1
|
Atypical PEX16 peroxisome biogenesis disorder with mild biochemical disruptions and long survival. Brain Dev 2019; 41:57-65. [PMID: 30078639 DOI: 10.1016/j.braindev.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mutations in PEX16 cause peroxisome biogenesis disorder (PBD). Zellweger syndrome characterized by neurological dysfunction, dysmorphic features, liver disease and early death represents the severe end of this clinical spectrum. Here we discuss the diagnostic challenge of atypical PEX16 related PBD in 3 patients from highly inbred kindred and describe the role of specific metabolites analyses, fibroblasts studies, whole-exome sequencing (WES) and metabolomics profiling to establish the diagnosis. METHODS AND PATIENTS The proband is a 12-year-old male born to consanguineous parents. Despite normal development in the first year, regression and progressive spastic diplegia, poor coordination and dysarthria occurred thereafter. Patient 2 (3-year old female) and Patient 3 (19-month old female) shared similar clinical course with the proband. Biochemical studies on plasma and fibroblasts, WES and global metabolomics analyses were performed. RESULTS Very-long-chain fatty acids analysis showed subtle elevations in C26 and C26/C22. Global Metabolomics-Assisted Pathway profiling was not remarkable. Immunocytochemical investigations on fibroblasts revealed fewer catalase and PMP70-containing particles indicating aberrant peroxisomal assembly. Complementation studies were inconclusive. WES revealed a novel homozygous variant in PEX16 (c.859C>T). The biochemical profiles of Patient 2 and Patient 3 were similar to the proband and the same genotype was confirmed. CONCLUSION This paper highlights the diagnostic challenge of PEX16 patients due to the widely variable clinical and biochemical phenotypes. It also emphasizes the important roles of combined biochemical assays with next generation sequencing techniques in reaching diagnosis in the context of atypical clinical presentations, subtle biomarker abnormalities and consanguinity.
Collapse
|
2
|
Matsui S, Funahashi M, Honda A, Shimozawa N. Newly identified milder phenotype of peroxisome biogenesis disorder caused by mutated PEX3 gene. Brain Dev 2013; 35:842-8. [PMID: 23245813 DOI: 10.1016/j.braindev.2012.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/12/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022]
Abstract
We identified the first patient with infantile Refsum disease (IRD), a milder phenotype of peroxisome biogenesis disorder (PBD) caused by a mutated PEX3, and investigated the clinical, molecular and cellular characterization in this patient. The patient presented psychomotor regression, late-onset leukodystrophy, peripheral neuropathy, hearing impairment, a renal cyst, and renal hypertension and survived until the age of 36. Furthermore, fibroblasts from the patient indicated a mosaic pattern of catalase-positive particles (peroxisomes) and numerous peroxisomal membrane structures. Molecular analysis was homozygous for the D347Y mutation and reduced gene expression of PEX3 which encodes a peroxisomal membrane protein, pex3p, involved in peroxisome assembly at the early stage of peroxisomal membrane vesicle formation, therefore, patients with a mutated PEX3 gene have been reported to have only a severe phenotype of Zellweger syndrome and no or less peroxisomal remnant membrane structure. This is not only a newly identified milder PBD caused by a mutated PEX3 gene but also the first report of a Japanese patient with IRD who had not been diagnosed until over 30years of age, which suggests there must be more variant PBD in patients with degenerative neurologic disorder, and to bring them to light is necessary.
Collapse
Affiliation(s)
- Shuji Matsui
- Tokyo Children's Rehabilitation Hospital, Musashimurayama, Tokyo, Japan
| | | | | | | |
Collapse
|
3
|
Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1430-41. [PMID: 22871920 DOI: 10.1016/j.bbadis.2012.04.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
Human peroxisome biogenesis disorders (PBDs) are a heterogeneous group of autosomal recessive disorders comprised of two clinically distinct subtypes: the Zellweger syndrome spectrum (ZSS) disorders and rhizomelic chondrodysplasia punctata (RCDP) type 1. PBDs are caused by defects in any of at least 14 different PEX genes, which encode proteins involved in peroxisome assembly and proliferation. Thirteen of these genes are associated with ZSS disorders. The genetic heterogeneity among PBDs and the inability to predict from the biochemical and clinical phenotype of a patient with ZSS which of the currently known 13 PEX genes is defective, has fostered the development of different strategies to identify the causative gene defects. These include PEX cDNA transfection complementation assays followed by sequencing of the thus identified PEX genes, and a PEX gene screen in which the most frequently mutated exons of the different PEX genes are analyzed. The benefits of DNA testing for PBDs include carrier testing of relatives, early prenatal testing or preimplantation genetic diagnosis in families with a recurrence risk for ZSS disorders, and insight in genotype-phenotype correlations, which may eventually assist to improve patient management. In this review we describe the current status of genetic analysis and the molecular basis of PBDs.
Collapse
|
4
|
Shaheen R, Al-Dirbashi OY, Al-Hassnan ZN, Al-Owain M, Makhsheed N, Basheeri F, Seidahmed MZ, Salih MAM, Faqih E, Zaidan H, Al-Sayed M, Rahbeeni Z, Al-Sheddi T, Hashem M, Kurdi W, Shimozawa N, Alkuraya FS. Clinical, biochemical and molecular characterization of peroxisomal diseases in Arabs. Clin Genet 2011; 79:60-70. [PMID: 20681997 DOI: 10.1111/j.1399-0004.2010.01498.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxisomes are single membrane-bound cellular organelles that carry out critical metabolic reactions perturbation of which leads to an array of clinical phenotypes known as peroxisomal disorders (PD). In this study, the largest of its kind in the Middle East, we sought to comprehensively characterize these rare disorders at the clinical, biochemical and molecular levels. Over a 2-year period, we have enrolled 17 patients representing 16 Arab families. Zellweger-spectrum phenotype was observed in 12 patients and the remaining 5 had the rhizomelic chondrodysplasia punctata phenotype. We show that homozygosity mapping is a cost-effective strategy that enabled the identification of the underlying genetic defect in 100% of the cases. The pathogenic nature of the mutations identified was confirmed by immunofluorescence and complementation assays. We confirm the genetic heterogeneity of PD in our population, expand the pool of pathogenic alleles and draw some phenotype/genotype correlations.
Collapse
Affiliation(s)
- R Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Al-Dirbashi OY, Shaheen R, Al-Sayed M, Al-Dosari M, Makhseed N, Abu Safieh L, Santa T, Meyer BF, Shimozawa N, Alkuraya FS. Zellweger syndrome caused by PEX13 deficiency: report of two novel mutations. Am J Med Genet A 2009; 149A:1219-23. [PMID: 19449432 DOI: 10.1002/ajmg.a.32874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisomal biogenesis disorders represent a group of genetically heterogeneous conditions that have in common failure of proper peroxisomal assembly. Clinically, they are characterized by a spectrum of dysmorphia, neurological, liver, and other organ involvement. To date, mutations in 13 PEX genes encoding peroxins have been identified in patients with peroxisomal biogenesis disorders. Mutations in PEX13, which encodes peroxisomal membrane protein PEX13, are among the least common causes of peroxisomal biogenesis disorders with only three mutations reported so far. Here, we report on two infants whose clinical and biochemical profile was consistent with classical Zellweger syndrome and whose complementation analysis assigned them both to group H of peroxisomal biogenesis disorders. We show that they harbor two novel mutations in PEX13. One patient had a genomic rearrangement resulting in a 147 kb deletion that spans the whole of PEX13, while the other had an out-of-frame deletion of 14 bp. This represents the first report of a PEX13 deletion and suggests that further work is needed to examine the frequency of PEX13 mutations among Arab patients with peroxisomal biogenesis disorders.
Collapse
Affiliation(s)
- O Y Al-Dirbashi
- National Laboratory for Newborn Screening, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zeharia A, Ebberink MS, Wanders RJA, Waterham HR, Gutman A, Nissenkorn A, Korman SH. A novel PEX12 mutation identified as the cause of a peroxisomal biogenesis disorder with mild clinical phenotype, mild biochemical abnormalities in fibroblasts and a mosaic catalase immunofluorescence pattern, even at 40 degrees C. J Hum Genet 2007; 52:599-606. [PMID: 17534573 DOI: 10.1007/s10038-007-0157-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Mutations in 12 different PEX genes can cause a generalized peroxisomal biogenesis disorder with clinical phenotypes ranging from Zellweger syndrome to infantile Refsum disease. To identify the specific PEX gene to be sequenced, complementation analysis is first performed in fibroblasts using catalase immunofluorescence. A patient with a relatively mild phenotype of infantile cholestasis, hypotonia and motor delay had elevated plasma very long-chain fatty acids and bile acid precursors, but fibroblast studies revealed normal or only mildly abnormal peroxisomal parameters and mosaic catalase immunofluorescence. This mosaicism persisted even when the incubation temperature was increased from 37 degrees C to 40 degrees C, a maneuver previously shown to abolish mosaicism by exacerbating peroxisomal dysfunction. As mosaicism precludes complementation analysis, a candidate gene approach was employed. After PEX1 sequencing was unrewarding, PEX12 sequencing revealed homozygosity for a novel c.102A>T (p.R34S) missense mutation affecting a partially conserved residue in the N-terminal region important for localization to peroxisomes. Transfection of patient fibroblasts with wild-type PEX12 cDNA confirmed that a PEX12 defect was the basis for the PBD. Homozygosity for c.102A>T was identified in a second patient of similar ethnic origin also presenting with a mild phenotype. PEX12 is a highly probable candidate gene for direct sequencing in the context of a mild clinical phenotype with mosaicism and minimally abnormal peroxisomal parameters in fibroblasts.
Collapse
Affiliation(s)
- Avraham Zeharia
- Day Hospitalization Unit, Schneider Children's Medical Center of Israel, Sackler School of Medicine, Tel Aviv University, Petach Tikvah, Israel
| | - Merel S Ebberink
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Alisa Gutman
- Department of Clinical Biochemistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Andreea Nissenkorn
- Pediatric Neurology Unit, Safra Children's Hosptial, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Hashomer, Israel
| | - Stanley H Korman
- Department of Clinical Biochemistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- Metabolic Diseases Unit, Division of Pediatrics, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, Israel.
| |
Collapse
|
7
|
Wanders RJA, Waterham HR. Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet 2004; 67:107-33. [PMID: 15679822 DOI: 10.1111/j.1399-0004.2004.00329.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The peroxisomal disorders represent a group of genetic diseases in humans in which there is an impairment in one or more peroxisomal functions. The peroxisomal disorders are usually subdivided into two subgroups including (i) the peroxisome biogenesis disorders (PBDs) and (ii) the single peroxisomal (enzyme-) protein deficiencies. The PBD group is comprised of four different disorders including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum's disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). ZS, NALD, and IRD are clearly distinct from RCDP and are usually referred to as the Zellweger spectrum with ZS being the most severe and NALD and IRD the less severe disorders. Studies in the late 1980s had already shown that the PBD group is genetically heterogeneous with at least 12 distinct genetic groups as concluded from complementation studies. Thanks to the much improved knowledge about peroxisome biogenesis notably in yeasts and the successful extrapolation of this knowledge to humans, the genes responsible for all these complementation groups have been identified making molecular diagnosis of PBD patients feasible now. It is the purpose of this review to describe the current stage of knowledge about the clinical, biochemical, cellular, and molecular aspects of PBDs, and to provide guidelines for the post- and prenatal diagnosis of PBDs. Less progress has been made with respect to the pathophysiology and therapy of PBDs. The increasing availability of mouse models for these disorders is a major step forward in this respect.
Collapse
Affiliation(s)
- R J A Wanders
- Department of Pediatrics, Academic Medical Centre, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Steinberg S, Chen L, Wei L, Moser A, Moser H, Cutting G, Braverman N. The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab 2004; 83:252-63. [PMID: 15542397 DOI: 10.1016/j.ymgme.2004.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/14/2004] [Accepted: 08/20/2004] [Indexed: 10/26/2022]
Abstract
Peroxisome biogenesis disorders in the Zellweger syndrome spectrum (PBD-ZSS) are caused by defects in at least 12 PEX genes required for normal organelle assembly. Clinical and biochemical features continue to be used reliably to assign patients to this general disease category. Identification of the precise genetic defect is important, however, to permit carrier testing and early prenatal diagnosis. Molecular analysis is likely to expand the clinical spectrum of PBD and may also provide data relevant to prognosis and future therapeutic intervention. However, the large number of genes involved has thus far impeded rapid mutation identification. In response, we developed the PEX Gene Screen, an algorithm for the systematic screening of exons in the six PEX genes most commonly defective in PBD-ZSS. We used PCR amplification of genomic DNA and sequencing to screen 91 unclassified PBD-ZSS patients for mutations in PEX1, PEX26, PEX6, PEX12, PEX10, and PEX2. A maximum of 14 reactions per patient identified pathological mutations in 79% and both mutant alleles in 54%. Twenty-five novel mutations were identified overall. The proportion of patients with different PEX gene defects correlated with frequencies previously identified by complementation analysis. This systematic, hierarchical approach to mutation identification is therefore a valuable tool to identify rapidly the molecular etiology of suspected PBD-ZSS disorders.
Collapse
Affiliation(s)
- Steven Steinberg
- Peroxisomal Diseases Laboratory, Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The group of peroxisomal disorders now includes 17 different disorders with Zellweger syndrome as prototype. Thanks to the explosion of new information about the functions and biogenesis of peroxisomes, the metabolic and molecular basis of most of the peroxisomal disorders has been resolved. A review of peroxisomal disorders is provided in this paper.
Collapse
Affiliation(s)
- Ronald J A Wanders
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry, Emma Children's Hospital, Laboratory of Genetic Metabolic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Mandel H, Korman SH. Phenotypic variability (heterogeneity) of peroxisomal disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 544:9-30. [PMID: 14713208 DOI: 10.1007/978-1-4419-9072-3_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Peroxisomes perform a multitude of biosynthetic and catabolic functions, many of which are related to lipid metabolism. Peroxisomal disorders result either from deficiency of a single peroxisomal enzyme or protein, or from a defect in the complex mechanism of peroxisomal biogenesis, resulting in deficiency of several or multiple peroxisomal functions. These can be assessed by a battery of biochemical assays, enabling a biochemical phenotype to be defined that is specific and diagnostic for each of the peroxisomal disorders. Some peroxisomal disorders have unique and specific clinical phenotypes, which may be diagnostic. Others share patterns of clinical abnormalities (particularly neurological dysfunction, craniofacial dysmorphism, skeletal defects, sensory deafness, retinopathy) consistent with defined clinical phenotypes, but with considerable overlap and heterogeneity. To a certain extent, the clinical features of a particular disorder reflect the accumulation or deficiency of specific metabolites. Thus, the same clinical phenotypes may be caused by both single enzyme defects and PBDs. Furthermore, the same defect may present with different clinical phenotypes. In general, the severity of the clinical phenotype correlates with the degree of biochemical dysfunction. The clinical heterogeneity of peroxisomal disorders constitutes a diagnostic challenge demanding a high index of suspicion on the clinician's part.
Collapse
Affiliation(s)
- Hanna Mandel
- Metabolic Disease Unit, Department of Pediatrics, Rambam Medical Center, Technion-Israel Institute of Technology, Bruce Rappaport Faculty of Medicine, Haifa, Israel.
| | | |
Collapse
|
11
|
Shimozawa N, Tsukamoto T, Nagase T, Takemoto Y, Koyama N, Suzuki Y, Komori M, Osumi T, Jeannette G, Wanders RJA, Kondo N. Identification of a new complementation group of the peroxisome biogenesis disorders andPEX14 as the mutated gene. Hum Mutat 2004; 23:552-8. [PMID: 15146459 DOI: 10.1002/humu.20032] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peroxisome biogenesis disorders (PBD) are lethal hereditary diseases caused by abnormalities in the biogenesis of peroxisomes. At present, 12 different complementation groups have been identified and to date, all genes responsible for each of these complementation groups have been identified. The peroxisomal membrane protein PEX14 is a key component of the peroxisomal import machinery and may be the initial docking site for the two import receptors PEX5 and PEX7. Although PEX14 mutants have been identified in yeasts and CHO-cells, human PEX14 deficiency has apparently not been documented. We now report the identification of a new complementation group of the peroxisome biogenesis disorders with PEX14 as the defective gene. Indeed, human PEX14 rescues the import of a PTS1-dependent as well as a PTS2-dependent protein into the peroxisomes in fibroblasts from a patient with Zellweger syndrome belonging to the new complementation group. This patient was homozygous for a nonsense mutation in a putative coiled-coil region of PEX14, c.553C>T (p.Q185X). Furthermore, we showed that the patient's fibroblasts lacked PEX14 as determined by immunocytochemical analysis. These findings indicate that there are 13 genotypes in PBD and that the role of PEX14 is also essential in humans.
Collapse
Affiliation(s)
- Nobuyuki Shimozawa
- Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Raas-Rothschild A, Wanders RJA, Mooijer PAW, Gootjes J, Waterham HR, Gutman A, Suzuki Y, Shimozawa N, Kondo N, Eshel G, Espeel M, Roels F, Korman SH. A PEX6-defective peroxisomal biogenesis disorder with severe phenotype in an infant, versus mild phenotype resembling Usher syndrome in the affected parents. Am J Hum Genet 2002; 70:1062-8. [PMID: 11873320 PMCID: PMC379104 DOI: 10.1086/339766] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2001] [Accepted: 01/14/2002] [Indexed: 11/03/2022] Open
Abstract
Sensorineural deafness and retinitis pigmentosa (RP) are the hallmarks of Usher syndrome (USH) but are also prominent features in peroxisomal biogenesis defects (PBDs); both are autosomal recessively inherited. The firstborn son of unrelated parents, who both had sensorineural deafness and RP diagnosed as USH, presented with sensorineural deafness, RP, dysmorphism, developmental delay, hepatomegaly, and hypsarrhythmia and died at age 17 mo. The infant was shown to have a PBD, on the basis of elevated plasma levels of very-long- and branched-chain fatty acids (VLCFAs and BCFAs), deficiency of multiple peroxisomal functions in fibroblasts, and complete absence of peroxisomes in fibroblasts and liver. Surprisingly, both parents had elevated plasma levels of VLCFAs and BCFAs. Fibroblast studies confirmed that both parents had a PBD. The parents' milder phenotypes correlated with relatively mild peroxisomal biochemical dysfunction and with catalase immunofluorescence microscopy demonstrating mosaicism and temperature sensitivity in fibroblasts. The infant and both of his parents belonged to complementation group C. PEX6 gene sequencing revealed mutations on both alleles, in the infant and in his parents. This unique family is the first report of a PBD with which the parents are themselves affected individuals rather than asymptomatic carriers. Because of considerable overlap between USH and milder PBD phenotypes, individuals suspected to have USH should be screened for peroxisomal dysfunction.
Collapse
|
13
|
Suzuki Y, Shimozawa N, Orii T, Tsukamoto T, Osumi T, Fujiki Y, Kondo N. Genetic and molecular bases of peroxisome biogenesis disorders. Genet Med 2001; 3:372-6. [PMID: 11545691 DOI: 10.1097/00125817-200109000-00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Y Suzuki
- Medical Education Development Center, Gifu University School of Medicine, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Yamaguchi S, Iga M, Kimura M, Suzuki Y, Shimozawa N, Fukao T, Kondo N, Tazawa Y, Orii T. Urinary organic acids in peroxisomal disorders: a simple screening method. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 758:81-6. [PMID: 11482738 DOI: 10.1016/s0378-4347(01)00102-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using GC-MS, we studied urinary organic acids in 20 Japanese patients with peroxisomal disorders, including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy, and single deficiency of peroxisomal beta-oxidation enzymes. Non-ketotic dicarboxylic aciduria with elevated sebacate/adipate molar ratio was observed in 19 of the 20 patients. Elevation of 2-hydroxysebacate and epoxydicarboxylic acids were seen in 13 and 18, respectively. Tyrosyluria was remarkable in all patients. In two ZS patients, we tracked the time course from birth to infancy, and all the above stated findings were detected, except for one sample. Urinary organic acid analysis is indeed useful for screening subjects with peroxisomal disorders.
Collapse
Affiliation(s)
- S Yamaguchi
- Department of Pediatrics, Shimane Medical University, Izumo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Suzuki Y, Shimozawa N, Imamura A, Fukuda S, Zhang Z, Orii T, Kondo N. Clinical, biochemical and genetic aspects and neuronal migration in peroxisome biogenesis disorders. J Inherit Metab Dis 2001; 24:151-65. [PMID: 11405337 DOI: 10.1023/a:1010310816743] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peroxisome biogenesis disorders (PBDs) are severe autosomal recessive neurological diseases caused by a defect of peroxisomal assembly factors. Zellweger syndrome, the most severe phenotype, is characterized by hypotonia, psychomotor retardation and neuronal migration disorder. Neonatal adrenoleukodystrophy and infantile Refsum disease are milder phenotypes of this disease. Thirteen complementation groups have been established since the genetic heterogeneity of PBDs was elucidated in 1988. Eleven genes for PBDs have been identified either by a functional complementation cloning or by EST homology searches. In 1992, the first gene for PBDs, PEX2, was identified. It encodes peroxisomal integral membrane protein with a RING finger domain. PEX5 and PEX7 are the genes for peroxisomal targeting signal (PTS)-1 and -2 receptors, respectively. PEX3, PEX16 and PEX19 are considered to be required for the early stage of peroxisome biogenesis. PEX13 protein has an SH3 docking site that binds to the PTS-1 receptor. PEX1 and PEX6 encode ABC protein, and PEX10 and PEX12 also encode integral membrane protein, with RING finger. Temperature-sensitivity, whereby peroxisomal biogenesis and metabolic dysfunctions are restored at 30 degrees C in cells from mild phenotypes, is a useful event for predicting the clinical severity and for elucidation of peroxisome biogenesis. Investigations using knockout mice are expected to facilitate understanding of migration disorders.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
McGuinness MC, Wei H, Smith KD. Therapeutic developments in peroxisome biogenesis disorders. Expert Opin Investig Drugs 2000; 9:1985-92. [PMID: 11060787 DOI: 10.1517/13543784.9.9.1985] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Clinically, peroxisome biogenesis disorders (PBDs) are a group of lethal diseases with a continuum of severity of clinical symptoms ranging from the most severe form, Zellweger syndrome, to the milder forms, infantile Refsum disease and rhizomelic chondrodysplasia punctata. PBDs are characterised by a number of biochemical abnormalities including impaired degradation of peroxide, very long chain fatty acids, pipecolic acid, phytanic acid and xenobiotics and impaired synthesis of plasmalogens, bile acids, cholesterol and docosahexaenoic acid. Treatment of PBD patients as a group is problematic since a number of patients, especially those with Zellweger syndrome, have significant neocortical alterations in the brain at birth so that full recovery would be impossible even with postnatal therapy. To date, treatment of PBD patients has generally involved only supportive care and symptomatic therapy. However, the fact that some of the milder PBD patients live into the second decade has prompted research into possible treatments for these patients. A number of experimental therapies have been evaluated to determine whether or not correction of biochemical abnormalities through dietary supplementation and/or modification is of clinical benefit to PBD patients. Another approach has been pharmacological induction of peroxisomes in PBD patients to improve overall peroxisomal biochemical function. Well known rodent peroxisomal proliferators were found not to induce human peroxisomes. Recently, our laboratory demonstrated that sodium 4-phenylbutyrate induces peroxisome proliferation and improves biochemical function (very long chain fatty acid beta-oxidation rates and very long chain fatty acid and plasmalogens levels) in fibroblast cell lines from patients with milder PBD phenotypes. Dietary supplementation and/or modification and pharmacological induction of peroxisomes as treatment strategies for PBD patients will be the subject of this review.
Collapse
Affiliation(s)
- M C McGuinness
- Kennedy Krieger Institute, Room 400A, 707 North Broadway, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
17
|
Shimozawa N, Zhang Z, Suzuki Y, Imamura A, Tsukamoto T, Osumi T, Fujiki Y, Orii T, Barth PG, Wanders RJ, Kondo N. Functional heterogeneity of C-terminal peroxisome targeting signal 1 in PEX5-defective patients. Biochem Biophys Res Commun 1999; 262:504-8. [PMID: 10462504 DOI: 10.1006/bbrc.1999.1232] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate mechanisms related to functions of the peroxisome targeting signal (PTS) 1 receptor, Pex5p, we analyzed peroxisome matrix protein import in fibroblasts from three patients with peroxisome biogenesis disorders, all with different mutations in the PEX5 gene. The patients 2-01 (Zellweger syndrome) and 2-05 (neonatal adrenoleukodystrophy) have the reported mutations, R390X and N489K, and patient 2-03 (infantile Refsum disease) has a newly identified mutation, S563W. Fibroblasts from 2-03 (S563W) were detected in both PTS1 and PTS2 imports despite the PEX5 defect, findings in contrast with fibroblasts from 2-05 (N489K) severely defective in PTS1 import and those from 2-01 (R390X) severely defective in both PTS1 and PTS2. The PTS1 receptor in 2-03 is functional for only the C-terminal -SKL sequence (acyl-CoA oxidase) and had little or no function for C-terminal -AKL (D-bifunctional protein and sterol carrier protein 2) and -KANL (catalase) sequences, respectively. After transfection of these mutated PEX5 cDNA into the PEX5-defective CHO mutant, transformants of ZP102 revealed that each mutation was responsible for each dysfunction of the PTS1 import. It seems apparent that -AKL and -KANL are poorer variants of PTS1 and are likely to be more susceptible to effects of mutation of its receptor, Pex5p.
Collapse
Affiliation(s)
- N Shimozawa
- Department of Pediatrics, Gifu University School of Medicine, Gifu, 500-8076, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wanders RJ, Mooijer PA, Dekker C, Suzuki Y, Shimozawa N. Disorders of peroxisome biogenesis: complementation analysis shows genetic heterogeneity with strong overrepresentation of one group (PEX1 deficiency). J Inherit Metab Dis 1999; 22:314-8. [PMID: 10384395 DOI: 10.1023/a:1005504104541] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- R J Wanders
- University of Amsterdam, Department of Clinical Chemistry, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Ghaedi K, Kawai A, Okumoto K, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y. Isolation and characterization of novel peroxisome biogenesis-defective Chinese hamster ovary cell mutants using green fluorescent protein. Exp Cell Res 1999; 248:489-97. [PMID: 10222140 DOI: 10.1006/excr.1999.4413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed an improved method for isolation of peroxisome biogenesis-defective somatic animal cell mutants, using a combination of green fluorescent protein (GFP) expression and the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) selection method. We used TKaG1 and TKaG2 cells, the wild-type Chinese hamster ovary (CHO) cells, CHO-K1, that had been stably transfected with cDNAs each encoding rat Pex2p as well as GFP tagged at the C-terminus with peroxisome targeting signal type 1 (PTS1) or N-terminally PTS2-tagged GFP. P9OH/UV-resistant cell colonies were examined for intracellular location of GFP on unfixed cells, by fluorescence microscopy. Seven each of the mutant cell clones isolated from TKaG1 and TKaG2 showed cytosolic GFP-PTS1 and PTS2-GFP, respectively, indicating the defect in peroxisome assembly. By transfection of PEX2, PEX5, PEX6, and PEX12 cDNAs and cell fusion analysis between the CHO cell mutants, five different complementation groups (CGs) were identified. Two mutant clones, ZPG207 and ZPG208, belonged to novel CGs. Further CG analysis using fibroblasts from patients with peroxisome biogenesis disorders, including rhizomelic chondrodysplasia punctata (RCDP), revealed that ZPG208 belonged to none of human CGs. ZPG207 was classified into the same CG as RCDP. Taken together, ZPG208 is in a newly identified, the 12th, CG in peroxisome-deficient CHO mutants reported to date and represents a novel mammalian CG.
Collapse
Affiliation(s)
- K Ghaedi
- Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Kondo N, Kinoshita N, Fujiki Y, Tsukamoto T, Osumi T, Imanaka T, Orii T, Beemer F, Mooijer P, Dekker C, Wanders RJ. Genetic basis of peroxisome-assembly mutants of humans, Chinese hamster ovary cells, and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts. Am J Hum Genet 1998; 63:1898-903. [PMID: 9837841 PMCID: PMC1377660 DOI: 10.1086/302142] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
21
|
Honsho M, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y. Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet 1998; 63:1622-30. [PMID: 9837814 PMCID: PMC1377633 DOI: 10.1086/302161] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome (ZS), are autosomal recessive diseases caused by a deficiency in peroxisome assembly as well as by a malfunction of peroxisomes, among which>10 genotypes have been identified. We have isolated a human PEX16 cDNA (HsPEX16) by performing an expressed-sequence-tag homology search on a human DNA database, by using yeast PEX16 from Yarrowia lipolytica and then screening the human liver cDNA library. This cDNA encodes a peroxisomal protein (a peroxin Pex16p) made up of 336 amino acids. Among 13 peroxisome-deficiency complementation groups (CGs), HsPEX16 expression morphologically and biochemically restored peroxisome biogenesis only in fibroblasts from a CG-D patient with ZS in Japan (the same group as CG-IX in the United States). Pex16p was localized to peroxisomes through expression study of epitope-tagged Pex16p. One patient (PBDD-01) possessed a homozygous, inactivating nonsense mutation, C-->T at position 526 in a codon (CGA) for 176Arg, that resulted in a termination codon (TGA). This implies that the C-terminal half is required for the biological function of Pex16p. PBDD-01-derived PEX16 cDNA was defective in peroxisome-restoring activity when expressed in the patient's fibroblasts. These results demonstrate that mutation in PEX16 is the genetic cause of CG-D PBDs.
Collapse
Affiliation(s)
- M Honsho
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Baumgartner MR, Poll-The BT, Verhoeven NM, Jakobs C, Espeel M, Roels F, Rabier D, Levade T, Rolland MO, Martinez M, Wanders RJ, Saudubray JM. Clinical approach to inherited peroxisomal disorders: a series of 27 patients. Ann Neurol 1998; 44:720-30. [PMID: 9818927 DOI: 10.1002/ana.410440505] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To illustrate the clinical and biochemical heterogeneity of peroxisomal disorders, we report our experience with 27 patients seen personally between 1982 and 1997. Twenty patients presented with a phenotype corresponding either to Zellweger syndrome, neonatal adrenoleukodystrophy, or infantile Refsum disease, 3 of whom had a peroxisomal disorder due to a single enzyme defect. One patient had a mild form of rhizomelic chondrodysplasia punctata, 1 had classic Refsum disease. Finally, 5 patients presented with clinical manifestations that were either unusually mild or completely atypical, and initially did not arouse suspicion of a peroxisomal disorder. They showed multiple defects of peroxisomal functions with one or several functions remaining intact, suggesting a peroxisome biogenesis disorder. The defect in peroxisome biogenesis was further characterized by variable expression in different tissues and/or individual cells in 5 patients. Studies restricted to fibroblasts failed to identify abnormalities in this group. We demonstrate that clinical manifestations of peroxisomal disorders may be very mild or completely atypical, and therefore, peroxisomal disorders should be considered in a variety of clinical settings. Furthermore, we suggest performing extensive peroxisomal investigations in every patient suspected of suffering from a peroxisomal disorder, even when the clinical presentation is typical.
Collapse
Affiliation(s)
- M R Baumgartner
- Department of Pediatrics, Höpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kinoshita N, Ghaedi K, Shimozawa N, Wanders RJ, Matsuzono Y, Imanaka T, Okumoto K, Suzuki Y, Kondo N, Fujiki Y. Newly identified Chinese hamster ovary cell mutants are defective in biogenesis of peroxisomal membrane vesicles (Peroxisomal ghosts), representing a novel complementation group in mammals. J Biol Chem 1998; 273:24122-30. [PMID: 9727033 DOI: 10.1074/jbc.273.37.24122] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated peroxisome biogenesis-defective mutants from Chinese hamster ovary cells by the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) method. Seven cell mutants, ZP116, ZP119, ZP160, ZP161, ZP162, ZP164, and ZP165, of 11 P9OH/UV-resistant cell clones showed cytosolic localization of catalase, a peroxisomal matrix enzyme, apparently indicating a defect of peroxisome biogenesis. By transfection of PEX cDNAs and cell fusion analysis, mutants ZP119 and ZP165 were found to belong to a novel complementation group (CG), distinct from earlier mutants. CG analysis by cell fusion with fibroblasts from patients with peroxisome biogenesis disorders such as Zellweger syndrome indicated that ZP119 and ZP165 were in the same CG as the most recently identified human CG-J. The peroxisomal matrix proteins examined, including PTS1 proteins as well as a PTS2 protein, 3-ketoacyl-CoA thiolase, were also found in the cytosol in ZP119 and ZP165. Furthermore, these mutants showed typical peroxisome assembly-defective phenotype such as severe loss of resistance to 12-(1'-pyrene)dodecanoic acid/UV treatment. Most strikingly, peroxisomal reminiscent vesicular structures, so-called peroxisomal ghosts noted in all CGs of earlier Chinese hamster ovary cell mutants as well as in eight CGs of patients' fibroblasts, were not discernible in ZP119 and ZP165, despite normal synthesis of peroxisomal membrane proteins. Accordingly, ZP119 and ZP165 are the first cell mutants defective in import of both soluble and membrane proteins, representing the 14th peroxisome-deficient CG in mammals, including humans.
Collapse
Affiliation(s)
- N Kinoshita
- Department of Biology, Kyushu University Faculty of Science, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Okumoto K, Shimozawa N, Kawai A, Tamura S, Tsukamoto T, Osumi T, Moser H, Wanders RJ, Suzuki Y, Kondo N, Fujiki Y. PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning by functional complementation on a CHO cell mutant, patient analysis, and characterization of PEX12p. Mol Cell Biol 1998; 18:4324-36. [PMID: 9632816 PMCID: PMC109016 DOI: 10.1128/mcb.18.7.4324] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11-20, 1997), using a transient transfection assay and an ectopic, readily visible marker, green fluorescent protein. This cDNA encodes a 359-amino-acid membrane protein of peroxisomes with two transmembrane segments and a cysteine-rich zinc finger, the RING motif. A stable transformant of ZP109 with the PEX12 was morphologically and biochemically restored for peroxisome biogenesis. Pex12p was shown by expression of bona fide as well as epitope-tagged Pex12p to expose both N- and C-terminal regions to the cytosol. Fibroblasts derived from patients with the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III) were also complemented for peroxisome biogenesis with PEX12. Two unrelated patients of this group manifesting peroxisome deficiency disorders possessed homozygous, inactivating PEX12 mutations: in one, Arg180Thr by one point mutation, and in the other, deletion of two nucleotides in codons for 291Asn and 292Ser, creating an apparently unchanged codon for Asn and a codon 292 for termination. These results indicate that the gene encoding peroxisome assembly factor Pex12p is a pathogenic gene of CG-III peroxisome deficiency. Moreover, truncation and site mutation studies, including patient PEX12 analysis, demonstrated that the cytoplasmically oriented N- and C-terminal parts of Pex12p are essential for biological function.
Collapse
Affiliation(s)
- K Okumoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Peroxisomes are single membrane-limited cell organelles that are involved in numerous metabolic functions. Peroxisomes do not contain DNA; the matrix and membrane proteins are encoded by the nuclear genome. It is assumed that new peroxisomes are formed by division of existing organelles. The present article gives an overview of microscopic studies and recent unpublished results dealing with peroxisome biogenesis in mammalian fetal liver and presents data on peroxisomes in oocytes. Cytochemical (catalase and D-aminoacid oxidase activity) and immunocytochemical data in rat and human liver (antigens of catalase, the three peroxisomal beta-oxidation enzymes, alanine: glyoxylate aminotransferase, peroxisomal membrane proteins with molecular weights of 42 and 70 kDa) indicate that during embryonic and fetal development the peroxisomal population undergoes a differentiation with respect to the composition of the matrix and to the size and number of the organelles. In the youngest stages, rare and small peroxisomes are present, into which the matrix components are imported in a sequential way. The import seems asynchronous in peroxisomes of the same hepatocyte. The size and number of the peroxisomes increase during liver development. In rat and human liver, no morphological or immunocytochemical evidence for an elaborate network of interconnected peroxisomes ("reticulum") was found. Instead, peroxisomes presented as individual organelles, which occasionally show membrane extensions. The importance of the metabolic functions of peroxisomes in human liver is emphasized by the peroxisomal disorders. In the liver of affected fetuses, the microscopic features associated with the defect can already be recognized; i.e., either catalase containing peroxisomes are absent and catalase is localized in the cytoplasm (in fetuses affected with Zellweger syndrome or with infantile Refsum disease) or peroxisomes are present but they are abnormally enlarged (e.g., a fetus affected with acyl-CoA oxidase deficiency). In the quail ovary, numerous peroxisomes are observed in the oocyte and in the granulosa cells during follicle maturation, but not in the full-grown egg. Thus, the mechanism of peroxisome inheritance remains unresolved.
Collapse
Affiliation(s)
- M Espeel
- Department of Anatomy, Embryology and Histology, University of Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fujiki Y. Molecular defects in genetic diseases of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1361:235-50. [PMID: 9375798 DOI: 10.1016/s0925-4439(97)00051-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Y Fujiki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
27
|
Paton BC, Heron SE, Nelson PV, Morris CP, Poulos A. Absence of mutations raises doubts about the role of the 70-kD peroxisomal membrane protein in Zellweger syndrome. Am J Hum Genet 1997; 60:1535-9. [PMID: 9199576 PMCID: PMC1716138 DOI: 10.1016/s0002-9297(07)64247-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
28
|
Okumoto K, Bogaki A, Tateishi K, Tsukamoto T, Osumi T, Shimozawa N, Suzuki Y, Orii T, Fujiki Y. Isolation and characterization of peroxisome-deficient Chinese hamster ovary cell mutants representing human complementation group III. Exp Cell Res 1997; 233:11-20. [PMID: 9184070 DOI: 10.1006/excr.1997.3552] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We made use of the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) method and isolated peroxisome-deficient mutant cells. TKa cells, the wild-type Chinese hamster ovary (CHO) cells, CHO-K1, that had been stably transfected with cDNA encoding Pex2p (formerly peroxisome assembly factor-1, PAF-1) were used to avoid frequent isolation of the Z65-type, PEX2-defective mutants. P9OH/UV-resistant cell colonies were examined for the intracellular location of catalase, a peroxisomal matrix enzyme, by immunofluorescence microscopy and using anti-catalase antibody. As six mutant cell clones showed cytosolic catalase, there was likely to be a deficiency in peroxisome assembly. These mutants also showed the typical peroxisome assembly-defective phenotype, including significant decrease of dihydroxyacetonephosphate acyltransferase, the first step key enzyme in plasmalogen synthesis, and loss of resistance to 12-(1'-pyrene)dodecanoic acid/UV treatment. By transfection of Pex2p and Pex6p (formerly PAF-2) cDNAs and cell fusion analysis between the CHO cell mutants, two mutants, ZP104 and ZP109, were found to belong to a novel complementation group. Further complementation analysis using fibroblasts from patients with peroxisome biogenesis disorders revealed that the mutants belonged to human complementation group III. Taken together, ZP104 and ZP109 are in a newly identified fifth complementation group in CHO mutants reported to date and represent the human complementation group III.
Collapse
Affiliation(s)
- K Okumoto
- Department of Biology, Kyushu University Faculty of Science, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Multiplicity of catalase activity has been observed in crude homogenates from the tissue and cell lines of mouse liver by ethanol/Triton X-100/heat treatment. The five enzymatically active catalase bands were designated as CAT1, CAT2, CAT3, CAT4, and CAT5 with a nondenatured molecular mass of 270kDa, 258kDa, 229kDa, 210kDa, or 197kDa, respectively. Cultured mouse liver cell lines, mouse liver tissue homogenate, and pure mouse liver catalase showed only one catalase band (CAT1) after ethanol/Triton X-100 treatment at 4 degrees C for 72 hr. The same treatment but incubated at 37 degrees C for 72 hr yielded three bands (CAT2, CAT4, CAT5) in normal cell line, only one band (CAT5) in MNNG-transformed and SV40-transformed cells, two bands (CAT1, CAT4) in mouse liver tissue homogenates, and two bands (CAT1, CAT3) in pure mouse liver catalase. These five catalase bands were further biochemically characterized. The CAT1, CAT2, and CAT3 are sensitive to heat (68 degrees C, 1 min), while CAT4 and CAT5 are rather heat resistant. The sensitivity to catalase inhibitors, such as aminotriazole, azide, or cyanide varies among the isoforms. Protease inhibitors could prevent the formation of CAT3 and CAT4, but not CAT5. Treatment with protease, however, removed all forms of catalase except CAT5. We conclude from this study that the appearance of different catalase bands is likely due to epigenetic modification of the protein, particularly proteolysis. The lowered catalase activity in transformed cells might also be attributable to the loss of two catalase isoforms.
Collapse
Affiliation(s)
- Y Sun
- Radiation Research Laboratory, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
30
|
Takahashi Y, Suzuki Y, Kumazaki K, Tanabe Y, Akaboshi S, Miura K, Shimozawa N, Kondo N, Nishiguchi T, Terada K, Orii T. Epilepsy in peroxisomal diseases. Epilepsia 1997; 38:182-8. [PMID: 9048670 DOI: 10.1111/j.1528-1157.1997.tb01095.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To clarify the electroclinical manifestation of epileptic seizures and the evolution of epilepsy in patients with peroxisomal diseases. METHODS Retrospective review of the medical records and EEGs of 14 patients with peroxisomal diseases: seven with Zellweger syndrome (ZS), two with neonatal adrenoleukodystrophy (NALD), two with acyl-CoA oxidase deficiency (AOXD), two with bifunctional enzyme deficiency (BFED), and one with rhizomelic chondrodysplasia punctata (RCDP). The diagnoses were made by biochemical analysis and pathological examinations in our laboratory. RESULTS Patients manifested serious neurologic deficits in the neonatal period or in early or late infancy. Patients with ZS or AOXD had partial motor seizures originating in the arms or legs or corners of the mouth. Their seizures did not culminate in generalized tonic-clonic seizures and were easily controlled by antiepileptic drugs (AEDs). Interictal EEGs of the patients with ZS showed infrequent bilateral independent multifocal spikes, predominantly in the frontal motor cortex and its surrounding regions. The EEGs of patients with AOXD showed interictal fast theta activity, predominantly in the frontocentral regions. Patients with BFED also had partial motor seizures in early infancy, but the seizures were intractable, evolving in one case to myoclonic seizures. Interictal EEGs of patients with BFED showed bilateral independent multifocal spikes that evolved to bilateral diffuse high-voltage slow waves in one case and to a hypsarythmic pattern in another case as the disease progressed. Patients with NALD had intractable tonic seizures or epileptic spasms. Interictal EEGs showed high-voltage slow waves and bilateral independent multifocal spikes, evolving in one patient to a flat pattern. The patient with RCDP, whose interictal EEGs showed frequent multifocal independent spikes, did not have epileptic seizures. CONCLUSIONS The age of epilepsy onset or the duration of survival is related to the types of seizures occurring in patients with peroxisomal diseases. Neonates or young infants usually have partial motor seizures (facial twitching or clonic convulsions of the arms or legs) of various multifocal origins. Older infants may have generalized seizures at the onset of the disease or evolutionally. Seizure intractability is usually less severe in patients with ZS or AOXD than in patients with NALD or BFED. There is no relation between the electroclinical characteristics of epilepsy and the genetic complementation groups in peroxisomal diseases.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- H W Moser
- Kennedy Krieger Institute, Johns Hopkins University Baltimore, Maryland 21205, USA
| | | |
Collapse
|
32
|
Fujiki Y. Approaches to studies on peroxisome biogenesis and human peroxisome-deficient disorders. Ann N Y Acad Sci 1996; 804:491-501. [PMID: 8993567 DOI: 10.1111/j.1749-6632.1996.tb18639.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Y Fujiki
- Department of Biology, Kyushu University, Faculty of Science, Fukuoka, Japan
| |
Collapse
|
33
|
Suzuki Y, Shimozawa N, Takahashi Y, Imamura A, Kondo N, Orii T. Peroxisomal disorders: clinical aspects. Ann N Y Acad Sci 1996; 804:442-9. [PMID: 8993563 DOI: 10.1111/j.1749-6632.1996.tb18635.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Peroxisomal disorders are divided into two groups from a clinical point of view. Diseases in the first group, peroxisome-deficient disorders (PDD), Zellweger-like syndrome, and isolated deficiencies of peroxisomal beta-oxidation enzymes, are characterized by common clinical features including psychomotor retardation, hypotonia, hepatic dysfunction and visual disturbance. The second group includes diseases with a unique manifestation, such as X-linked adrenoleukodystrophy, hyperoxaluria type I and rhizomelic chondrodysplasia punctata. We investigated clinical aspects and the genetic basis of PDD, and the significance of peroxisomes in the development of human brain. Neuroradiological and neurophysiological studies revealed that thick cortex, colpocephaly and multifocal spikes were characteristic findings of PDD patients in the early infantile period. Cytogenetic studies elucidated the presence of eleven complementation groups among PDD, indicating the presence of eleven pathogenic genes for PDD. Molecular studies elucidated two of these genes, PAF-1 and PXR-1. Immunohistochemical studies clarified that the catalase-positive neurons appeared in the basal ganglia, thalamus, and cerebellum at 28 weeks of gestation, and in the cortex at 35 weeks. Immunopositive glial cells appeared from the deep to superficial white matter with increasing gestational age. These results suggest the important role of peroxisomes in neuronal maturation and myelinogenesis.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Suzuki Y, Shimozawa N, Imamura A, Fukuda Y, Ichihashi H, Orii T, Kondo N. Trial of docosahexaenoic acid supplementation on a Japanese patient with a peroxisome biogenesis defect. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1996; 38:520-3. [PMID: 8942014 DOI: 10.1111/j.1442-200x.1996.tb03537.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A female Japanese patient diagnosed with peroxisome biogenesis defect (PBD), who had hypotonia and craniofacial dysmorphism, was given supplementation of docosahexaenoic acid (DHA). Accumulation of very long chain fatty acids was revealed, and a diagnosis of PBD was made at 2 months of age because of the absence of peroxisomes, a defect in peroxisomal beta-oxidation enzymes and a decreased level of DHA in the erythrocytes. Supplementation of DHA was introduced at 3 months of age. For the first several months, psychomotor development was fairly good. The patient could laugh, brush off a blanket and play with toys at 6 months of age. However, neurological regression and convulsions occurred after 7 months of age. After recurrent respiratory infections and disturbance of the circadian rhythm, the patient died of liver failure and disseminated intravascular coagulopathy at 20 months of age. DHA may have a favorable effect on the early development of patients with PBD, but neurological deterioration cannot be prevented. Patients with a milder phenotype would be better candidates for DHA supplementation.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Purdue PE, Lazarow PB. Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol 1996; 134:849-62. [PMID: 8769411 PMCID: PMC2120961 DOI: 10.1083/jcb.134.4.849] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have identified a novel peroxisomal targeting sequence (PTS) at the extreme COOH terminus of human catalase. The last four amino acids of this protein (-KANL) are necessary and sufficient to effect targeting to peroxisomes in both human fibroblasts and Saccharomyces cerevisiae, when appended to the COOH terminus of the reporter protein, chloramphenicol acetyl transferase. However, this PTS differs from the extensive family of COOH-terminal PTS tripeptides collectively termed PTS1 in two major aspects. First, the presence of the uncharged amino acid, asparagine, at the penultimate residue of the human catalase PTS is highly unusual, in that a basic residue at this position has been previously found to be a common and critical feature of PTS1 signals. Nonetheless, this asparagine residue appears to constitute an important component of the catalase PTS, in that replacement with aspartate abolished peroxisomal targeting (as did deletion of the COOH-terminal four residues). Second, the human catalase PTS comprises more than the COOH-terminal three amino acids, in that COOH-terminal-ANL cannot functionally replace the PTS1 signal-SKL in targeting a chloramphenicol acetyl transferase fusion protein to peroxisomes. The critical nature of the fourth residue from the COOH terminus of the catalase PTS (lysine) is emphasized by the fact that substitution of this residue with a variety of other amino acids abolished or reduced peroxisomal targeting. Targeting was not reduced when this lysine was replaced with arginine, suggesting that a basic amino acid at this position is required for maximal functional activity of this PTS. In spite of these unusual features, human catalase is sorted by the PTS1 pathway, both in yeast and human cells. Disruption of the PAS10 gene encoding the S. cerevisiae PTS1 receptor resulted in a cytosolic location of chloramphenicol acetyl transferase appended with the human catalase PTS, as did expression of this protein in cells from a neonatal adrenoleukodystrophy patient specifically defective in PTS1 import. Furthermore, through the use of the two-hybrid system, it was demonstrated that both the PAS10 gene product (Pas10p) and the human PTS1 receptor can interact with the COOH-terminal region of human catalase, but that this interaction is abolished by substitutions at the penultimate residue (asparagine-to- aspartate) and at the fourth residue from the COOH terminus (lysine-to-glycine) which abolish PTS functionality. We have found no evidence of additional targeting information elsewhere in the human catalase protein. An internal tripeptide (-SHL-, which conforms to the mammalian PTS1 consensus) located nine to eleven residues from the COOH terminus has been excluded as a functional PTS. Additionally, in contrast to the situation for S. cerevisiae catalase A, which contains an internal PTS in addition to a COOH-terminal PTS1, human catalase lacks such a redundant PTS, as evidenced by the exclusive cytosolic location of human catalase mutated in the COOH-terminal PTS. Consistent with this species difference, fusions between catalase A and human catalase which include the catalase A internal PTS are targeted, at least in part, to peroxisomes regardless of whether the COOH-terminal human catalase PTS is intact.
Collapse
Affiliation(s)
- P E Purdue
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
36
|
Shimozawa N, Suzuki Y, Tomatsu S, Tsukamoto T, Osumi T, Fujiki Y, Kamijo K, Hashimoto T, Kondo N, Orii T. Correction by gene expression of biochemical abnormalities in fibroblasts from Zellweger patients. Pediatr Res 1996; 39:812-5. [PMID: 8726233 DOI: 10.1203/00006450-199605000-00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Zellweger syndrome is a prototype of peroxisomal biogenesis disorders and a fatal autosomal recessive disease with no effective therapy. We identified nine genetic complementation groups of these disorders, and mutations in peroxisome assembly factor-1 (PAF-1) and the 70-kD peroxisomal membrane protein (PMP70) genes have been detected by our group F and Roscher's group 1, respectively. We now describe permanent recovery from generalized peroxisomal abnormalities in fibroblasts of a Zellweger patient from group F, such as biochemical defects of peroxisomal beta-oxidation, plasmalogen biosynthesis, and morphologic absence of peroxisomes, by stable transfection of human cDNA encoding PAF-1. In the light of these observations, we designed a gene expression system using fibroblasts from patients with peroxisomal biogenesis disorders. In Zellweger fibroblasts obtained from Roscher's group 1 and transfected with human cDNA encoding PMP70, peroxisomes were not morphologically identifiable, and peroxisomal function did not normalize.
Collapse
Affiliation(s)
- N Shimozawa
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Motley AM, Tabak HF, Smeitink JA, Poll-The BT, Barth PG, Wanders RJ. Non-rhizomelic and rhizomelic chondrodysplasia punctata within a single complementation group. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1315:153-8. [PMID: 8611652 DOI: 10.1016/0925-4439(95)00114-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several patients have been described recently who suffer from a non-rhizomelic type of chondrodysplasia punctata (CDP), but who show all the biochemical abnormalities characteristic of the rhizomelic form of chondrodysplasia punctata (RCDP), a peroxisomal disorder. We have used protease protection experiments and microinjection of reporter-protein-encoding expression plasmids to show that peroxisomal thiolase fails to be imported into peroxisomes in cells from non-rhizomelic CDP patients, as has already been found in cells from classical RCDP patients. Furthermore, complementation analysis after somatic cell fusion indicates that the non-rhizomelic CDP patients are impaired in the same gene as classical RCDP patients. We conclude that defects in a single gene can give rise to both clinical phenotypes.
Collapse
Affiliation(s)
- A M Motley
- Department of Biochemistry, E.C. Slater Institute, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Suzuki Y, Shimozawa N, Yajima S, Inoue K, Orii T, Kondo N. Incidence of peroxisomal disorders in Japan. THE JAPANESE JOURNAL OF HUMAN GENETICS 1996; 41:167-75. [PMID: 8914632 DOI: 10.1007/bf01892624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Japanese patients with peroxisomal disorders in the pediatric field were screened. Very long chain fatty acid analysis in the serum sphingomyelin was introduced since 1987 and was useful for the first screening of peroxisomal disorders. Seventy-five patients were diagnosed since 1980: 15 patients with Zellweger syndrome, 2 with neonatal adrenoleukodystrophy (ALD), 1 with rhizomelic chondrodysplasia punctata, 1 with Zellweger-like syndrome. 2 with acyl-CoA oxidase deficiency, 2 with bifunctional enzyme deficiency and 52 with X-linked ALD. The incidence of peroxisome-deficient disorders was estimated to be approximately 1 in 800,000 births which is far less than that in the USA. However, the incidence in Okinawa Islands was 1 in 30,000. Japanese Zellweger patients belonged to 5 complementation groups (A, B, C, E, F) and the patients in Okinawa Islands belonged to groups A and C. The results of this screening were useful for genetic counseling, prenatal diagnosis, carrier detection and early medical care of patients with peroxisomal disorders.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Lombard-Platet G, Savary S, Sarde CO, Mandel JL, Chimini G. A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Proc Natl Acad Sci U S A 1996; 93:1265-9. [PMID: 8577752 PMCID: PMC40068 DOI: 10.1073/pnas.93.3.1265] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adrenoleukodystrophy (ALD), a severe demyelinating disease, is caused by mutations in a gene coding for a peroxisomal membrane protein (ALDP), which belongs to the superfamily of ATP binding cassette (ABC) transporters and has the structure of a half transporter. ALDP showed 38% sequence identity with another peroxisomal membrane protein, PMP70, up to now its closest homologue. We describe here the cloning and characterization of a mouse ALD-related gene (ALDR), which codes for a protein with 66% identity with ALDP and shares the same half transporter structure. The ALDR protein was overexpressed in COS cells and was found to be associated with the peroxisomes. The ALD and ALDR genes show overlapping but clearly distinct expression patterns in mouse and may thus play similar but nonequivalent roles. The ALDR gene, which appears highly conserved in man, is a candidate for being a modifier gene that could account for some of the extreme phenotypic variability of ALD. The ALDR gene is also a candidate for being implicated in one of the complementation groups of Zellweger syndrome, a genetically heterogeneous disorder of peroxisome biogenesis, rare cases of which were found to be associated with mutations in the PMP70 (PXMP1) gene.
Collapse
Affiliation(s)
- G Lombard-Platet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Médicale Université Louis Pasteur, C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|
40
|
Paton BC, Sharp PC, Crane DI, Poulos A. Oxidation of pristanic acid in fibroblasts and its application to the diagnosis of peroxisomal beta-oxidation defects. J Clin Invest 1996; 97:681-8. [PMID: 8609223 PMCID: PMC507104 DOI: 10.1172/jci118465] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pristanic acid oxidation measurements proved a reliable tool for assessing complementation in fused heterokaryons from patients with peroxisomal biogenesis defects. We, therefore, used this method to determine the complementation groups of patients with isolated defects in peroxisomal beta-oxidation. The rate of oxidation of pristanic acid was reduced in affected cell lines from all of the families with inherited defects in peroxisomal beta-oxidation, thus excluding the possibility of a defective acyl CoA oxidase. Complementation analyses indicated that all of the patients belonged to the same complementation group, which corresponded to cell lines with bifunctional protein defects. Phytanic acid oxidation was reduced in fibroblasts from some, but not all, of the patients. Plasma samples were still available from six of the patients. The ratio of pristanic acid to phytanic acid was elevated in all of these samples, as were the levels of saturated very long chain fatty acids (VLCFA). However, the levels of bile acid intermediates, polyenoic VLCFA, and docosahexaenoic acid were abnormal in only some of the samples. Pristanic acid oxidation measurements were helpful in a prenatal assessment for one of the families where previous experience had shown that cellular VLCFA levels were not consistently elevated in affected individuals.
Collapse
Affiliation(s)
- B C Paton
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, Australia
| | | | | | | |
Collapse
|
41
|
Poulos A, Christodoulou J, Chow CW, Goldblatt J, Paton BC, Orii T, Suzuki Y, Shimozawa N. Peroxisomal assembly defects: clinical, pathologic, and biochemical findings in two patients in a newly identified complementation group. J Pediatr 1995; 127:596-9. [PMID: 7562283 DOI: 10.1016/s0022-3476(95)70121-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe the clinical, pathologic, and biochemical findings for two peroxisome-deficient patients in a newly identified complementation group. Both patients had biochemical findings typical of patients with peroxisome biogenesis disorders. However, whereas one patient had the typical clinicopathologic features of Zellweger syndrome, the other patient's phenotype was atypical.
Collapse
Affiliation(s)
- A Poulos
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, South Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Purdue PE, Lazarow PB. Identification of peroxisomal membrane ghosts with an epitope-tagged integral membrane protein in yeast mutants lacking peroxisomes. Yeast 1995; 11:1045-60. [PMID: 7502580 DOI: 10.1002/yea.320111106] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many yeast peroxisome biogenesis mutants have been isolated in which peroxisomes appear to be completely absent. Introduction of a wild-type copy of the defective gene causes the reappearance of peroxisomes, despite the fact that new peroxisomes are thought to form only from pre-existing peroxisomes. This apparent paradox has been explained for similar human mutant cell lines (from patients with Zellweger syndrome) by the discovery of peroxisomal membrane ghosts in the mutant cells (Santos, M. J., T. Imanaka, H. Shio, G. M. Small and P. B. Lazarow. 1988. Science 239, 1536-1538). Introduction of a wild-type gene is thought to restore to the ghosts the ability to import matrix proteins, and thus lead to the refilling of the peroxisomes. It is vitally important to our understanding of peroxisome biogenesis to determine whether the yeast mutants contain ghosts. We have solved this problem by introducing an epitope-tagged version of Pas3p, a peroxisome integral membrane protein (that is essential for peroxisome biogenesis). Nucleotides encoding a nine amino acid HA epitope were added to the PAS3 gene immediately before the stop codon. The tagged gene (PAS3HA) was inserted in the genome, replacing the wild-type gene at its normal locus. It was fully functional (the cells assembled peroxisomes normally and grew on oleic acid) but the expression level was too low to detect the protein with monoclonal antibody 12CA5. PAS3HA was expressed in greater quantity from an episomal plasmid with the CUP1 promoter. The gene product, Pas3pHA, was detected by immunogold labelling on the membranes of individual and clustered peroxisomes; the clusters appeared as large spots in immunofluorescence. PAS3HA was similarly expressed in peroxisome biogenesis mutants peb2 and peb4, which lack morphologically recognizable peroxisomes. Gold-labelled membranes were clearly visible in both mutants: in peb2 the labelled membrane vesicles were generally much smaller than those in peb4, which resembled normal peroxisomes in size.
Collapse
Affiliation(s)
- P E Purdue
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
43
|
Moser AB, Rasmussen M, Naidu S, Watkins PA, McGuinness M, Hajra AK, Chen G, Raymond G, Liu A, Gordon D. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J Pediatr 1995; 127:13-22. [PMID: 7541833 DOI: 10.1016/s0022-3476(95)70250-4] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To use the technique of complementation analysis to help define genotype and classify patients with clinical manifestations consistent with those of the disorders of peroxisome assembly, namely the Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). STUDY DESIGN Clinical findings, peroxisomal function, and complementation groups were examined in 173 patients with the clinical manifestations of these disorders. RESULTS In 37 patients (21%), peroxisome assembly was intact and isolated deficiencies of one of five peroxisomal enzymes involved in the beta-oxidation of fatty acids or plasmalogen biosynthesis were demonstrated. Ten complementation groups were identified among 93 patients (54%) with impaired peroxisome assembly and one of three phenotypes (ZS, NALD, or IRD) without correlation between complementation group and phenotype. Forty-three patients (25%) had impaired peroxisome assembly associated with the RCDP phenotype and belonged to a single complementation group. Of the 173 patients, 10 had unusually mild clinical manifestations, including survival to the fifth decade or deficits limited to congenital cataracts. CONCLUSIONS At least 16 complementation groups, and hence genotypes, are associated with clinical manifestations of disorders of peroxisome assembly. The range of phenotype is wide, and some patients have mild involvement.
Collapse
Affiliation(s)
- A B Moser
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu H, Tan X, Russell KA, Veenhuis M, Cregg JM. PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem 1995; 270:10940-51. [PMID: 7738036 DOI: 10.1074/jbc.270.18.10940] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PER genes are essential for the biogenesis of peroxisomes in the yeast Pichia pastoris. Here we describe the cloning of PER3 and functional characterization of its product Per3p. The PER3 sequence predicts that Per3p is a 713-amino acid (81-kDa) hydrophobic protein with at least three potential membrane-spanning domains. We show that Per3p is a membrane protein of the peroxisome. Methanol- or oleate-induced cells of per3-1, a mutant strain generated by chemical mutagenesis, lack normal peroxisomes but contain numerous abnormal vesicular structures. The vesicles contain thiolase, a PTS2 protein, but only a small portion of several other peroxisomal enzymes, including heterologously expressed luciferase, a PTS1 protein. These results suggest that the vesicles in per3-1 cells are peroxisomal remnants similar to those observed in cells of patients with the peroxisomal disorder Zellweger syndrome, and that the mutant is deficient in PTS1 but not PTS2 import. In a strain in which most of PER3 was deleted, peroxisomes as well as peroxisomal remnants appeared to be completely absent, and both PTS1- and PTS2-containing enzymes were located in the cytosol. We propose that Per3p is an essential component of the machinery required for import of all peroxisomal matrix proteins and is composed of independent domains involved in the import of specific PTS groups.
Collapse
Affiliation(s)
- H Liu
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | | | |
Collapse
|
45
|
Eitzen GA, Aitchison JD, Szilard RK, Veenhuis M, Nuttley WM, Rachubinski RA. The Yarrowia lipolytica gene PAY2 encodes a 42-kDa peroxisomal integral membrane protein essential for matrix protein import and peroxisome enlargement but not for peroxisome membrane proliferation. J Biol Chem 1995; 270:1429-36. [PMID: 7836411 DOI: 10.1074/jbc.270.3.1429] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PAY genes are required for peroxisome assembly in the yeast Yarrowia lipolytica. Here we show that a mutant strain, pay2, is disrupted for the import of proteins targeted by either peroxisomal targeting signal-1 or -2. Electron microscopy of pay2 cells revealed the presence of small peroxisomal "ghosts," similar to the vesicular structures found in fibroblasts of patients with the human peroxisome assembly disorder, Zellweger syndrome. Functional complementation of pay2 with a plasmid library of Y. lipolytica genomic DNA identified a gene, PAY2, that restores growth of pay2 on oleic acid, import of catalase and multifunctional enzyme into peroxisomes, and formation of wild type peroxisomes. The PAY2 gene encodes Pay2p, a hydrophobic polypeptide of 404 amino acids. An antibody raised against Pay2p recognizes a polypeptide of approximately 42-kDa whose synthesis is induced by growth of Y. lipolytica on oleic acid. Pay2p is a peroxisomal integral membrane protein, as it localizes to carbonate-stripped peroxisomal membranes. Pay2p shows no identity to any known protein. Our results suggest that Pay2p is essential for the activity of the peroxisomal import machinery but does not affect the initial steps of peroxisomal membrane proliferation.
Collapse
Affiliation(s)
- G A Eitzen
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Fatty acids with greater than 22 carbon atoms (very long chain fatty acids, VLCFA) are present in small amounts in most animal tissues. Saturated and monoenoic VLCFA are major components of brain, while the polyenoic VLCFA occur in significant amounts in certain specialized animal tissues such as retina and spermatozoa. Biosynthesis of VLCFA occurs by carbon chain elongation of shorter chain fatty acid precursors while beta-oxidation takes place almost exclusively in peroxisomes. Mitochondria are unable to oxidize VLCFA because they lack a specific VLCFA coenzyme A synthetase, the first enzyme in the beta-oxidation pathway. VLCFA accumulate in the tissues of patients with inherited abnormalities in peroxisomal assembly, and also in individuals with defects in enzymes catalyzing individual reactions along the beta-oxidation pathway. It is believed that the accumulation of VLCFA in patient tissues contributes to the severe pathological changes which are a feature of these conditions. However, little is known of the role of VLCFA in normal cellular processes, and of the molecular basis for their contribution to the disease process. The present review provides an outline of the current knowledge of VLCFA including their biosynthesis, degradation, possible function and involvement in human disease.
Collapse
Affiliation(s)
- A Poulos
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, South Australia
| |
Collapse
|
47
|
Peroxisome assembly factor 1: nonsense mutation in a peroxisome-deficient Chinese hamster ovary cell mutant and deletion analysis. Mol Cell Biol 1994. [PMID: 8035823 DOI: 10.1128/mcb.14.8.5458] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cDNA encoding 35-kDa peroxisome assembly factor 1 (PAF-1), a peroxisomal integral membrane protein, was cloned from Chinese hamster ovary (CHO) cells and sequenced. The CHO PAF-1 comprised 304 amino acids, one residue shorter than rat or human PAF-1, and showed high homology to rat and human PAF-1: 90 and 86% at the nucleotide sequence level and 92 and 90% in amino acid sequence, respectively. PAF-1 from these three species contains a conserved cysteine-rich sequence at the C-terminal region which is exactly the same as that of a novel cysteine-rich RING finger motif family. PAF-1 cDNA from a peroxisome-deficient CHO cell mutant, Z65 (T. Tsukamoto, S. Yokota, and Y. Fujiki, J. Cell Biol. 110:651-660, 1990), contained a nonsense mutation at the codon for Trp-114, resulting in premature termination. Truncation in PAF-1 of either 19 amino acids from the N terminus or 92 residues from the C terminus maintained the peroxisome assembly-restoring activity when tested in both the Z65 mutant and the fibroblasts from a Zellweger patient. In contrast, deletion of 27 or 102 residues from the N or C terminus eliminated the activity. PAF-1 is encoded by free polysomal RNA, consistent with a general rule for biogenesis of peroxisomal proteins, including membrane polypeptides, implying the posttranslational transport and integration of PAF-1 into peroxisomal membrane.
Collapse
|
48
|
Tsukamoto T, Shimozawa N, Fujiki Y. Peroxisome assembly factor 1: nonsense mutation in a peroxisome-deficient Chinese hamster ovary cell mutant and deletion analysis. Mol Cell Biol 1994; 14:5458-65. [PMID: 8035823 PMCID: PMC359065 DOI: 10.1128/mcb.14.8.5458-5465.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A cDNA encoding 35-kDa peroxisome assembly factor 1 (PAF-1), a peroxisomal integral membrane protein, was cloned from Chinese hamster ovary (CHO) cells and sequenced. The CHO PAF-1 comprised 304 amino acids, one residue shorter than rat or human PAF-1, and showed high homology to rat and human PAF-1: 90 and 86% at the nucleotide sequence level and 92 and 90% in amino acid sequence, respectively. PAF-1 from these three species contains a conserved cysteine-rich sequence at the C-terminal region which is exactly the same as that of a novel cysteine-rich RING finger motif family. PAF-1 cDNA from a peroxisome-deficient CHO cell mutant, Z65 (T. Tsukamoto, S. Yokota, and Y. Fujiki, J. Cell Biol. 110:651-660, 1990), contained a nonsense mutation at the codon for Trp-114, resulting in premature termination. Truncation in PAF-1 of either 19 amino acids from the N terminus or 92 residues from the C terminus maintained the peroxisome assembly-restoring activity when tested in both the Z65 mutant and the fibroblasts from a Zellweger patient. In contrast, deletion of 27 or 102 residues from the N or C terminus eliminated the activity. PAF-1 is encoded by free polysomal RNA, consistent with a general rule for biogenesis of peroxisomal proteins, including membrane polypeptides, implying the posttranslational transport and integration of PAF-1 into peroxisomal membrane.
Collapse
Affiliation(s)
- T Tsukamoto
- Meiji Institute of Health Science, Odawara, Kanagawa, Japan
| | | | | |
Collapse
|
49
|
Motley A, Hettema E, Distel B, Tabak H. Differential protein import deficiencies in human peroxisome assembly disorders. J Cell Biol 1994; 125:755-67. [PMID: 7910611 PMCID: PMC2120069 DOI: 10.1083/jcb.125.4.755] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two peroxisome targeting signals (PTSs) for matrix proteins have been well defined to date. PTS1 comprises a COOH-terminal tripeptide, SKL, and has been found in several matrix proteins, whereas PTS2 has been found only in peroxisomal thiolase and is contained within an NH2-terminal cleavable presequence. We have investigated the functional integrity of the import routes for PTS1 and PTS2 in fibroblasts from patients suffering from peroxisome assembly disorders. Three of the five complementation groups tested showed a general loss of PTS1 and PTS2 import. Two complementation groups showed a differential loss of peroxisomal protein import: group I cells were able to import a PTS1- but not a PTS2- containing reporter protein into their peroxisomes, and group IV cells were able to import the PTS2 but not the PTS1 reporter into aberrant, peroxisomal ghostlike structures. The observation that the PTS2 import pathway is intact only in group IV cells is supported by the protection of endogenous thiolase from protease degradation in group IV cells and its sensitivity in the remaining complementation groups, including the partialized disorder of group I. The functionality of the PTS2 import pathway and colocalization of endogenous thiolase with the peroxisomal membranes in group IV cells was substantiated further using immunofluorescence, subcellular fractionation, and immunoelectron microscopy. The phenotypes of group I and IV cells provide the first evidence for differential import deficiencies in higher eukaryotes. These phenotypes are analogous to those found in Saccharomyces cerevisiae peroxisome assembly mutants.
Collapse
Affiliation(s)
- A Motley
- Department of Biochemistry, E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
50
|
Fournier B, Smeitink JA, Dorland L, Berger R, Saudubray JM, Poll-The BT. Peroxisomal disorders: a review. J Inherit Metab Dis 1994; 17:470-86. [PMID: 7967497 DOI: 10.1007/bf00711362] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Until recently peroxisomal disorders were considered to be extremely rare and the diagnostic procedures available for postanatal and prenatal diagnosis were not widely known. At present, 17 human disorders are linked to peroxisomal dysfunction. The clinical, biochemical and morphological peroxisome heterogeneity described in the different diseases illustrate that only combined analysis of all the different approaches will lead to a correct diagnosis and a coherent pathophysiological model to guide ongoing research. With the study of human peroxisomal disease, advances have been gained as to the function of the peroxisome in normal and pathological conditions. Genetic analysis of peroxisome biogenesis and research on peroxisomal targeting signals are now in progress. Peroxisomal disorders are usually classified according to the degree of biochemical impairment. In this paper, a tentative classification of peroxisomal disorders will be proposed, based on the degree of biochemical abnormalities combined with new data obtained on whether or not defective peroxisome assembly is involved: (1) disorders with peroxisome assembly deficiencies; (2) disorders with single enzyme deficiencies. The clinical onset and the major symptoms of the various disorders, and the recently discovered findings are discussed.
Collapse
Affiliation(s)
- B Fournier
- University Children's Hospital, Wilhelmina Kinderziekenhuis, Department of Metabolic Diseases, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|