1
|
Riseh RS, Vazvani MG, Kennedy JF. β-glucan-induced disease resistance in plants: A review. Int J Biol Macromol 2023; 253:127043. [PMID: 37742892 DOI: 10.1016/j.ijbiomac.2023.127043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
2
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 51:107820. [PMID: 34462167 DOI: 10.1016/j.biotechadv.2021.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
3
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 49:107733. [PMID: 33781890 DOI: 10.1016/j.biotechadv.2021.107733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
4
|
Havrlentová M, Gregusová V, Šliková S, Nemeček P, Hudcovicová M, Kuzmová D. Relationship between the Content of β-D-Glucans and Infection with Fusarium Pathogens in Oat ( Avena sativa L.) Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1776. [PMID: 33333749 PMCID: PMC7765213 DOI: 10.3390/plants9121776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 12/12/2020] [Indexed: 01/03/2023]
Abstract
In human nutrition, oats (Avena sativa L.) are mainly used for their dietary fiber, β-D-glucans and protein content. The content of β-D-glucans in oat grain is 2-7% and is influenced by genetic and/or environmental factors. High levels of this cell walls polysaccharide are observed in naked grains of cultivated oat. It the work, the relationship between the content of β-D-glucans in oat grain and the infection with Fusarium graminearum (FG) and Fusarium culmorum (FC) was analyzed. The hypothesis was that oats with higher content of β-D-glucans are better protected and the manifestation of artificial inoculation with Fusarium strains is weaker. In the 22 oat samples analyzed, the content of β-D-glucans was 0.71-5.06%. In controls, the average content was 2.15% for hulled and 3.25% for naked grains of cultivated oats. After the infection, a decrease was observed in all, naked, hulled and wild oats. As an evidence of lower rate of infection, statistically significant lower percentage of pathogen DNA (0.39%) and less deoxynivalenol (DON) mycotoxin (FC infection 10.66 mg/kg and FG 4.92 mg/kg) were observed in naked grains compared to hulled where the level of pathogen DNA was 2.09% and the average DON level was 21.95 mg/kg (FC) and 5.52 mg/kg (FG).
Collapse
Affiliation(s)
- Michaela Havrlentová
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia; (V.G.); (D.K.)
- National Agricultural and Food Centre, Research Institute of Plant Production in Piešťany, 921 68 Piešťany, Slovakia; (S.Š.); (M.H.)
| | - Veronika Gregusová
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia; (V.G.); (D.K.)
| | - Svetlana Šliková
- National Agricultural and Food Centre, Research Institute of Plant Production in Piešťany, 921 68 Piešťany, Slovakia; (S.Š.); (M.H.)
| | - Peter Nemeček
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia;
| | - Martina Hudcovicová
- National Agricultural and Food Centre, Research Institute of Plant Production in Piešťany, 921 68 Piešťany, Slovakia; (S.Š.); (M.H.)
| | - Dominika Kuzmová
- Department of Biotechnologies, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia; (V.G.); (D.K.)
| |
Collapse
|
5
|
The agronomic performance and nutritional content of oat and barley varieties grown in a northern maritime environment depends on variety and growing conditions. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Cory AT, Gangola MP, Anyia A, Båga M, Chibbar RN. Genotype, environment and G × E interaction influence (1,3;1,4)-β-d-glucan fine structure in barley (Hordeum vulgare L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:743-752. [PMID: 27145288 DOI: 10.1002/jsfa.7789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 04/28/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The structure of β-glucan influences its use in cereal-based foods and feed. The objective of this study was to determine the effect of environment (E) and genotype (G) on β-glucan fine structure and its genetic control in two-row spring barley with normal starch characteristics. RESULTS A population of 89 recombinant inbred lines, derived from the cross of two-row spring barley genotypes Merit × H93174006 (H92076F1 × TR238), was characterized for concentration and structure of grain β-glucan in two environments. Results showed that concentrations of β-glucan, DP3, DP4 and DP3 + DP4 were positively correlated with each other, suggesting no preference for DP3 or DP4 subunit production in high- or low-β-glucan lines. The concentrations of β-glucan, DP3, DP4 and DP3:DP4 ratios were significantly influenced by genotype and environment. However, only DP3:DP4 ratio showed a significant effect of G × E interaction. Association mapping of candidate markers in 119 barley genotypes showed that marker CSLF6_4105 was associated with β-glucan concentration, whereas Bmac504 and Bmac211 were associated with DP3:DP4 ratio. Bmac273e was associated with both β-glucan concentration and DP3:DP4 ratio. CONCLUSION The grain β-glucan concentration and DP3:DP4 ratio are strongly affected by genotype and environment. Single-marker analyses suggested that the genetic control of β-glucan concentration and DP3:DP4 ratio was linked to separate chromosomal regions on barley genome. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aron T Cory
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Manu P Gangola
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Anthony Anyia
- Alberta Innovates - Technology Futures, Vegreville, Alberta, Canada
| | - Monica Båga
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Ravindra N Chibbar
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
7
|
Kuge T, Nagoya H, Tryfona T, Kurokawa T, Yoshimi Y, Dohmae N, Tsubaki K, Dupree P, Tsumuraya Y, Kotake T. Action of an endo-β-1,3(4)-glucanase on cellobiosyl unit structure in barley β-1,3:1,4-glucan. Biosci Biotechnol Biochem 2015; 79:1810-7. [PMID: 26027730 PMCID: PMC4673573 DOI: 10.1080/09168451.2015.1046365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-1,3:1,4-Glucan is a major cell wall component accumulating in endosperm and young tissues in grasses. The mixed linkage glucan is a linear polysaccharide mainly consisting of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it also contains minor structures such as cellobiosyl units. In this study, we examined the action of an endo-β-1,3(4)-glucanase from Trichoderma sp. on a minor structure in barley β-1,3:1,4-glucan. To find the minor structure on which the endo-β-1,3(4)-glucanase acts, we prepared oligosaccharides from barley β-1,3:1,4-glucan by endo-β-1,4-glucanase digestion followed by purification by gel permeation and paper chromatography. The endo-β-1,3(4)-glucanase appeared to hydrolyze an oligosaccharide with degree of polymerization 5, designated C5-b. Based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF)/ToF-mass spectrometry (MS)/MS analysis, C5-b was identified as β-Glc-1,3-β-Glc-1,4-β-Glc-1,3-β-Glc-1,4-Glc including a cellobiosyl unit. The results indicate that a type of endo-β-1,3(4)-glucanase acts on the cellobiosyl units of barley β-1,3:1,4-glucan in an endo-manner.
Collapse
Affiliation(s)
- Takao Kuge
- a Life Science Materials Laboratory, Research and Development Division , ADEKA Corporation , Tokyo , Japan
| | - Hiroki Nagoya
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Theodora Tryfona
- c Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Tsunemi Kurokawa
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Yoshihisa Yoshimi
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Naoshi Dohmae
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan.,d Global Research Cluster , RIKEN , Saitama , Japan
| | - Kazufumi Tsubaki
- a Life Science Materials Laboratory, Research and Development Division , ADEKA Corporation , Tokyo , Japan
| | - Paul Dupree
- c Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Yoichi Tsumuraya
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Toshihisa Kotake
- b Division of Life Science, Graduate School of Science and Engineering , Saitama University , Saitama , Japan.,e Institute for Environmental Science and Technology , Saitama University , Saitama , Japan
| |
Collapse
|
8
|
Soares JSM, Gentile A, Scorsato V, Lima ADC, Kiyota E, Dos Santos ML, Piattoni CV, Huber SC, Aparicio R, Menossi M. Oligomerization, membrane association, and in vivo phosphorylation of sugarcane UDP-glucose pyrophosphorylase. J Biol Chem 2014; 289:33364-77. [PMID: 25320091 DOI: 10.1074/jbc.m114.590125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.
Collapse
Affiliation(s)
- Jose Sergio M Soares
- From the Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, C.P. 6109, Campinas, SP, Brazil
| | - Agustina Gentile
- From the Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, C.P. 6109, Campinas, SP, Brazil
| | - Valeria Scorsato
- the Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Campinas, SP, Brazil
| | - Aline da C Lima
- the Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Campinas, SP, Brazil
| | - Eduardo Kiyota
- the Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Campinas, SP, Brazil
| | - Marcelo Leite Dos Santos
- the Centro de Ciências Exatas e Tecnologia, Núcleo de Química, Universidade Federal do Sergipe, C.P. 49500000, Itabaiana, SE, Brazil
| | - Claudia V Piattoni
- the Instituto de Agrobiotecnologia del Litoral (UNL-CONICET), Universidad Nacional del Litoral, Ciudad Universitaria-Paraje El Pozo, CC242, S3000ZAA Santa Fe, Argentina
| | - Steven C Huber
- the Department of Agriculture Agricultural Research Service, and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ricardo Aparicio
- the Laboratório de Biologia Estrutural e Cristalografia, Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Campinas, SP, Brazil
| | - Marcelo Menossi
- From the Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, C.P. 6109, Campinas, SP, Brazil,
| |
Collapse
|
9
|
Doehlert DC, Simsek S. Variation in β-Glucan Fine Structure, Extractability, and Flour Slurry Viscosity in Oats Due to Genotype and Environment. Cereal Chem 2012. [DOI: 10.1094/cchem-12-11-0145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Douglas C. Doehlert
- U.S. Department of Agriculture, Agricultural Research Service, Hard Red Spring and Durum Wheat Quality Laboratory, Harris Hall, North Dakota State University, Dept. 7640, P.O. Box 6050, Fargo, ND 58108-6050. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture
- Corresponding author. Phone: (701) 239-1413. Fax: (701) 239-1377. E-mail:
| | - Senay Simsek
- Department of Plant Sciences, North Dakota State University, Dept. 7650, P.O. Box 6050, Fargo, ND 58108-6050
| |
Collapse
|
10
|
Decker D, Meng M, Gornicka A, Hofer A, Wilczynska M, Kleczkowski LA. Substrate kinetics and substrate effects on the quaternary structure of barley UDP-glucose pyrophosphorylase. PHYTOCHEMISTRY 2012; 79:39-45. [PMID: 22552276 DOI: 10.1016/j.phytochem.2012.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/27/2012] [Accepted: 04/03/2012] [Indexed: 05/08/2023]
Abstract
UDP-Glc pyrophosphorylase (UGPase) is an essential enzyme responsible for production of UDP-Glc, which is used in hundreds of glycosylation reactions involving addition of Glc to a variety of compounds. In this study, barley UGPase was characterized with respect to effects of its substrates on activity and quaternary structure of the protein. Its K(m) values with Glc-1-P and UTP were 0.33 and 0.25 mM, respectively. Besides using Glc-1-P as a substrate, the enzyme had also considerable activity with Gal-1-P; however, the K(m) for Gal-1-P was very high (>10 mM), rendering this reaction unlikely under physiological conditions. UGPase had a relatively broad pH optimum of 6.5-8.5, regardless of the direction of reaction. The enzyme equilibrium constant was 0.4, suggesting slight preference for the Glc-1-P synthesis direction of the reaction. The quaternary structure of the enzyme, studied by Gas-phase Electrophoretic Mobility Macromolecule Analysis (GEMMA), was affected by addition of either single or both substrates in either direction of the reaction, resulting in a shift from UGPase dimers toward monomers, the active form of the enzyme. The substrate-induced changes in quaternary structure of the enzyme may have a regulatory role to assure maximal activity. Kinetics and factors affecting the oligomerization status of UGPase are discussed.
Collapse
Affiliation(s)
- Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Kleczkowski LA, Decker D, Wilczynska M. UDP-sugar pyrophosphorylase: a new old mechanism for sugar activation. PLANT PHYSIOLOGY 2011; 156:3-10. [PMID: 21444645 PMCID: PMC3091059 DOI: 10.1104/pp.111.174706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/24/2011] [Indexed: 05/09/2023]
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umea, Sweden.
| | | | | |
Collapse
|
12
|
Park JI, Ishimizu T, Suwabe K, Sudo K, Masuko H, Hakozaki H, Nou IS, Suzuki G, Watanabe M. UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:981-96. [PMID: 20435647 DOI: 10.1093/pcp/pcq057] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme in the metabolism of UDP-glucose, a precursor for the synthesis of carbohydrate cell wall components, such as cellulose and callose. The Arabidopsis thaliana genome contains two putative genes encoding UGPase, AtUGP1 and AtUGP2. These genes are expressed in all organs. In order to determine the role of UGPase in vegetative and reproductive organs, we employed a reverse genetic approach using the T-DNA insertion mutants, atugp1 and atugp2. Despite a significant decrease in UGPase activity in both the atugp1 and atugp2 single mutants, no decrease in normal growth and reproduction was observed. In contrast, the atugp1/atugp2 double mutant displayed drastic growth defects and male sterility. At the reproductive phase, in the anthers of atugp1/atugp2, pollen mother cells developed normally, but callose deposition around microspores was absent. Genes coding for enzymes at the subsequent steps in the cellulose and callose synthesis pathway were also down-regulated in the double mutant. Taken together, these results demonstrate that the AtUGP1 and AtUGP2 genes are functionally redundant and UGPase activity is essential for both vegetative and reproductive phases in Arabidopsis. Importantly, male fertility was not restored in the double knockout mutant by an application of external sucrose, whereas vegetative growth was comparable in size with that of the wild type. In contrast, an application of external UDP-glucose recovered male fertility in the double mutant, suggesting that control of UGPase in carbohydrate metabolism is different in the vegetative phase as compared with the reproductive phase in A. thaliana.
Collapse
Affiliation(s)
- Jong-In Park
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Christensen U, Alonso-Simon A, Scheller HV, Willats WGT, Harholt J. Characterization of the primary cell walls of seedlings of Brachypodium distachyon--a potential model plant for temperate grasses. PHYTOCHEMISTRY 2010; 71:62-9. [PMID: 19828160 DOI: 10.1016/j.phytochem.2009.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 05/22/2023]
Abstract
The genome of Brachypodium distachyon, also known as purple false brome, was fully sequenced in 2008 largely in response to the demand for a model plant for temperate grasses. A comparative study of the primary cell walls of seedlings of B. distachyon, Hordeum vulgare and Triticum aestivum was carried out. The cell walls of the three species were characterized by similar relative levels of, and developmental changes in, hemicelluloses. The occurrence of (1,3;1,4)-beta-D-glucans was correlated with phases of growth involving cell elongation. Expression profiling of the genes involved in (1,3;1,4)-beta-D-glucan synthesis (cellulose synthase-like F family (CSLF), CSLH and a putative synthase gene CSLJ) did not show a transcriptional regulation that corresponded to the abundance of (1,3;1,4)-beta-D-glucans. CSLF6 transcripts were similarly highly expressed in all three grasses, and were much more abundant than any of the other transcripts. The CSLH transcript was relatively abundant in B. distachyon but almost undetectable in the other species. The deposition of arabinoxylans increased steadily during seedling growth in all three grasses, but they became less substituted and more cross-linked into the wall matrix during cell maturation. Moreover, arabinoxylans in B. distachyon differed from the two other grasses in having a lower degree of arabinose substitution, a higher percentage of ferulic acid in form of dimers and a larger proportion of ester-linked p-coumaric acid.
Collapse
Affiliation(s)
- Ulla Christensen
- University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology and Biotechnology, VKR-Centre ProActive Plants, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
14
|
Dwivany FM, Yulia D, Burton RA, Shirley NJ, Wilson SM, Fincher GB, Bacic A, Newbigin E, Doblin MS. The CELLULOSE-SYNTHASE LIKE C (CSLC) family of barley includes members that are integral membrane proteins targeted to the plasma membrane. MOLECULAR PLANT 2009; 2:1025-1039. [PMID: 19825677 DOI: 10.1093/mp/ssp064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The CELLULOSE SYNTHASE-LIKE C (CSLC) family is an ancient lineage within the CELLULOSE SYNTHASE/CELLULOSE SYNTHASE-LIKE (CESA/CSL) polysaccharide synthase superfamily that is thought to have arisen before the divergence of mosses and vascular plants. As studies in the flowering plant Arabidopsis have suggested synthesis of the (1,4)-beta-glucan backbone of xyloglucan (XyG), a wall polysaccharide that tethers adjacent cellulose microfibrils to each other, as a probable function for the CSLCs, CSLC function was investigated in barley (Hordeum vulgare L.), a species with low amounts of XyG in its walls. Four barley CSLC genes were identified (designated HvCSLC1-4). Phylogenetic analysis reveals three well supported clades of CSLCs in flowering plants, with barley having representatives in two of these clades. The four barley CSLCs were expressed in various tissues, with in situ PCR detecting transcripts in all cell types of the coleoptile and root, including cells with primary and secondary cell walls. Co-expression analysis showed that HvCSLC3 was coordinately expressed with putative XyG xylosyltransferase genes. Both immuno-EM and membrane fractionation showed that HvCSLC2 was located in the plasma membrane of barley suspension-cultured cells and was not in internal membranes such as endoplasmic reticulum or Golgi apparatus. Based on our current knowledge of the sub-cellular locations of polysaccharide synthesis, we conclude that the CSLC family probably contains more than one type of polysaccharide synthase.
Collapse
Affiliation(s)
- Fenny M Dwivany
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Natera SHA, Ford KL, Cassin AM, Patterson JH, Newbigin EJ, Bacic A. Analysis of the Oryza sativa Plasma Membrane Proteome Using Combined Protein and Peptide Fractionation Approaches in Conjunction with Mass Spectrometry. J Proteome Res 2008; 7:1159-87. [DOI: 10.1021/pr070255c] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Siria H. A. Natera
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Kristina L. Ford
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Andrew M. Cassin
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - John H. Patterson
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Edward J. Newbigin
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| | - Antony Bacic
- Plant Cell Biology Research Centre and Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
16
|
Kleczkowski LA, Geisler M, Ciereszko I, Johansson H. UDP-glucose pyrophosphorylase. An old protein with new tricks. PLANT PHYSIOLOGY 2004; 134:912-8. [PMID: 15020755 PMCID: PMC523891 DOI: 10.1104/pp.103.036053] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 12/09/2003] [Accepted: 12/16/2003] [Indexed: 05/17/2023]
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
17
|
Buckeridge MS, Rayon C, Urbanowicz B, Tiné MAS, Carpita NC. Mixed Linkage (1→3),(1→4)-β-d-Glucans of Grasses. Cereal Chem 2004. [DOI: 10.1094/cchem.2004.81.1.115] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Marcos S. Buckeridge
- Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica CP 4005 CEP 01061-970, São Paulo, SP Brazil
| | - Catherine Rayon
- Department of Botany and Plant Pathology, Purdue University West Lafayette, IN 47907-1155
- Present address: UMR CNRS-UPS 5546, Pôle de Biotechnologie Végétale, BP 17, Auzeville, F-31326 Castanet Tolosan, France
| | - Breeanna Urbanowicz
- Department of Botany and Plant Pathology, Purdue University West Lafayette, IN 47907-1155
- Present address: Department of Plant Biology, 228 Plant Science Building, Cornell University, Ithaca, NY 14853
| | - Marco Aurélio S. Tiné
- Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica CP 4005 CEP 01061-970, São Paulo, SP Brazil
| | - Nicholas C. Carpita
- Department of Botany and Plant Pathology, Purdue University West Lafayette, IN 47907-1155
- Corresponding author. Phone: +1-765-494-4653. Fax:+1-765-494-0393. E-mail:
| |
Collapse
|
18
|
Vergara CE, Carpita NC. Beta-D-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1-->3),(1-->4)beta-D-glucan synthase. PLANT MOLECULAR BIOLOGY 2001; 47:145-160. [PMID: 11554469 DOI: 10.1007/978-94-010-0668-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cellulose synthase genes (CesAs) encode a broad range of processive glycosyltransferases that synthesize (1-->4)beta-D-glycosyl units. The proteins predicted to be encoded by these genes contain up to eight membrane-spanning domains and four 'U-motifs' with conserved aspartate residues and a QxxRW motif that are essential for substrate binding and catalysis. In higher plants, the domain structure includes two plant-specific regions, one that is relatively conserved and a second, so-called 'hypervariable region' (HVR). Analysis of the phylogenetic relationships among members of the CesA multi-gene families from two grass species, Oryza sativa and Zea mays, with Arabidopsis thaliana and other dicotyledonous species reveals that the CesA genes cluster into several distinct sub-classes. Whereas some sub-classes are populated by CesAs from all species, two sub-classes are populated solely by CesAs from grass species. The sub-class identity is primarily defined by the HVR, and the sequence in this region does not vary substantially among members of the same sub-class. Hence, we suggest that the region is more aptly termed a 'class-specific region' (CSR). Several motifs containing cysteine, basic, acidic and aromatic residues indicate that the CSR may function in substrate binding specificity and catalysis. Similar motifs are conserved in bacterial cellulose synthases, the Dictyostelium discoideum cellulose synthase, and other processive glycosyltransferases involved in the synthesis of non-cellulosic polymers with (1-->4)beta-linked backbones, including chitin, heparan, and hyaluronan. These analyses re-open the question whether all the CesA genes encode cellulose synthases or whether some of the sub-class members may encode other non-cellulosic (1-->4)beta-glycan synthases in plants. For example, the mixed-linkage (1-->3)(1-->4)beta-D-glucan synthase is found specifically in grasses and possesses many features more similar to those of cellulose synthase than to those of other beta-linked cross-linking glycans. In this respect, the enzymatic properties of the mixed-linkage beta-glucan synthases not only provide special insight into the mechanisms of (1-->4)beta-glycan synthesis but may also uncover the genes that encode the synthases themselves.
Collapse
Affiliation(s)
- C E Vergara
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1155, USA
| | | |
Collapse
|
19
|
Doblin MS, De Melis L, Newbigin E, Bacic A, Read SM. Pollen tubes of Nicotiana alata express two genes from different beta-glucan synthase families. PLANT PHYSIOLOGY 2001; 125:2040-52. [PMID: 11299383 PMCID: PMC88859 DOI: 10.1104/pp.125.4.2040] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2000] [Revised: 11/21/2000] [Accepted: 12/22/2000] [Indexed: 05/18/2023]
Abstract
The walls deposited by growing pollen tubes contain two types of beta-glucan, the (1,3)-beta-glucan callose and the (1,4)-beta-glucan cellulose, as well as various alpha-linked pectic polysaccharides. Pollen tubes of Nicotiana alata Link et Otto, an ornamental tobacco, were therefore used to identify genes potentially encoding catalytic subunits of the callose synthase and cellulose synthase enzymes. Reverse transcriptase-polymerase chain reactions (RT-PCR) with pollen-tube RNA and primers designed to conserved regions of bacterial and plant cellulose synthase (CesA) genes amplified a fragment that corresponded to an abundantly expressed cellulose-synthase-like gene named NaCslD1. A fragment from a true CesA gene (NaCesA1) was also amplified, but corresponding cDNAs could not be identified in a pollen-tube library, consistent with the very low level of expression of the NaCesA1 gene. RT-PCR with pollen-tube RNA and primers designed to regions conserved between the fungal FKS genes [that encode (1,3)-beta-glucan synthases] and their presumed plant homologs (the Gsl or glucan-synthase-like genes) amplified a fragment that corresponded to an abundantly expressed gene named NaGsl1. A second Gsl gene detected by RT-PCR (NaGsl2) was expressed at low levels in immature floral organs. The structure of full-length cDNAs of NaCslD1, NaCesA1, and NaGsl1 are presented. Both NaCslD1 and NaGsl1 are predominantly expressed in the male gametophyte (developing and mature pollen and growing pollen tubes), and we propose that they encode the catalytic subunits of two beta-glucan synthases involved in pollen-tube wall synthesis. Different beta-glucans deposited in one cell type may therefore be synthesized by enzymes from different gene families.
Collapse
Affiliation(s)
- M S Doblin
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
20
|
Buckeridge MS, Vergara CE, Carpita NC. The mechanism of synthesis of a mixed-linkage (1-->3), (1-->4)beta-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. PLANT PHYSIOLOGY 1999; 120:1105-16. [PMID: 10444094 PMCID: PMC59344 DOI: 10.1104/pp.120.4.1105] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/1999] [Accepted: 05/06/1999] [Indexed: 05/20/2023]
Abstract
We examined the mechanism of synthesis in vitro of (1-->3), (1-->4)beta-D-glucan (beta-glucan), a growth-specific cell wall polysaccharide found in grasses and cereals. beta-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1-->3)beta-linkages. The ratio of cellotriosyl and cellotetraosyl units in the native polymer is strictly controlled at between 2 and 3 in all grasses, whereas the ratios of these units in beta-glucan formed in vitro vary from 1.5 with 5 &mgr;M UDP-glucose (Glc) to over 11 with 30 mM substrate. These results support a model in which three sites of glycosyl transfer occur within the synthase complex to produce the cellobiosyl-(1-->3)-D-glucosyl units. We propose that failure to fill one of the sites results in the iterative addition of one or more cellobiosyl units to produce the longer cellodextrin units in the polymer. Variations in the UDP-Glc concentration in excised maize (Zea mays) coleoptiles did not result in wide variations in the ratios of cellotriosyl and cellotetraosyl units in beta-glucan synthesized in vivo, indicating that other factors control delivery of UDP-Glc to the synthase. In maize sucrose synthase is enriched in Golgi membranes and plasma membranes and may be involved in the control of substrate delivery to beta-glucan synthase and cellulose synthase.
Collapse
Affiliation(s)
- MS Buckeridge
- Instituto de Botanica, Secao de Fisiologia e Bioquimica Plantas, Caixa Postal 4005, CEP-01061970, Sao Paulo, SP Brazil (M.S.B.)
| | | | | |
Collapse
|
21
|
Eimert K, Villand P, Kilian A, Kleczkowski LA. Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues. Gene 1996; 170:227-32. [PMID: 8666250 DOI: 10.1016/0378-1119(95)00873-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eleven cDNA clones encoding UDP-glucose pyrophosphorylase (UGPase) have been isolated from cDNA libraries prepared from seed embryo, seed endosperm and leaves of barley (Hordeum vulgare L.). The sequences were identical, with the exception of positioning of the poly(A) tail; at least five clones with different polyadenylation sites were found. For a putative full-length cDNA [1775 nucleotides (nt) plus polyadenylation tail], isolated from an embryo cDNA library, an open reading frame of 1419 nt encodes a protein of 473 amino acids (aa) of 51.6 kDa. An alignment of the derived aa sequence with other UGPases has revealed high identity to UGPases from eukaryotic tissues, but not from bacteria. Within the aa sequence, no homology was found to a UDP-glucose-binding motif that has been postulated for a family of glucosyl transferases. The derived aa sequence of UGPase contains three putative N-glycosylation sites and has a highly conserved positioning of five Lys residues, previously shown to be critical for catalysis and substrate binding of potato tuber UGPase. A possible role for N-glycosylation in the intracellular targeting of UGPase is discussed.
Collapse
Affiliation(s)
- K Eimert
- Department of Plant Physiology, Umeå University, Sweden
| | | | | | | |
Collapse
|
22
|
Biosynthesis in vitro of pectic (1→4)-β-D-galactan. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0921-0423(96)80251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|