1
|
Sheth J, Nair A, Bhavsar R, Shah H, Tayade N, Prabha CR, Sheth F, Sheth H. Late infantile and adult-onset metachromatic leukodystrophy due to novel missense variants in the PSAP gene: Case report from India. JIMD Rep 2023; 64:265-273. [PMID: 37404680 PMCID: PMC10315378 DOI: 10.1002/jmd2.12374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) due to Sap-B deficiency is a rare autosomal recessive disorder caused due to biallelic variants in the PSAP gene. The PSAP gene encodes a precursor protein prosaposin, which is subsequently cleaved to form four active glycoproteins: Sap-A, Sap-B, Sap-C, and Sap-D. In case of deficiency of the sphingolipid activator protein Sap-B, there is a gradual accumulation of cerebroside-3-sulfate in the myelin of the nervous system resulting in progressive demyelination. Only 12 variants have been reported in the PSAP gene causing Sap-B deficiency to date. Here, we report two cases of MLD due to Sap-B deficiency (late-infantile and adult-onset form) harboring two novel missense variants c.688T > G and c.593G > A in the PSAP gene respectively. This study reports the third case of adult-onset MLD due to Sap-B deficiency in the world. The proband, a 3-year-old male child presented with complaints of hypotonia, lower limb tremors and global developmental delay. His MRI showed hyperintense signals in the bilateral cerebellar white matter. Overall, the findings were suggestive of metachromatic leukodystrophy. The second case was a 19-year-old male child with clinical features of regression of speech, gait ataxia and bilateral tremors referred to our clinic. MRI data suggested metachromatic leukodystrophy. Normal enzyme activity of arylsulfatase-A led to a suspicion of saposin B deficiency. For both cases, targeted sequencing was performed. This identified homozygous variant c.688T > G (p.Cys230Gly) and c.593G > A (p.Cys198Tyr) in exon 6 of the PSAP gene, respectively.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE HouseAhmedabadIndia
| | - Aadhira Nair
- FRIGE's Institute of Human Genetics, FRIGE HouseAhmedabadIndia
| | - Riddhi Bhavsar
- FRIGE's Institute of Human Genetics, FRIGE HouseAhmedabadIndia
| | - Heli Shah
- Smt. NHL Municipal Medical CollegeAhmedabadIndia
| | - Naresh Tayade
- Department of PediatricsDr. Panjabrao Deshmukh Memorial Medical CollegeAmravatiIndia
| | - C. Ratna Prabha
- Department of Biochemistry, Faculty of ScienceThe M. S. University of BarodaVadodaraIndia
| | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE HouseAhmedabadIndia
| | - Harsh Sheth
- FRIGE's Institute of Human Genetics, FRIGE HouseAhmedabadIndia
| |
Collapse
|
2
|
Omidi Y, Alavi A. Achievements and beyond: Scientific trajectory of Professor Mohammad A. Rafi. ACTA ACUST UNITED AC 2020; 11:1-4. [PMID: 33469502 PMCID: PMC7803920 DOI: 10.34172/bi.2021.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
This biography highlights the scientific trajectory of Professor Mohammad A. Rafi, Ph.D., who, in particular, has greatly advanced the field of neurodegenerative disorders during his long and successful tenure at Jefferson Medical College, Thomas Jefferson University. This Editorial recognizes, above all, Professor Rafi's significant contributions to the study of lysosomal storage disorders as they relate to Krabbe Disease.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
3
|
Kolnikova M, Jungova P, Skopkova M, Foltan T, Gasperikova D, Mattosova S, Chandoga J. Late Infantile Metachromatic Leukodystrophy Due to Novel Pathogenic Variants in the PSAP Gene. J Mol Neurosci 2019; 67:559-563. [DOI: 10.1007/s12031-019-1259-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/02/2019] [Indexed: 11/25/2022]
|
4
|
Cesani M, Lorioli L, Grossi S, Amico G, Fumagalli F, Spiga I, Filocamo M, Biffi A. Mutation Update ofARSAandPSAPGenes Causing Metachromatic Leukodystrophy. Hum Mutat 2015; 37:16-27. [DOI: 10.1002/humu.22919] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Martina Cesani
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| | - Laura Lorioli
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
- Vita-Salute San Raffaele University; Milan Italy
| | - Serena Grossi
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche; Istituto G. Gaslini; Genova Italy
| | - Giulia Amico
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche; Istituto G. Gaslini; Genova Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
- Neurology Department; Division of Neuroscience; San Raffaele Scientific Institute; Milan Italy
| | - Ivana Spiga
- Clinical Molecular Biology Laboratory; San Raffaele Hospital; Milan Italy
| | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche; Istituto G. Gaslini; Genova Italy
| | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| |
Collapse
|
5
|
Lustig LR, Alemi S, Sun Y, Grabowski G, Akil O. Role of saposin C and D in auditory and vestibular function. Laryngoscope 2015. [PMID: 26198053 DOI: 10.1002/lary.25479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES/HYPOTHESIS Saposins are small proteins derived from a precursor protein, prosaposin. Each of the four saposins (A-D) is necessary for the activity of lysosomal glycosphingolipid hydrolases. Individual saposin mutations lead to lysosomal storage diseases, some of which are associated with hearing loss. Here we evaluate the effects of the loss of saposins C and D on auditory and vestibular function in transgenic mice. METHODS Transgenic mice with either loss of saposin C function or a combined loss of saposin C + D function were studied. Light microscopy and immunofluorescence were used to evaluate histologic and morphologic changes in the auditory and vestibular organs. Acoustic brainstem response thresholds and distortion product otoacoustic emissions were used to study the auditory phenotype. RESULTS A null mutation of saposin C did not result in any identifiable histologic changes or loss of hearing through postnatal day 55. Combined losses of saposins C and D similarly did not result in any changes in organ of Corti histology or loss of hearing. However, inclusions within the vestibular end organs was noted, consistent with afferent and efferent neuronal sprouting, although to a much milder degree than seen in the previously studied prosaposin knockout mouse. CONCLUSIONS Loss of saposin C and D function, although causing mild phenotypic changes in the vestibular end organs, otherwise results in minimal functional impairment and no changes in the auditory system. It is more likely that the auditory and vestibular effects of the loss of prosaposin are mediated through the actions of saposin A and/or B. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Lawrence R Lustig
- Department of Otolaryngology-Head & Neck Surgery, Columbia University Medical Center, New York, New York
| | - Sean Alemi
- Department of Otolaryngology-Head & Neck Surgery, University of California, San Francisco, San Francisco, California
| | - Ying Sun
- Department of Human Genetics, University of Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Gregory Grabowski
- Department of Human Genetics, University of Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Omar Akil
- Department of Otolaryngology-Head & Neck Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
6
|
Siri L, Rossi A, Lanza F, Mazzotti R, Costa A, Stroppiano M, Gaiero A, Cohen A, Biancheri R, Filocamo M. A novel homozygous splicing mutation in PSAP gene causes metachromatic leukodystrophy in two Moroccan brothers. Neurogenetics 2014; 15:101-6. [PMID: 24478108 DOI: 10.1007/s10048-014-0390-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 11/25/2022]
Abstract
Prosaposin (PSAP) gene mutations, affecting saposin B (Sap-B) domain, cause a rare metachromatic leukodystrophy (MLD) variant in which arylsulfatase A (ARSA) activity is normal. To date, only 10 different PSAP mutations have been associated with a total of 18 unrelated MLD patients worldwide. In this study, we report for the first time a family with Moroccan origins in which the proband, presenting with a late-infantile onset of neurological involvement and a brain MRI with the typical tigroid MLD pattern, showed normal values of ARSA activity in the presence of an abnormal pattern of urinary sulfatides. In view of these findings, PSAP gene was analyzed, identifying the newly genomic homozygous c.909 + 1G > A mutation occurring within the invariant GT dinucleotide of the intron 8 donor splice site. Reverse transcriptase-polymerase chain reaction (RT-PCR), showing the direct junction of exon 7 to exon 9, confirmed the skipping of the entire exon 8 (p.Gln260_Lys303) which normally contains two cysteine residues (Cys271 and Cys265) involved in disulfide bridges. Our report provides further evidence that phenotypes of patients with Sap-B deficiency vary widely depending on age of onset, type, and severity of symptoms. Awareness of this rare MLD variant is crucial to prevent delayed diagnosis or misdiagnosis and to promptly provide an accurate genetic counseling, including prenatal diagnosis, to families.
Collapse
Affiliation(s)
- Laura Siri
- S.C. Pediatria e Neonatologia, Ospedale San Paolo, Savona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Remmel N, Locatelli-Hoops S, Breiden B, Schwarzmann G, Sandhoff K. Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero)phosphate-rich membranes at acidic pH. FEBS J 2007; 274:3405-20. [PMID: 17561962 DOI: 10.1111/j.1742-4658.2007.05873.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sphingolipid activator proteins (SAPs), GM2 activator protein (GM2AP) and saposins (Saps) A-D are small, enzymatically inactive glycoproteins of the lysosome. Despite of their sequence homology, these lipid-binding and -transfer proteins show different specificities and varying modes of action. Water-soluble SAPs facilitate the degradation of membrane-bound glycosphingolipids with short oligosaccharide chains by exohydrolases at the membrane-water interface. There is strong evidence that degradation of endocytosed components of the cell membrane takes place at intraendosomal and intralysosomal membranes. The inner membranes of the lysosome differ from the limiting membrane of the organelle in some typical ways: the inner vesicular membranes lack a protecting glycocalix, and they are almost free of cholesterol, but rich in bis(monoacylglycero)phosphate (BMP), the anionic marker lipid of lysosomes. In this study, we prepared glycosylated Sap-B free of other Saps by taking advantage of the Pichia pastoris expression system. We used immobilized liposomes as a model for intralysosomal vesicular membranes to probe their interaction with recombinantly expressed Sap-B. We monitored this interaction using SPR spectroscopy and an independent method based on the release of radioactively labelled lipids from liposomal membranes. We show that, after initial binding, Sap-B disturbs the membrane structure and mobilizes the lipids from it. Lipid mobilization is dependent on an acidic pH and the presence of anionic lipids, whereas cholesterol is able to stabilize the liposomes. We also show for the first time that glycosylation of Sap-B is essential to achieve its full lipid-extraction activity. Removal of the carbohydrate moiety of Sap-B reduces its membrane-destabilizing quality. An unglycosylated Sap-B variant, Asn215His, which causes a fatal sphingolipid storage disease, lost the ability to extract membrane lipids at acidic pH in the presence of BMP.
Collapse
Affiliation(s)
- Natascha Remmel
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Germany
| | | | | | | | | |
Collapse
|
8
|
Cohen T, Auerbach W, Ravid L, Bodennec J, Fein A, Futerman AH, Joyner AL, Horowitz M. The exon 8-containing prosaposin gene splice variant is dispensable for mouse development, lysosomal function, and secretion. Mol Cell Biol 2005; 25:2431-40. [PMID: 15743835 PMCID: PMC1061615 DOI: 10.1128/mcb.25.6.2431-2440.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prosaposin is a multifunctional protein with diverse functions. Intracellularly, prosaposin is a precursor of four sphingolipid activator proteins, saposins A to D, which are required for hydrolysis of sphingolipids by several lysosomal exohydrolases. Secreted prosaposin has been implicated as a neurotrophic, myelinotrophic, and myotrophic factor as well as a spermatogenic factor. It has also been implicated in fertilization. The human and the mouse prosaposin gene has a 9-bp exon (exon 8) that is alternatively spliced, resulting in an isoform with three extra amino acids, Gln-Asp-Gln, within the saposin B domain. Alternative splicing in the prosaposin gene is conserved from fish to humans, tissue specific, and regulated in the brain during development and nerve regeneration-degeneration processes. To elucidate the physiological role of alternative splicing, we have generated a mouse lacking exon 8 by homologous recombination. The exon 8 prosaposin mutant mice are healthy and fertile with no obvious phenotype. No changes were detected in prosaposin secretion or in accumulation and metabolism of gangliosides, sulfatides, neutral glycosphingolipids, neutral phospholipids, other neutral lipids, and ceramide. These data strongly indicate that the prosaposin variant containing the exon 8-encoded three amino acids is dispensable for normal mouse development and fertility as well as for prosaposin secretion and its lysosomal function, at least in the presence of the prosaposin variant missing the exon 8-encoded three amino acids.
Collapse
Affiliation(s)
- Tsadok Cohen
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cohen T, Ravid L, Altman N, Madar-Shapiro L, Fein A, Weil M, Horowitz M. Conservation of expression and alternative splicing in the prosaposin gene. ACTA ACUST UNITED AC 2005; 129:8-19. [PMID: 15469878 DOI: 10.1016/j.molbrainres.2004.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
Prosaposin is the precursor of four lysosomal activator molecules known as saposins A, B, C and D. It is also secreted and was proposed to be a neurotrophic factor. The neurotrophic function was attributed to the amino terminus of saposin C. In man, mouse and rat prosaposin is transcribed to two major isoforms differing in the inclusion of 9 bps of exon 8 within the saposin B domain. In the present study, we show that there is evolutionary conservation of the prosaposin structure and alternative splicing in chick and zebrafish as well. Moreover, there is conservation in prosaposin expression as tested immunohistochemically in the mouse and chick developing brain. We developed a sensitive assay to quantitate the prosaposin alternatively spliced forms. Our results indicate that, in mouse brain, skeletal and cardiac muscle the exon 8-containing RNA is most abundant, while it is almost absent from visceral and smooth muscle-containing organs. We observed temporal and differential expression of the alternatively spliced prosaposin mRNAs in mouse and chick brain as well as during development. The elevation in the abundance of exon 8-containing prosaposin RNA during mouse and chick brain development may suggest a role for the exon 8-containing prosaposin form in this process.
Collapse
Affiliation(s)
- Tsadok Cohen
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
Hiraiwa M, Liu J, Lu AG, Wang CY, Misasi R, Yamauchi T, Hozumi I, Inuzuka T, O'Brien JS. Regulation of gene expression in response to brain injury: enhanced expression and alternative splicing of rat prosaposin (SGP-1) mRNA in injured brain. J Neurotrauma 2003; 20:755-65. [PMID: 12965054 DOI: 10.1089/089771503767869980] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prosaposin, the precursor of saposins or saps, is an injury-repair protein that acts on both neurons and glia. Previous studies identified the prosaposin gene as one of differentially expressed genes following nerve injury. In the present study, we investigated expression of prosaposin mRNA in injured brain utilizing rat models of focal cerebral ischemia and cortical stab wound in order to explore the significance of prosaposin in nerve injury. In ischemic brain, the level of prosaposin mRNA was elevated greater than 400% over controls within 5 days after ischemic insults. Importantly, this induction was accompanied by a 9-base splicing consistent with the alternative Exon-8 splicing of human prosaposin mRNA. In normal brain, two prosaposin mRNA species with and without the 9-base insertion were expressed at a ratio of 85:15; however, this equilibrium reverted to 5:95 following ischemic injury. Similar inductions were observed in stab wound brains. Immunohistochemical staining and in situ hybridization demonstrated an enhanced signal distribution of prosaposin mRNA and injury-induced prosaposin protein around the lesion. The data suggest the expression and processing of prosaposin mRNA may be crucially regulated not only for cerebral homeostasis but also during nerve regenerative and degenerative processes.
Collapse
Affiliation(s)
- Masao Hiraiwa
- Department of Neurosciences, School of Medicine, Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093-0634, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Qi X, Kondoh K, Yin H, Wang M, Ponce E, Sun Y, Grabowski GA. Ex vivo localization of the mouse saposin C activation region for acid beta-glucosidase. Mol Genet Metab 2002; 76:189-200. [PMID: 12126932 DOI: 10.1016/s1096-7192(02)00040-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Saposin C is a biological activator of acid beta-glucosidase (GCase), the lysosomal hydrolase with activity towards glucosylceramide (GC). In addition, saposin C possesses a functional domain that determines the in vitro and ex vivo neuritogenic effects of prosaposin, the precursor of saposins A, B, C, and D. The domains for enzymatic activation and neuritogenic function segregate in vitro, respectively, to the carboxyl- and amino-terminal halves of human and mouse saposin C. A chimeric mouse saposin C(1-8)B(8-28)C(30-80) was created to obliterate the neuritogenic region by substituting amino acids 9-29 of saposin C with amino acids 8-28 of saposin B. This saposin showed normal in vitro enzymatic activation effects toward GCase, but no neuritogenic activity. An altered prosaposin was made to contain the chimeric saposin C region. Expression of this altered or wild-type prosaposin was driven by the PGK-1 promoter as a transgene in prosaposin knock-out mice. In cultured fibroblasts from such mice, expressed saposins localized to the lysosomal compartments. Metabolic lipid labeling using L-[3-(14)C]serine showed retention or clearance of GC in prosaposin deficient or transgene reconstituted cells, respectively. In addition, sulfatide catabolism, that requires saposin B and arylsulfatase, was also normalized in prosaposin KO cells reconstituted with the transgenes. These data show that the transgenic prosaposins were expressed and processed to functional saposins in fibroblasts. These results also show that the enzymatic activation domain is located at carboxyl-terminal half of saposin C and functions only in the context of the general saposin structure.
Collapse
Affiliation(s)
- Xiaoyang Qi
- The Division of Human Genetics, Children's Hospital Research Foundation and Department of Pediatrics, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wrobe D, Henseler M, Huettler S, Pascual Pascual SI, Chabas A, Sandhoff K. A non-glycosylated and functionally deficient mutant (N215H) of the sphingolipid activator protein B (SAP-B) in a novel case of metachromatic leukodystrophy (MLD). J Inherit Metab Dis 2000; 23:63-76. [PMID: 10682309 DOI: 10.1023/a:1005603014401] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The lysosomal degradation of sphingolipids with short oligosaccharide chains depends on small glycosylated non-enzymatic sphingolipid activator proteins (SAPs, saposins). Four of the five known SAPs, SAP-A, -B, -C and -D, are derived by proteolytic processing from a common precursor protein (SAP-precursor) that is encoded by a gene on chromosome 10 consisting of 15 exons and 14 introns. SAP-B is a non-specific glycolipid binding protein that stimulates in vitro the hydrolysis of about 20 glycolipids by different enzymes. In vivo SAP-B stimulates in particular the degradation of sulphatides by arylsulphatase A. So far, four different point mutations have been identified on the SAP-B domain of the SAP-precursor gene. The mutations result in a loss of mature SAP-B, causing the lysosomal accumulation of sulphatides and other sphingolipids, resulting in variant forms of metachromatic leukodystrophy (MLD). Here we report on a patient with SAP-B deficiency that is caused by a new homoallelic point mutation that has been identified by mRNA and DNA analysis. A 643A > C transversion results in the exchange of asparagine 215 to histidine and eliminates the single glycosylation site of SAP-B. Metabolic labelling experiments showed that the mutation had no effect on the intracellular transport of the encoded precursor to the acidic compartments and its maturation in the patient's cells. All four SAPs (SAP-A to SAP-D) were detectable by immunochemical methods. SAP-B in the patient's cells was found to be slightly less stable than the protein in normal cells and corresponded in size to the deglycosylated form of the wild-type SAP-B. Feeding studies with non-glycosylated SAP-precursor, generating non-glycosylated SAP-B, showed that the loss of the carbohydrate chain reduced the intracellular activity of the protein significantly. The additional structural change of the patient's SAP-B, caused by the change of amino acid 215 from asparagine to histidine, presumably resulted in an almost completely inactive protein.
Collapse
Affiliation(s)
- D Wrobe
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Hiesberger T, Hüttler S, Rohlmann A, Schneider W, Sandhoff K, Herz J. Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP). EMBO J 1998; 17:4617-25. [PMID: 9707421 PMCID: PMC1170791 DOI: 10.1093/emboj/17.16.4617] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sphingolipid activator proteins SAP-A, -B, -C and -D (also called saposins) are generated by proteolytic processing from a 73 kDa precursor and function as obligatory activators of lysosomal enzymes involved in glycosphingolipid metabolism. Although the SAP precursor can be recognized by the mannose-6-phosphate (M-6-P) receptor and shuttled directly from the secretory pathway to the lysosome, a substantial fraction of newly synthesized precursor is secreted from the cell where it may participate in sphingolipid transport and signaling events. Re-uptake of the secreted precursor is mediated by high-affinity cell surface receptors that are apparently distinct from the M-6-P receptor. We found that the low density lipoprotein receptor-related protein (LRP), a multifunctional endocytic receptor that is expressed on most cells, can mediate cellular uptake and lysosomal delivery of SAP precursor. Additional in vivo experiments in mice revealed that the mannose receptor system on macrophages also participates in precursor internalization. We conclude that SAP precursor gains entry into cells by at least three independent receptor mechanisms including the M-6-P receptor, the mannose receptor and LRP.
Collapse
Affiliation(s)
- T Hiesberger
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Glycosphingolipids are ubiquitous membrane components of eukaryotic cells. They participate in various cell recognition events and can regulate enzymes and receptors within the plasma membrane. Sphingolipidoses are due to an impaired lysosomal digestion of these substances. Glycosphingolipids are degraded by the action of exohydrolases, which are supported, in the case of glycosphingolipids with short oligosaccharide chains, by sphingolipid activator proteins. Five sphingolipid activator proteins are known so far, the GM2-activator and the SAPs, SAP-A to D (also called saposins). Degradation of glycosphingolipids requires endocytic membrane flow of plasma membrane derived glycosphingolipids into the lysosomes. Recent research focused on the topology of this process and on the mechanism and physiological function of sphingolipid activator proteins. Limited knowledge is available about enzymology and topology of glycosphingolipid biosynthesis. Recently, intermediates of this metabolic pathway have been identified as novel signalling molecules. Inhibition of glycosphingolipid biosynthesis has been shown to be beneficial in the animal model of Tay-Sachs disease. Mice with disrupted genes for lysosomal hydrolases and activator proteins are useful models for known human diseases and are valuable tools for the study of glycosphingolipid metabolism, the pathogenesis of sphingolipidoses and novel therapeutic approaches.
Collapse
Affiliation(s)
- Thomas Kolter
- KekuléInstitut für Organische Chemie und Biochemie der Universität, Bonn, Germany
| | - Konrad Sandhoff
- KekuléInstitut für Organische Chemie und Biochemie der Universität, Bonn, Germany
| |
Collapse
|
16
|
Yadao F, Hechtman P, Kaplan F. Formation of a ternary complex between GM2 activator protein, GM2 ganglioside and hexosaminidase A. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:45-52. [PMID: 9217013 DOI: 10.1016/s0167-4838(97)00027-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The GM2 activator is a 17 kDa protein required for the hydrolysis of GM2 ganglioside by the lysosomal enzyme hexosaminidase A (HexA). The activator behaves as a substrate binding protein, solubilizing GM2 ganglioside monomers from micelles (in vitro) or membranes (in vivo). However, the activator also shows a high order of specificity for activation of lysosomal hydrolases and has been predicted to form a ternary complex with the heterodimeric enzyme (alphabeta) Hex A and GM2 ganglioside. We demonstrated a transient interaction between HexA and the GM2 activator. A chimeric protein containing the FLAG epitope sequence upstream of the GM2 activator was expressed in Escherichia coli and purified using the M1 immunoaffinity (anti-FLAG) column. Binding of the FLAG-GM2 activator (FLAG-AP) fusion protein to the M1 column led to the specific retardation of Hex A applied to the column. Other proteins were not retarded by the column nor did they compete with Hex A for binding to FLAG-AP. Hex A and GM2 ganglioside could be simultaneously bound to the column, but the binding of each ligand was independent of the other. The homodimeric (beta beta) isozyme Hex B did not bind to the immobilized activator. The alpha alpha homodimer, HexS, bound weakly, confirming that a hexosaminidase alpha subunit is required for interaction of enzyme and activator.
Collapse
Affiliation(s)
- F Yadao
- McGill University-Montreal Children's Hospital Research Institute, Montreal, Canada
| | | | | |
Collapse
|
17
|
Leonova T, Qi X, Bencosme A, Ponce E, Sun Y, Grabowski GA. Proteolytic processing patterns of prosaposin in insect and mammalian cells. J Biol Chem 1996; 271:17312-20. [PMID: 8663398 DOI: 10.1074/jbc.271.29.17312] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Prosaposin is a multifunctional protein encoded at a single locus in humans and mice. The precursor contains, in tandem, four glycoprotein activators or saposins, termed A, B, C, and D, that are essential for specific glycosphingolipid hydrolase activities. Prosaposin appears to be a potent neurotrophic factor. To explore the proteolytic processing from prosaposin to mature activator proteins, metabolic labeling was done with human prosaposin expressed in insect cells, human fibroblasts, neuronal stem cells (NT2) and retinoic acid-differentiated NT2 neurons. In all cell types, the major processing pathway was through a tetrasaposin, A-B-C-D, from which saposin A was then removed. In mammalian cells monosaposins were derived from the trisaposin B-C-D by cleavage to the disaposins, B-C and C-D, that were processed to monosaposins. In insect cells the major end products were the disaposins, with A-B and C-D derived from the tetrasaposin, A-B-C-D, or with B-C and C-D derived from the trisaposin, B-C-D. In insect and mammalian cells, the nonsignal NH2-terminal peptide preceding saposin A (termed Nter) was usually removed prior to saposin A cleavage. In NT2-derived differentiated neurons, precursor tetrasaposins containing A-B-C-D were secreted with and without Nter. Immunofluorescence studies using prosaposin-specific antisera showed large steady state amounts of uncleaved prosaposin in Purkinje cells, cortical neurons, and other specific cell types in adult mice. These studies indicate that prosaposin processing is highly regulated at a proteolytic level to produce prosaposin, tetrasaposins, or mature monosaposins in specific mammalian cells.
Collapse
Affiliation(s)
- T Leonova
- Division of Human Genetics, Children's Hospital Research Foundation at Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
18
|
Grabowski GA, Saal HM, Wenstrup RJ, Barton NW. Gaucher disease: a prototype for molecular medicine. Crit Rev Oncol Hematol 1996; 23:25-55. [PMID: 8817081 DOI: 10.1016/1040-8428(96)00199-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- G A Grabowski
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
19
|
Henseler M, Klein A, Glombitza GJ, Suziki K, Sandhoff K. Expression of the three alternative forms of the sphingolipid activator protein precursor in baby hamster kidney cells and functional assays in a cell culture system. J Biol Chem 1996; 271:8416-23. [PMID: 8626540 DOI: 10.1074/jbc.271.14.8416] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sphingolipid activator proteins (SAPs) are non-enzymatic glycoproteins required for lysosomal degradation of various sphingolipids with short oligosaccharide chains by their respective exohydrolases. Four of these (SAP-A to SAP-D or saposins A to D) are derived from a common precursor by proteolytic processing. Alternative splicing of the SAP-precursor gene results in insertion of additional 6 or 9 bases of exon 8' or 8, respectively, into the SAP-B coding region of the transcribed mRNAs. To examine the features of the three different SAP-precursor proteins (prosaposins), the respective cDNAs were stably expressed in baby hamster kidney cells. Pulse-chase experiments with transfected cells and endocytosis studies on human fibroblasts showed that synthesis, transport, and maturation of all SAP-precursor led to formation of the four mature SAPs (SAP-A to SAP-D). In order to determine the biological function of the three different SAP-B isoforms, SAP-precursor-deficient human fibroblasts were loaded with recombinant SAP-precursor proteins with or without 2- and 3-amino acid insertions, respectively, purified from the medium of the baby hamster kidney cells. They were found to stimulate at nanomolar concentrations the turnover of biosynthetically labeled ceramide, glucosylceramide, and lactosylceramide. Since the physiological function of SAP-B is to stimulate the degradation of sulfatide by arylsulfatase A (EC 3.1.6.1) and globotriaosylceramide by beta-galactosidase (EC 3.2.1.23) loading studies with the respective exogenously labeled lipids on SAP-precursor-deficient fibroblasts were performed. Addition of different purified SAP-precursors to the medium of the lipid-loaded fibroblasts showed positive stimulation of the lipid degradation by all three SAP-B isoforms derived from the SAP-precursors. These findings establish that all three forms of the SAP-B can function as sulfatide/globotriaosylceramide activator.
Collapse
Affiliation(s)
- M Henseler
- Institut für Organische Chemie und Biochemie, Universität Bonn, D-53121 Bonn, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
20
|
A novel A–>G mutation in intron I of the hepatic lipase gene leads to alternative splicing resulting in enzyme deficiency. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39151-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Munford RS, Sheppard PO, O'Hara PJ. Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41485-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
22
|
Affiliation(s)
- V Gieselmann
- Department of Biochemistry II, Georg August Universität, Göttingen, Germany
| |
Collapse
|
23
|
Qi X, Leonova T, Grabowski GA. Functional human saposins expressed in Escherichia coli. Evidence for binding and activation properties of saposins C with acid beta-glucosidase. J Biol Chem 1994. [PMID: 8206997 DOI: 10.1016/s0021-9258(19)89454-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Small (80-amino acid) glycoproteins or saposins are important for the in vivo function of several lysosomal hydrolases. Four saposins, A, B, C, and D, are encoded by a single locus termed prosaposin. Saposins C and A are thought to function in vivo as activators of acid beta-glucosidase. The physiologic role of saposin C has been confirmed, whereas that of saposin A role has not. To investigate the effects of saposins C and A on acid beta-glucosidase activity, the coding sequence for the individual saposins was expressed in Escherichia coli and the recombinant proteins purified to homogeneity. Recombinant and natural saposins A and C activated acid beta-glucosidase similarly only in micromolar amounts. Saposin C had specific activation of acid beta-glucosidase activity at < 200 nM. A second phase of activation was achieved at > 1 microM. In comparison, saposin A consistently activated acid beta-glucosidase only at > 1 microM. Two mutant saposins C (Cys382-->Phe and Cys382--Gly) were created and shown to compete with saposin C for a site on acid beta-glucosidase. The mutant saposins did not activate the enzyme. Recombinant saposin A (< 200 nM) competed with saposin C for a site on the enzyme but without activating effects. These studies show that saposin A is not an in vitro activator of acid beta-glucosidase at physiologic concentrations, although binding occurs without activating acid beta-glucosidase. The studies with mutant saposins C indicate that the binding and activation effects of saposins C are distinct events. These results indicate that the saposin C-induced conformational change in the enzyme occurs via highly specific, probably multivalent, interactions between acid beta-glucosidase and saposin C.
Collapse
Affiliation(s)
- X Qi
- Division of Human Genetics, Children's Hospital Research Foundation, Cincinnati, Ohio
| | | | | |
Collapse
|
24
|
Sandhoff K, Klein A. Intracellular trafficking of glycosphingolipids: role of sphingolipid activator proteins in the topology of endocytosis and lysosomal digestion. FEBS Lett 1994; 346:103-7. [PMID: 8206147 DOI: 10.1016/0014-5793(94)00282-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycosphingolipids (GSL) are components of the outer leaflet of the plasma membrane (PM) of vertebrate tissues. Our current knowledge of GSL metabolism and their intracellular traffic has been derived from metabolic studies but the exact mechanisms by which GSLs are transported from sites of synthesis (endoplasmic reticulum and Golgi) to the sites of residence (PM) and degradation (lysosomes) have not been clearly defined. It is now established that components of the PM reach the lysosomal compartment mainly by endocytic membrane flow. According to a new model, GSLs derived from the PM are thought to end up in intra-endosomal vesicles which could be delivered, by successive processes of membrane fission and fusion, along the endocytic pathway directly into the lumen of the lysosomes. Here the GSLs are degraded in a step-wise manner by exohydrolases. However, the catabolism of membrane-bound GSLs with short hydrophilic head groups needs the assistance of sphingolipid activator proteins (SAPs), which lift the GSLs from the plane of the membrane and present them for degradation to the lysosomal exohydrolases, which are usually water-soluble. The inherited deficiency of one of these enzymes or SAPs causes the lysosomal storage of their respective GSL substrates. In the case of the simultaneous deficiency of all 4 different SAPs the storage of all GSLs with short hydrophilic head groups occurs within multivesicular bodies and/or intra-lysosomal vesicles.
Collapse
Affiliation(s)
- K Sandhoff
- Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | |
Collapse
|
25
|
Metabolism of Gangliosides: Topology, Pathobiochemistry, and Sphingolipid Activator Proteins. CURRENT TOPICS IN MEMBRANES 1994. [DOI: 10.1016/s0070-2161(08)60977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
26
|
Sandhoff K, van Echten G. Ganglioside metabolism: enzymology, topology and regulation. PROGRESS IN BRAIN RESEARCH 1994; 101:17-29. [PMID: 8029449 DOI: 10.1016/s0079-6123(08)61937-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Sandhoff
- Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | |
Collapse
|
27
|
Gieselmann V, Zlotogora J, Harris A, Wenger DA, Morris CP. Molecular genetics of metachromatic leukodystrophy. Hum Mutat 1994; 4:233-42. [PMID: 7866401 DOI: 10.1002/humu.1380040402] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metachromatic leukodystrophy is an autosomal recessive inherited lysosomal storage disease. It can be caused by mutations in two different genes, the arylsulfatase A and the prosaposin gene. These genes encode two proteins that are needed for the proper degradation of cerebroside sulfate, a glycolipid mainly found in the myelin membranes. Deficiency of arylsulfatase A or of a proteolytic product of prosaposin leads to the accumulation of cerebroside sulfate, which causes a lethal progressive demyelination. Mutations in the arylsulfatase A gene are far more frequent than those of the prosaposin gene. So far 31 amino acid substitutions, one nonsense mutation, three small deletions, three splice donor site mutations, and one combined missense/splice donor site mutation have been identified in the arylsulfatase A gene. Two of these mutant alleles are frequent, accounting for about one-half of all mutant alleles, whereas the remainder are heterogeneous. Amino acid substitutions cluster in exons 2 and 3, a region that shows a high degree of conservation among sulfatases of different function and origin. Different mutations are associated with phenotypes of different severity, but there is a remarkable variability of severity when patients with identical genotypes are compared. Demonstration of an arylsulfatase A deficiency is not a proof of metachromatic leukodystrophy, since a substantial deficiency without any clinical consequences is frequent in the general population. This deficiency is caused by an arylsulfatase A allele, which due to certain mutations encodes greatly reduced amounts of functional enzyme. However, these amounts are sufficient to sustain a normal phenotype. In the diagnosis and genetic counseling, these deficiencies must be differentiated from those causing metachromatic leukodystrophy. So far only six patients with mutations in the prosaposin gene have been described, in which three defective alleles two with amino acid substitutions and one with a 33-bp insertion have been identified.
Collapse
Affiliation(s)
- V Gieselmann
- Institut für Biochemie II, Georg-August-Universität Göttingen, Germany
| | | | | | | | | |
Collapse
|
28
|
Tyynelä J, Palmer DN, Baumann M, Haltia M. Storage of saposins A and D in infantile neuronal ceroid-lipofuscinosis. FEBS Lett 1993; 330:8-12. [PMID: 8370464 DOI: 10.1016/0014-5793(93)80908-d] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have isolated storage cytosomes from brain tissue of patients with infantile neuronal ceroid-lipofuscinosis. The purified storage bodies were subjected to compositional analysis which revealed a high content of proteins, accounting for 43% of dry weight. Saposins A and D, also known as sphingolipid activator proteins (SAPs), were shown to constitute a major portion of the accumulated protein using gel electrophoresis and sequence analysis. This is the first time that saposins have been found to be stored in any form of neuronal ceroid-lipofuscinosis.
Collapse
Affiliation(s)
- J Tyynelä
- Department of Medical Chemistry, University of Helsinki, Finland
| | | | | | | |
Collapse
|
29
|
Kishimoto Y, Hiraiwa M, O'Brien JS. Saposins: structure, function, distribution, and molecular genetics. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)40540-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Fürst W, Sandhoff K. Activator proteins and topology of lysosomal sphingolipid catabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1126:1-16. [PMID: 1606169 DOI: 10.1016/0005-2760(92)90210-m] [Citation(s) in RCA: 224] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The lysosomal degradation of several sphingolipids by acid hydrolases is dependent on small non-enzymic cofactors, called sphingolipid activator proteins some of which have been identified as sphingolipid binding proteins. This review summarizes the information available on the structure, function, biosynthesis, gene organization and pathobiochemistry of the known sphingolipid activator proteins. It also offers models for their mode of action and for the topology of lysosomal digestion of glycolipids.
Collapse
Affiliation(s)
- W Fürst
- Institute for Organic Chemistry and Biochemistry, University of Bonn, Germany
| | | |
Collapse
|
31
|
Schnabel D, Schröder M, Fürst W, Klein A, Hurwitz R, Zenk T, Weber J, Harzer K, Paton B, Poulos A. Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50733-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|