1
|
Liu HQ, Zou YJ, Li XF, Wu L, Guo GQ. Stablization of ACOs by NatB mediated N-terminal acetylation is required for ethylene homeostasis. BMC PLANT BIOLOGY 2021; 21:320. [PMID: 34217224 PMCID: PMC8254318 DOI: 10.1186/s12870-021-03090-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
N-terminal acetylation (NTA) is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) in eukaryotes. However, the plant NATs and their biological functions have been poorly explored. Here we reveal that loss of function of CKRC3 and NBC-1, the auxiliary subunit (Naa25) and catalytic subunit (Naa20) of Arabidopsis NatB, respectively, led to defects in skotomorphogenesis and triple responses of ethylene. Proteome profiling and WB test revealed that the 1-amincyclopropane-1-carboxylate oxidase (ACO, catalyzing the last step of ethylene biosynthesis pathway) activity was significantly down-regulated in natb mutants, leading to reduced endogenous ethylene content. The defective phenotypes could be fully rescued by application of exogenous ethylene, but less by its precursor ACC. The present results reveal a previously unknown regulation mechanism at the co-translational protein level for ethylene homeostasis, in which the NatB-mediated NTA of ACOs render them an intracellular stability to maintain ethylene homeostasis for normal growth and responses.
Collapse
Affiliation(s)
- Hai-Qing Liu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ya-Jie Zou
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Feng Li
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lei Wu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Qin Guo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
3
|
RNA-sequencing based gene expression landscape of guava cv. Allahabad Safeda and comparative analysis to colored cultivars. BMC Genomics 2020; 21:484. [PMID: 32669108 PMCID: PMC7364479 DOI: 10.1186/s12864-020-06883-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Guava (Psidium guajava L.) is an important fruit crop of tropical and subtropical areas of the world. Genomics resources in guava are scanty. RNA-Seq based tissue specific expressed genomic information, de novo transcriptome assembly, functional annotation and differential expression among contrasting genotypes has a potential to set the stage for the functional genomics for traits of commerce like colored flesh and apple color peel. RESULTS Development of fruit from flower involves orchestration of myriad molecular switches. We did comparative transcriptome sequencing on leaf, flower and fruit tissues of cv. Allahabad Safeda to understand important genes and pathways controlling fruit development. Tissue specific RNA sequencing and de novo transcriptome assembly using Trinity pipeline provided us the first reference transcriptome for guava consisting of 84,206 genes comprising 279,792 total transcripts with a N50 of 3603 bp. Blast2GO assigned annotation to 116,629 transcripts and PFam based HMM profile annotated 140,061 transcripts with protein domains. Differential expression with EdgeR identified 3033 genes in Allahabad Safeda tissues. Mapping the differentially expressed transcripts over molecular pathways indicate significant Ethylene and Abscisic acid hormonal changes and secondary metabolites, carbohydrate metabolism and fruit softening related gene transcripts during fruit development, maturation and ripening. Differential expression analysis among colored tissue comparisons in 3 cultivars Allahabad Safeda, Punjab Pink and Apple Color identified 68 candidate genes that might be controlling color development in guava fruit. Comparisons of red vs green peel in Apple Color, white pulp vs red pulp in Punjab Pink and fruit maturation vs ripening in non-colored Allahabad Safeda indicates up-regulation of ethylene biosynthesis accompanied to secondary metabolism like phenylpropanoid and monolignol pathways. CONCLUSIONS Benchmarking Universal Single-Copy Orthologs analysis of de novo transcriptome of guava with eudicots identified 93.7% complete BUSCO genes. In silico differential gene expression among tissue types of Allahabad Safeda and validation of candidate genes with qRT-PCR in contrasting color genotypes promises the utility of this first guava transcriptome for its potential of tapping the genetic elements from germplasm collections for enhancing fruit traits.
Collapse
|
4
|
Physiological response of ‘Fuji’ apples to irradiation and the effect on quality. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.108389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Pontiggia D, Spinelli F, Fabbri C, Licursi V, Negri R, De Lorenzo G, Mattei B. Changes in the microsomal proteome of tomato fruit during ripening. Sci Rep 2019; 9:14350. [PMID: 31586085 PMCID: PMC6778153 DOI: 10.1038/s41598-019-50575-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/23/2019] [Indexed: 11/09/2022] Open
Abstract
The variations in the membrane proteome of tomato fruit pericarp during ripening have been investigated by mass spectrometry-based label-free proteomics. Mature green (MG30) and red ripe (R45) stages were chosen because they are pivotal in the ripening process: MG30 corresponds to the end of cellular expansion, when fruit growth has stopped and fruit starts ripening, whereas R45 corresponds to the mature fruit. Protein patterns were markedly different: among the 1315 proteins identified with at least two unique peptides, 145 significantly varied in abundance in the process of fruit ripening. The subcellular and biochemical fractionation resulted in GO term enrichment for organelle proteins in our dataset, and allowed the detection of low-abundance proteins that were not detected in previous proteomic studies on tomato fruits. Functional annotation showed that the largest proportion of identified proteins were involved in cell wall metabolism, vesicle-mediated transport, hormone biosynthesis, secondary metabolism, lipid metabolism, protein synthesis and degradation, carbohydrate metabolic processes, signalling and response to stress.
Collapse
Affiliation(s)
- Daniela Pontiggia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Francesco Spinelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Claudia Fabbri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.,Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.,Foundation Cenci Bolognetti-Institut Pasteur, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy. .,Foundation Cenci Bolognetti-Institut Pasteur, Rome, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
6
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Tu Y, He B, Gao S, Guo D, Jia X, Dong X, Guo M. CtACO1 Overexpression Resulted in the Alteration of the Flavonoids Profile of Safflower. Molecules 2019; 24:molecules24061128. [PMID: 30901924 PMCID: PMC6471848 DOI: 10.3390/molecules24061128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Flavonoids with various structures play a vital role in plant acclimatization to varying environments as well as in plant growth, development, and reproduction. Exogenous applications of ethylene and 1-aminocyclopropane carboxylic acid (ACC), could affect the accumulation of flavonoids. Very few attempts have been made to investigate the effect of 1-aminocyclopropane carboxylic acid oxidase (ACO), a unique enzyme that catalyzes ACC to ethylene, on genes and metabolites in the flavonoid biosynthetic pathway. In this study, two ACOs in safflower (CtACOs) were cloned, and then transgenic safflower with overexpressed CtACO1 was generated through the Agrobacterium-mediated floral dipping method. Results: CtACO1 and CtACO2 were both characterized by the 2-oxoglutarate binding domain RxS and the ferrous iron binding site HxDxnH as ACOs from other plants. However, the transcript levels of CtACO1 in flowers at stages I, II, III, and IV were all higher than those of CtACO2. At the cellular level, by using electroporation transformation, CtACO1 was found to be localized at the cytomembrane in onion epidermal cells. CtACO1 overexpression had varying effects on genes involved in the ethylene and flavonoid biosynthetic pathways. The metabolites analysis showed that CtACO1 overexpression lines had a higher accumulation of quercetin and its glycosylated derivatives (quercetin 3-β-d-glucoside and rutin). In contrast, the accumulation of quinochalcones (hydroxysafflor yellow A and carthamin), kaempferol glycosylated derivatives (kaempferol-3-O-β-rutinoside and kaempferol-3-O-β-d-glucoside), apigenin, and luteolin in CtACO1 overexpression lines were decreased. Conclusion: This study confirmed the feasibility of applying the floral dipping method to safflower and showed a novel regulatory effect of CtACO1 in the flavonoid biosynthetic pathway. It provides hypothetical and practical groundwork for further research on regulating the overall metabolic flux of flavonoids in safflower, particularly hydroxysafflor yellow A and other quinochalcones, by using appropriate genetic engineering strategies.
Collapse
Affiliation(s)
- Yanhua Tu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Songyan Gao
- Chemical Experiment Teaching Center, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xin Dong
- Chemical Experiment Teaching Center, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
8
|
Van de Poel B, Van Der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! FRONTIERS IN PLANT SCIENCE 2014; 5:640. [PMID: 25426135 PMCID: PMC4227472 DOI: 10.3389/fpls.2014.00640] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/28/2014] [Indexed: 05/20/2023]
Abstract
Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor.
Collapse
Affiliation(s)
- Bram Van de Poel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College ParkMD, USA
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent UniversityGhent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent UniversityGhent, Belgium
- *Correspondence: Dominique Van Der Straeten, Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
9
|
Chao WS, Serpe M, Suttle JC, Jia Y. Increase in ACC oxidase levels and activities during paradormancy release of leafy spurge (Euphorbia esula) buds. PLANTA 2013; 238:205-215. [PMID: 23625016 DOI: 10.1007/s00425-013-1887-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
The plant hormone ethylene is known to affect various developmental processes including dormancy and growth. Yet, little information is available about the role of ethylene during paradormancy release in underground adventitious buds of leafy spurge. In this study, we examined changes in ethylene evolution and the ethylene biosynthetic enzyme ACC oxidase following paradormancy release (growth induction). Our results did not show an obvious increase in ethylene during bud growth. However, when buds were incubated with 1 mM ACC, ethylene levels were higher in growing than non-growing buds, suggesting that the levels of ACC oxidase increased in growing buds. Real-time qPCR indicated that the transcript of a Euphorbia esula ACC oxidase (Ee-ACO) increased up to threefold following growth induction. In addition, a 2.5- to 4-fold increase in ACO activity was observed 4 days after decapitation, and the Ee-ACO accounted for 40 % of the total ACO activity. Immunoblot analyses identified a 36-kD Ee-ACO protein that increased in expression during bud growth. This protein was highly expressed in leaves, moderately expressed in crown buds, stems and meristems, and weakly expressed in roots and flowers. Immunolocalization of Ee-ACO on growing bud sections revealed strong labeling of the nucleus and cytoplasm in cells at the shoot apical meristem and leaf primordia. An exception to this pattern occurred in cells undergoing mitosis, where labeling of Ee-ACO was negligible. Taken together, our results indicated an increase in the levels of Ee-ACO during paradormancy release of leafy spurge that was not correlated with an increase in ethylene synthesis.
Collapse
|
10
|
Van de Poel B, Bulens I, Markoula A, Hertog ML, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft MP, Sauter M, Nicolai BM, Geeraerd AH. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. PLANT PHYSIOLOGY 2012; 160:1498-514. [PMID: 22977280 PMCID: PMC3490579 DOI: 10.1104/pp.112.206086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 05/18/2023]
Abstract
The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.
Collapse
|
11
|
Pesquet E, Tuominen H. Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures. THE NEW PHYTOLOGIST 2011; 190:138-149. [PMID: 21219334 DOI: 10.1111/j.1469-8137.2010.03600.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The exact role of ethylene in xylogenesis remains unclear, but the Zinnia elegans cell culture system provides an excellent model with which to study its role during the differentiation of tracheary elements (TEs) in vitro. Here, we analysed ethylene homeostasis and function during Z. elegans TE differentiation using biochemical, molecular and pharmacological methods. Ethylene evolution was confined to specific stages of TE differentiation. It was found to peak at the time of TE maturation and to correlate with the activity of the ethylene biosynthetic 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The ethylene precursor ACC was exported and accumulated to high concentrations in the extracellular medium, which also displayed a high capacity to convert ACC into ethylene. The effects of adding inhibitors of the ethylene biosynthetic ACC synthase and ACC oxidase enzymes to the TE cultures demonstrated for the first time strict dependence of TE differentiation on ethylene biosynthesis and a stimulatory effect of ethylene on the rate of TE differentiation. In a whole-plant context, our results suggest that ethylene synthesis occurs in the apoplast of the xylem elements and that ethylene participates, in a paracrine manner, in the control of the cambial stem cell pool size during secondary xylem formation.
Collapse
Affiliation(s)
- Edouard Pesquet
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
12
|
Eum HL, Kim HB, Choi SB, Lee SK. Regulation of ethylene biosynthesis by nitric oxide in tomato (Solanum lycopersicum L.) fruit harvested at different ripening stages. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0938-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J. Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. PLANTA 2006; 224:865-77. [PMID: 16705404 DOI: 10.1007/s00425-006-0274-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 03/20/2006] [Indexed: 05/09/2023]
Abstract
Members of the Pinaceae family have complex chemical defense strategies. Conifer defenses associated with specialized cell types of the bark involve constitutive and inducible accumulation of phenolic compounds in polyphenolic phloem parenchyma cells and oleoresin terpenoids in resin ducts. These defenses can protect trees against insect herbivory and fungal colonization. The phytohormone ethylene has been shown to induce the same anatomical and cellular defense responses that occur following insect feeding, mechanical wounding, or fungal inoculation in Douglas fir (Pseudotsuga menziesii) stems (Hudgins and Franceschi in Plant Physiol 135:2134-2149, 2004). However, very little is known about the genes involved in ethylene formation in conifer defense or about the temporal and spatial patterns of their protein expression. The enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO) catalyzes the final step in ethylene biosynthesis. We cloned full-length and near full-length ACO cDNAs from three conifer species, Sitka spruce (Picea sitchensis), white spruce (P. glauca), and Douglas fir, each with high similarity to Arabidopsis thaliana ACO proteins. Using an Arabidopsis anti-ACO antibody we determined that ACO is constitutively expressed in Douglas fir stem tissues and is up-regulated by mechanical wounding, consistent with the wound-induced increase of ethylene levels. Immunolocalization showed cytosolic ACO is predominantly present in specialized cell types of the wound-induced bark, specifically in epithelial cells of terpenoid-producing cortical resin ducts, in polyphenolic phloem parenchyma cells, and in ray parenchyma cells.
Collapse
Affiliation(s)
- J W Hudgins
- Michael Smith Laboratories, University of British Columbia, 321-2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | | | | | | |
Collapse
|
14
|
Kovács E, Merész P. The effect of harvesting time on the biochemical and ultrastructural changes in Idared apple. ACTA ALIMENTARIA 2004. [DOI: 10.1556/aalim.33.2004.3.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Hudgins JW, Franceschi VR. Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. PLANT PHYSIOLOGY 2004; 135:2134-49. [PMID: 15299142 PMCID: PMC520785 DOI: 10.1104/pp.103.037929] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 04/17/2004] [Accepted: 04/19/2004] [Indexed: 05/19/2023]
Abstract
Conifer stem pest resistance includes constitutive defenses that discourage invasion and inducible defenses, including phenolic and terpenoid resin synthesis. Recently, methyl jasmonate (MJ) was shown to induce conifer resin and phenolic defenses; however, it is not known if MJ is the direct effector or if there is a downstream signal. Exogenous applications of MJ, methyl salicylate, and ethylene were used to assess inducible defense signaling mechanisms in conifer stems. MJ and ethylene but not methyl salicylate caused enhanced phenolic synthesis in polyphenolic parenchyma cells, early sclereid lignification, and reprogramming of the cambial zone to form traumatic resin ducts in Pseudotsuga menziesii and Sequoiadendron giganteum. Similar responses in internodes above and below treated internodes indicate transport of a signal giving a systemic response. Studies focusing on P. menziesii showed MJ induced ethylene production earlier and 77-fold higher than wounding. Ethylene production was also induced in internodes above the MJ-treated internode. Pretreatment of P. menziesii stems with the ethylene response inhibitor 1-methylcyclopropene inhibited MJ and wound responses. Wounding increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase protein, but MJ treatment produced a higher and more rapid ACC oxidase increase. ACC oxidase was most abundant in ray parenchyma cells, followed by cambial zone cells and resin duct epithelia. The data show these MJ-induced defense responses are mediated by ethylene. The cambial zone xylem mother cells are reprogrammed to differentiate into resin-secreting epithelial cells by an MJ-induced ethylene burst, whereas polyphenolic parenchyma cells are activated to increase polyphenol production. The results also indicate a central role of ray parenchyma in ethylene-induced defense.
Collapse
Affiliation(s)
- J W Hudgins
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | |
Collapse
|
16
|
Chung MC, Chou SJ, Kuang LY, Charng YY, Yang SF. Subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase in apple fruit. PLANT & CELL PHYSIOLOGY 2002; 43:549-54. [PMID: 12040102 DOI: 10.1093/pcp/pcf067] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase catalyzes the oxidation of ACC to the gaseous plant hormone, ethylene. Although the enzyme does not contain a typical N-terminal consensus sequence for the transportation across the endoplasmic reticulum (ER), it has recently been shown to locate extracellularly by immunolocalization study. It was of interest to examine whether the enzyme contains a signal peptide that is overlooked by structure prediction. We observed that the in vitro translated apple ACC oxidase was not co-processed or imported by the canine pancreatic rough microsomes, a system widely used to identify signal peptide for protein translocation across ER, suggesting that apple ACC oxidase does not contain a signal peptide for ER transport. A highly specific polyclonal antibody raised against the recombinant apple ACC oxidase was used to examine the subcellular localization of the enzyme in apple fruit (Malus domestica, var. Golden Delicious). The location of ACC oxidase appeared to be mainly in the cytosol of the apple fruit pericarp tissue as was demonstrated by electron microscopy using immunogold-labeled antibodies. The pre-immune serum or pre-climacteric fruit control gave essentially no positive signal. Based on these observations, we conclude that ACC oxidase is a cytosolic protein.
Collapse
Affiliation(s)
- Mei-Chu Chung
- Institute of Botany, Academia Sinica, Nankang, Taipei, Taiwan 11529, R.O.C
| | | | | | | | | |
Collapse
|
17
|
Abstract
The biological effect of gamma-rays is based on the interaction with atoms or molecules in the cell, particularly water, to produce free radicals, which can damage different important compounds of plant cell. The UV-B/C photons have enough energy to destroy chemical bounds, causing a photochemical reaction. The biological effect is due to these processes. This paper is focused on the structural and biochemical changes of the cell wall and plastids after gamma and/or UV-B irradiation. Gamma-rays accelerate the softening of fruits, causing the breakdown of middle lamella in cell wall. They also influence the plastid development and function, such as starch-sugar interconversion. The penetration of UV-B light into the cell is limited, while gamma-rays penetrate through the cells. For this reason, UV-B light has a strong effect on surface or near-to-surface area in plant cells. UV-B radiation influences plastid structure (mostly thylakoid membranes) and photosynthesis. Some kinds of pigments, such as carotenoids, flavonoids save plant cells against UV-B and gamma irradiation. Plant cells are generally ozone sensitive. The detoxifying systems operate at the cellular level. Methods for studying structural changes in plant cells develop in direction to molecular biology, combined with immunoassays and new microscopical techniques. Nowadays, UV-B radiation is undergoing much research, being an environmental factor which causes damage to both humans and plant cells.
Collapse
Affiliation(s)
- E Kovács
- Central Food Research Institute, Department of Microbiology and Post-harvest Physiology, Budapest, Hungary.
| | | |
Collapse
|
18
|
Two-Oxoacid-Dependent Dioxygenases: Inefficient Enzymes or Evolutionary Driving Force? ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0079-9920(00)80009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
19
|
Hunter DA, Yoo SD, Butcher SM, McManus MT. Expression of 1-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. PLANT PHYSIOLOGY 1999; 120:131-42. [PMID: 10318691 PMCID: PMC59245 DOI: 10.1104/pp.120.1.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/1998] [Accepted: 12/23/1998] [Indexed: 05/18/2023]
Abstract
We examined the expression of three distinct 1-aminocyclopropane-1-carboxylic acid oxidase genes during leaf ontogeny in white clover (Trifolium repens). Significant production of ethylene occurs at the apex, in newly initiated leaves, and in senescent leaf tissue. We used a combination of reverse transcriptase-polymerase chain reaction and 3'-rapid amplification of cDNA ends to identify three distinct DNA sequences designated TRACO1, TRACO2, and TRACO3, each with homology to 1-aminocyclopropane-1-carboxylic acid oxidase. Southern analysis confirmed that these sequences represent three distinct genes. Northern analysis revealed that TRACO1 is expressed specifically in the apex and TRACO2 is expressed in the apex and in developing and mature green leaves, with maximum expression in developing leaf tissue. The third gene, TRACO3, is expressed in senescent leaf tissue. Antibodies were raised to each gene product expressed in Escherichia coli, and western analysis showed that the TRACO1 antibody recognizes a protein of approximately 205 kD (as determined by gradient sodium dodecyl sulfate-polyacylamide gel electrophoresis) that is expressed preferentially in apical tissue. The TRACO2 antibody recognizes a protein of approximately 36.4 kD (as determined by gradient sodium dodecyl sulfate-polyacylamide gel electrophoresis) that is expressed in the apex and in developing and mature green leaves, with maximum expression in mature green tissue. No protein recognition by the TRACO3 antibody could be detected in senescent tissue or at any other stage of leaf development.
Collapse
Affiliation(s)
- D A Hunter
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
20
|
Gallardo M, Gómez-Jiménez MC, Matilla A. Involvement of calcium in ACC-oxidase activity from Cicer arietinum seed embryonic axes. PHYTOCHEMISTRY 1999; 50:373-376. [PMID: 9933950 DOI: 10.1016/s0031-9422(98)00591-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Both in vivo and in vitro ACC-oxidase activities as well as ethylene production from embryonic axes of chickpea seeds were strongly inhibited by EGTA, a selective extracellular Ca2+ ion chelator, indicating that the influx of Ca2+ is important for enzymatic activity. EGTA inhibition was restored by exogenous Ca2+. Treatments of embryonic axes with either Verapamil and LaCl3 (both Ca2+ channel blockers) or TMB-8 (an intracellular Ca2+ antagonist) provoked an inhibition of both ACC-oxidase activity and ethylene production. These results suggest an involvement of calcium fluxes and intracellular calcium levels in the activity of the last step of the ethylene biosynthetic pathway, which is, in turn, intimately correlated with germination of Cicer arietinum seeds.
Collapse
Affiliation(s)
- M Gallardo
- Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Ciencias, Universidad de Vigo, Vigo Pontevedra, Spain
| | | | | |
Collapse
|
21
|
Control of ethylene synthesis and metabolism. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANT HORMONES 1999. [DOI: 10.1016/s0167-7306(08)60489-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 1996; 14:862-6. [PMID: 9631011 DOI: 10.1038/nbt0796-862] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The plant hormone ethylene plays a major role in the ripening of climacteric fruit. We have generated transgenic cantaloupe Charentais melons expressing an antisense ACC oxidase gene; ACC oxidase catalyzes the last step of ethylene biosynthesis. Ethylene production of transgenic fruit was < 1% of control untransformed fruit, and the ripening process was blocked both on and off the vine. The antisense phenotype could be reversed by exogenous ethylene treatment. Analysis of antisense ACC oxidase melons indicated that the ripening process includes ethylene-dependent and ethylene-independent pathways. Because the transgenic line we generated displays extended storage life and improved quality, it has a promising potential for commercial development.
Collapse
Affiliation(s)
- R Ayub
- Ecole Nationale Supérieure Agronomique de Toulouse, UA INRA, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
▪ Abstract Dioxygenases are nonheme iron-containing enzymes important in the biosynthesis of plant signaling compounds such as abscisic acid, gibberellins, and ethylene and also of secondary metabolites, notably flavonoids and alkaloids. Plant dioxygenases fall into two classes: lipoxygenases and 2-oxoacid-dependent dioxygenases. The latter catalyze hydroxylation, epoxidation, and desaturation reactions; some enzymes catalyze more than one type of reaction in successive steps in a biosynthetic pathway. This review highlights recent discoveries on both enzyme groups, particularly in relation to gibberellin biosynthesis, in vivo activity of 1-aminocyclopropane-1-carboxylate oxidase, and molecular structure/function relationships. Similarities between the roles of monooxygenases and dioxygenases are also discussed.
Collapse
Affiliation(s)
- Andy G. Prescott
- Department of Applied Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom, Department of Agricultural Botany, Plant Science Laboratories, The University of Reading, Reading RG6 2AS, United Kingdom
| | | |
Collapse
|