of an antiviral NK cell response during an acute retroviral infection, which had not investigated before. High-dose infection resulted in a strong NK cell functionality, whereas no antiviral activities were detected after low- or medium-dose infection. Interestingly, DCs and macrophages were highly activated after high-dose FV challenge, which corresponded with increased levels of NK cell-stimulating cytokines IL-15 and IL-18. IL-15 and IL-18 neutralization decreased NK cell functions, whereas IL-15 and IL-18 therapy improved NK cell activity. Here we show the importance of cytokines for NK cell activation in retroviral infections; our findings suggest that immunotherapy combining the well-tolerated cytokines IL-15 and IL-18 might be an interesting approach for antiretroviral treatment.
Collapse
|
4
|
Stamm A, Valentine L, Potts R, Premenko-Lanier M. An intermediate dose of LCMV clone 13 causes prolonged morbidity that is maintained by CD4+ T cells. Virology 2012; 425:122-32. [PMID: 22305620 DOI: 10.1016/j.virol.2012.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/21/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022]
Abstract
Wasting is a sign of various underlying disorders and is a common feature of cancer, sepsis, and AIDS. We have developed an in vivo model to study the various stages of wasting following infection of mice with lymphocytic choriomeningitis virus cl-13. Using this model we have identified four distinct stages of wasting and have discovered that all stages occur in the different groups of mice regardless of whether the virus is cleared or persists. However, the degree and extent of wasting vary between groups of mice, depending upon the dose of virus administered. Blocking IFNγ or TNFα, which are believed to take part in the wasting process, did not affect the wasting state. Finally, we found that CD4+ T cells control the maintenance stage of wasting. We believe this model will be useful in studying the regulation of wasting during a persistent viral infection, hopefully leading to improved therapies to ameliorate the disorder.
Collapse
Affiliation(s)
- Andrew Stamm
- University of California San Francisco, Division of Experimental Medicine, San Francisco, CA 94110, USA
| | | | | | | |
Collapse
|
5
|
Chatraw JH, Wherry EJ, Ahmed R, Kapasi ZF. Diminished primary CD8 T cell response to viral infection during protein energy malnutrition in mice is due to changes in microenvironment and low numbers of viral-specific CD8 T cell precursors. J Nutr 2008; 138:806-12. [PMID: 18356339 DOI: 10.1093/jn/138.4.806] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein energy malnutrition (PEM) increases the incidence and severity of infection, causing morbidity and mortality in malnourished populations. Viral-specific cells are an important component of protective immunity. We hypothesized that reduction in the expansion of viral-specific cells and the microenvironment of the PEM host leads to increased incidence and severity of infections. We tested this hypothesis using a mouse model of lymphocytic choriomeningitis virus (LCMV) infection and an adoptive transfer system using P14 transgenic mice cells bearing T cell receptors specific for the D(b)-restricted LCMV glycoprotein 33-41 epitope. We transferred equal numbers of P14 cells from mice fed either an adequate, 18% protein or low, 0.6% protein diet into C57BL/6 mice that had been fed adequate-protein (AP) or low-protein (LP) diets for 2 wk, infected them with LCMV, and followed them 1 wk postinfection. During PEM, the expansion of primary viral-specific CD8 T cells diminished; in LP diet-fed mice, it was only 2-3% of that in the AP diet-fed mice. Furthermore, the diminished primary CD8 T cell response during PEM may in part have been due to low numbers of viral-specific CD8 T cells and an altered microenvironment.
Collapse
Affiliation(s)
- Janel Hart Chatraw
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
6
|
Kapasi ZF, McRae ML, Ahmed R. Suppression of viral specific primary T-cell response following intense physical exercise in young but not old mice. J Appl Physiol (1985) 2005; 98:663-71. [PMID: 15448122 DOI: 10.1152/japplphysiol.00510.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intense exercise to exhaustion leads to increased susceptibility and severity of infections. T cells play an essential role in control of viral infections. Whereas immune suppression is considered as a likely mechanism for exhaustive exercise-induced susceptibility to infection, we know little about viral-specific T-cell response following exhaustive exercise in young or old mice. In this study, one group of female young (10–12 wk) and old (22–24 mo) C57BL/6 mice was exposed to a single bout of intense exercise to exhaustion and immediately infected with lymphocytic choriomeningitis virus (LCMV). Eight days later, at the peak of expansion phase of T-cell response, we used tetramers of MHC class I molecules containing viral peptides to directly visualize antigen-specific CD8 T cells and a sensitive functional assay measuring interferon-γ production at the single-cell level to quantitate the CD8 and CD4 T-cell response. To evaluate the impact of intense exercise during both the initiation and evolution of the expansion phase of the T-cell response, a second group of young and old mice continued their daily bouts of intense exercise to exhaustion over the next 8 days. Our data show that, in young mice, LCMV infection following exhaustive exercise leads to suppression of LCMV-specific CD8 and CD4 T-cell responses, and this suppression effect occurs at the initiation of the expansion phase of viral-specific T cells. However, in old mice, unlike young mice, exhaustive exercise does not cause suppression of LCMV-specific T-cell responses.
Collapse
Affiliation(s)
- Zoher F Kapasi
- Dept. of Rehabilitation Medicine, Division of Physical Therapy, Emory Univ. School of Medicine, 1441 Clifton Road, N.E., Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
7
|
Matloubian M, Suresh M, Glass A, Galvan M, Chow K, Whitmire JK, Walsh CM, Clark WR, Ahmed R. A role for perforin in downregulating T-cell responses during chronic viral infection. J Virol 1999; 73:2527-36. [PMID: 9971838 PMCID: PMC104500 DOI: 10.1128/jvi.73.3.2527-2536.1999] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 11/04/1998] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T cells secrete perforin to kill virus-infected cells. In this study we show that perforin also plays a role in immune regulation. Perforin-deficient (perf -/-) mice chronically infected with lymphocytic choriomeningitis virus (LCMV) contained greater numbers of antiviral T cells compared to persistently infected +/+ mice. The enhanced expansion was seen in both CD4 and CD8 T cells, but the most striking difference was in the numbers of LCMV-specific CD8 T cells present in infected perf -/- mice. Persistent LCMV infection of +/+ mice results in both deletion and anergy of antigen-specific CD8 T cells, and our results show that this peripheral "exhaustion" of activated CD8 T cells occurred less efficiently in perf -/- mice. This excessive accumulation of activated CD8 T cells resulted in immune-mediated damage in persistently infected perf -/- mice; approximately 50% of these mice died within 2 to 4 weeks, and mortality was fully reversed by in vivo depletion of CD8 T cells. This finding highlights an interesting dichotomy between the role of perforin in viral clearance and immunopathology; perforin-deficient CD8 T cells were unable to clear the LCMV infection but were capable of causing immune-mediated damage. Finally, this study shows that perforin also plays a role in regulating T-cell-mediated autoimmunity. Mice that were deficient in both perforin and Fas exhibited a striking acceleration of the spontaneous lymphoproliferative disease seen in Fas-deficient (lpr) mice. Taken together, these results show that the perforin-mediated pathway is involved in downregulating T-cell responses during chronic viral infection and autoimmunity and that perforin and Fas act independently as negative regulators of activated T cells.
Collapse
Affiliation(s)
- M Matloubian
- Department of Microbiology and Immunology, University of California, Los Angeles, California 90024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Frelinger JA, Serody J. Immune response of beta 2-microglobulin-deficient mice to pathogens. Curr Top Microbiol Immunol 1998; 232:99-114. [PMID: 9557395 DOI: 10.1007/978-3-642-72045-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J A Frelinger
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
9
|
Zeller JC, Nguyen N, Southern PJ. Differential immune recognition of LCMV nucleoprotein and glycoprotein in transgenic mice expressing LCMV cDNA genes. Virology 1997; 231:290-300. [PMID: 9168891 DOI: 10.1006/viro.1997.8507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have generated doubly transgenic (DT) mice that independently express cDNA genes for the nucleocapsid protein (NP) and the surface glycoproteins (GP) of lymphocytic choriomeningitis virus (LCMV). By RT-PCR, transcription of both transgenes was detected at low levels in brain and kidney but was not observed in the thymus. Additionally, transcription of the GP transgene was observed in the spleen. Following challenge with exogenous LCMV, an anti-NP CTL response was induced in LCMV-infected DT mice, suggesting that nonresponsiveness to NP had not been established. In contrast, LCMV- infected DT mice were nonresponsive to GP and failed to mount any CTL response against GP, either at Day 7 or Day 30 postinfection or following expansion of splenocyte populations in vitro. A significant number (33%) of adult DT mice survived intracerebral infection with LCMV, suggesting that virus-induced immunopathology in the central nervous system can be diminished by combined expression of the transgenes whereas no protective effect was conferred on singly transgenic mice, expressing NP or GP alone. The DT mice therefore create a novel host genetic background for comparative studies of the anti-LCMV immune responses relative to parental C57Bl/6 mice.
Collapse
Affiliation(s)
- J C Zeller
- Department of Microbiology, University of Minnesota, Minneapolis, USA
| | | | | |
Collapse
|