1
|
Ellestad LE, Puckett SA, Porter TE. Mechanisms involved in glucocorticoid induction of pituitary GH expression during embryonic development. Endocrinology 2015; 156:1066-79. [PMID: 25560830 PMCID: PMC4330307 DOI: 10.1210/en.2014-1686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022]
Abstract
Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types.
Collapse
Affiliation(s)
- Laura E Ellestad
- Molecular and Cell Biology Program (L.E.E, T.E.P.) and Department of Animal and Avian Sciences (L.E.E., S.A.P., T.E.P.), University of Maryland, College Park, Maryland 20742
| | | | | |
Collapse
|
2
|
Ellestad LE, Saliba J, Porter TE. Ontogenic characterization of gene expression in the developing neuroendocrine system of the chick. Gen Comp Endocrinol 2011; 171:82-93. [PMID: 21168412 DOI: 10.1016/j.ygcen.2010.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/06/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
The neuroendocrine system consists of five major hypothalamic-pituitary hormone axes that regulate several important metabolic processes, and it develops in all vertebrates during embryogenesis. In order to define initiation and establishment of these five axes, mRNA expression profiles of hypothalamic releasing and release-inhibiting factors, their pituitary receptors, and pituitary hormones were characterized during the second half of embryogenesis and first week post-hatch in the chick. Axis initiation was defined as the age when pituitary hormone mRNA levels began to increase substantially, and establishment was defined as the age when mRNA for all components had reached maximum expression levels. The adrenocorticotropic axis appears established by e12, as there were no major increases in gene expression after that age. Hypothalamic thyrotropin-releasing hormone and pituitary thyroid-stimulating hormone β-subunit increased between e10 and e18, indicating establishment of the thyrotropic axis during this period. Pituitary growth hormone substantially increased on e16, and hypothalamic growth hormone-releasing hormone did not increase until e20, indicating that somatotropic axis activity is established late in embryonic development. Lactotropic axis initiation is evident just prior to hatch, as pituitary prolactin and vasoactive intestinal peptide receptor 1 did not increase until e18 and e20, respectively. Hypothalamic gonadotropin-releasing hormone 1 increased after hatch, and pituitary luteinizing hormone β-subunit expression remained low until d3, indicating the gonadotropic axis is not fully functional until after hatching. This study is the first to characterize major hypothalamic and pituitary components of all five neuroendocrine axes simultaneously and considerably increases our understanding of neuroendocrine system establishment during development.
Collapse
Affiliation(s)
- Laura E Ellestad
- Molecular and Cell Biology Program, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
3
|
Nogami H, Hisano S. Functional maturation of growth hormone cells in the anterior pituitary gland of the fetus. Growth Horm IGF Res 2008; 18:379-388. [PMID: 18329307 DOI: 10.1016/j.ghir.2008.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Recent studies have disclosed the molecular mechanisms responsible for the phenotype determination of the anterior pituitary cell types. However, as far as growth hormone (GH) cells are concerned, particular extra-cellular cues are required for the initiation of GH and GH-releasing hormone (GHRH)-receptor gene production in addition to the expression of the cell type specific transcription factor, pit-1. The glucocorticoids play a principal role in the functional maturation of nascent GH cells in the fetal pituitary glands in rodents, inducing GH and GHRH-receptor gene expression, and establish the GH secretory system regulated by the brain in late gestation. Research supporting this role for glucocorticoid in the development of GH cells is discussed.
Collapse
Affiliation(s)
- Haruo Nogami
- Department of Neuroendocrinology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | | |
Collapse
|
4
|
Development of pituitary ACTH and GH cells in near term rat fetuses. ARCH BIOL SCI 2007. [DOI: 10.2298/abs0701037m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study describes the development of ACTH and GH cells in 19- and 21-day-old rat fetuses using immunohistochemistry and morphometric measurements. Between days 19 and 21 of pregnancy, the total volume of fetal ACTH cells was unchanged, while their volume density and number per unit of area decreased significantly. ACTH-like immunopositivity in the pars intermedia increased during the examined period. The cell volume, volume density and number of GH cells per unit of area all markedly increased in parallel with fetal development, i.e., from gestational days 19 to 21. GH-like immunopositivity is demonstrated in the pars intermedia of 21-day-old fetuses for the first time.
Collapse
|
5
|
Ellestad LE, Carre W, Muchow M, Jenkins SA, Wang X, Cogburn LA, Porter TE. Gene expression profiling during cellular differentiation in the embryonic pituitary gland using cDNA microarrays. Physiol Genomics 2006; 25:414-25. [PMID: 16493019 DOI: 10.1152/physiolgenomics.00248.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anterior pituitary is comprised of five major hormone-secreting cell types that differentiate during embryonic development in a temporally distinct manner. Microarrays containing 5,128 unique cDNAs expressed in the chicken neuroendocrine system were produced and used to identify genes with potential involvement in the onset of thyroid-stimulating hormone beta-subunit (TSHbeta), growth hormone (GH), and prolactin (PRL) mRNA during embryonic development. We identified 352 cDNAs that were differentially expressed (P < or = 0.05) on embryonic day 10 (e10), e12, e14, or e17, the period of thyrotroph, somatotroph, and lactotroph differentiation. Self-organizing maps were used to identify genes that may function to initiate hormone gene transcription. Consistent with cellular ontogeny, TSHbeta mRNA increased steadily between e10 and e17, GH mRNA increased between e12 and e17, and PRL mRNA did not increase until e17. Expression of 141 genes increased in a manner similar to TSHbeta mRNA, and 64 genes decreased between e10 and e17. Although genes with these expression profiles are likely involved in development of the pituitary gland as a whole, some of these could be specifically associated with thyrotroph differentiation. Similarly, the expression profiles of 69 and 61 genes indicate a potential involvement in the induction of GH and PRL mRNA, respectively. Quantitative real-time RT-PCR was used to confirm microarray results for 31 genes. This is the first study to evaluate changes in anterior pituitary gene expression during embryonic development of any species using microarrays, and numerous transcription factors and signaling molecules not previously implicated in pituitary development were identified.
Collapse
Affiliation(s)
- Laura E Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Recent studies using biotechnological methods have achieved significant advances in our knowledge of molecular mechanisms underlying pituitary gland development and the differentiation of pituitary cytotypes. A large number of neuropeptides have been reported in the adult pituitary gland as well as in the central and peripheral nervous system. The early presence of neuropeptides during pituitary development is reviewed here. Neuromedin U (NmU), galanin and the polypeptide 7B2 have been localised to different endocrine cells of the gland. Their expression seems to be manifold even though it is temporally and spatially regulated. There is now firm immunocytochemical evidence that neuropeptides are present during morphogenesis of the pituitary and can be present simultaneously with all pituitary hormones.
Collapse
Affiliation(s)
- Vincenzo Cimini
- Department of Biomorphological and Functional Sciences, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
7
|
Nogami H, Inoue K, Moriya H, Ishida A, Kobayashi S, Hisano S, Katayama M, Kawamura K. Regulation of growth hormone-releasing hormone receptor messenger ribonucleic acid expression by glucocorticoids in MtT-S cells and in the pituitary gland of fetal rats. Endocrinology 1999; 140:2763-70. [PMID: 10342867 DOI: 10.1210/endo.140.6.6787] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Regulation of GH-releasing hormone receptor (GHRH-R) messenger RNA (mRNA) expression was studied, with the ribonuclease protection assay, in the fetal rat pituitary gland and in MtT-S clonal cells. GHRH-R mRNA was first detected on embryonic day (E)19 and increased rapidly thereafter, to reach a maximum at E21. Incubation of E17 or E18 pituitaries with 50 nM dexamethasone (DEX), a synthetic glucocorticoid, induced GHRH-R mRNA expression, suggesting that glucocorticoids play a pivotal role in the developmental expression of this mRNA. In E19 pituitaries, 24 h treatment with DEX increased GHRH-R mRNA by 60%, and GH mRNA by 76%, but did not affect pit-1 mRNA level, suggesting that the effect of DEX is specific for expressions of GH mRNA and GHRH-R mRNA. The accumulation of GHRH-R mRNA by DEX was time dependent, and it was slightly enhanced by the protein synthesis inhibitor, puromycin (100 microM). In MtT-S cells (a pituitary cell line established from an estrogen-induced tumor), DEX induced GHRH-R mRNA expression within 2 h in a dose-dependent manner. This induction was augmented by puromycin (100 microM) or cycloheximide (3.5 microM). However, the RNA synthesis inhibitor Actinomycin D (1 microM) completely inhibited GHRH-R mRNA accumulation in response to either DEX or DEX plus puromycin, suggesting that glucocorticoids induce GHRH-R mRNA mainly through stimulation of mRNA transcription. These results suggest: that GHRH-R mRNA accumulation in the fetal pituitary gland of rats normally occurs at E19, probably because of the direct action of glucocorticoids on the pituitary gland, to stimulate GHRH-R mRNA transcription; and that the expression of glucocorticoid receptors is an important event in GH cell development in rats. Accordingly, immunocytochemical results suggest an increase in glucocorticoid receptors in immature GH cells between E17 and E18. The present results also imply that MtT-S cells may be a good model in which to further study the molecular mechanisms of the regulation of GHRH-R gene expression.
Collapse
Affiliation(s)
- H Nogami
- Department of Anatomy, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamanouchi H, Kitauchi S, Shiino M. Changes in prolactin secretion in postnatal rats and effect of neonatal thyroidectomy. Mol Cell Endocrinol 1997; 134:101-7. [PMID: 9426153 DOI: 10.1016/s0303-7207(97)00167-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The prolactin (PRL) gene expression and PRL accumulation in rat pituitaries during the neonatal period were measured by means of radioimmunoassay and Northern blot analyses. The effects of neonatal thyroidectomy (Tx) on PRL synthesis and release were also investigated. The pituitary PRL mRNA level at 20 fetal days had already reached levels sufficient to detect and was increased markedly in the early neonatal period. The PRL concentrations in sera were at almost the same level during the early neonatal period, but the increases of PRL contents and PRL mRNA levels were marked in this period. Neonatal Tx effectively decreased the PRL mRNA level and PRL contents in the pituitary after 10 postnatal days. A significant decrease in the serum PRL of the Tx group was first observed at 20 postnatal days. These data indicate that thyroid hormone dependent PRL secretion is established in the neonatal period.
Collapse
Affiliation(s)
- H Yamanouchi
- Department of Anatomy, Wakayama Medical College, Japan.
| | | | | |
Collapse
|
9
|
Chuang FM, West BL, Baxter JD, Schaufele F. Activities in Pit-1 determine whether receptor interacting protein 140 activates or inhibits Pit-1/nuclear receptor transcriptional synergy. Mol Endocrinol 1997; 11:1332-41. [PMID: 9259323 DOI: 10.1210/mend.11.9.9978] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pituitary-specific transcription of the evolutionarily related rat (r) GH and PRL genes involves synergistic interactions between Pit-1 and other promoter-binding factors including nuclear receptors. We show that Pit-1/thyroid hormone receptor (TR) and Pit-1/estrogen receptor (ER) synergistic activation of the rGH and rPRL promoters are globally similar. Both synergies depend upon the same activation functions in Pit-1 and also require activation function-2 conserved in TR and ER. The activation function-2 binding protein, RIP140, previously thought to be a nuclear receptor coactivator, strongly inhibits both Pit-1/TR and Pit-1/ER synergy. RIP140 inhibition is profoundly influenced, in a promoter-specific fashion, by a synergism-selective function in Pit-1: deletion of Pit-1 amino acids 72-100 switches RIP140 to an activator of Pit-1/ER and Pit-1/TR synergy at the rPRL promoter but not at the rGH promoter. Pit-1 amino acids 101-125 are required for RIP140 inhibition or activation again only at the rPRL promoter. Therefore, functions within one factor can determine the activity of a coactivator binding to its synergistic partner. This promoter context-specific synergistic interplay between transcription factors and coactivators is likely an essential determinant of cell-specific transcriptional regulation.
Collapse
Affiliation(s)
- F M Chuang
- Metabolic Research Unit, University of California, San Francisco 94143-0540, USA
| | | | | | | |
Collapse
|
10
|
Nogami H, Inoue K, Kawamura K. Involvement of glucocorticoid-induced factor(s) in the stimulation of growth hormone expression in the fetal rat pituitary gland in vitro. Endocrinology 1997; 138:1810-5. [PMID: 9112372 DOI: 10.1210/endo.138.5.5124] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism by which glucocorticoids induce GH expression between embryonic days 18 and 19 (E18-19) in the fetal rat pituitary gland was examined with an in vitro organ culture system. Twenty-four hour incubation of E18 pituitary glands in serum-free medium containing either dexamethasone (DEX, 5-50 nM) or corticosterone (0.55 microM) resulted in a conspicuous accumulation of GH messenger RNA (mRNA), whereas no spontaneous expression of GH mRNA was noted without glucocorticoid. Triiodothyronine (1 nM) alone weakly induced GH mRNA but increased the effect of DEX 2-fold. The GH mRNA accumulation was not observed after 5 or 10 h incubation with DEX. However, a 10-h incubation with DEX followed by 14 h chase incubation without DEX resulted in apparent induction of GH mRNA. The induction of GH mRNA by DEX was completely inhibited by puromycin. These data, taken as a whole, suggest that the induction of GH mRNA by DEX in the fetal pituitary gland is not a direct effect of DEX on the GH gene but is mediated by a factor that is synthesized in the pituitary gland in response to DEX. Both immunoblot and RNase protection assays suggested that this factor is not pit-1, which is known to be required for GH mRNA expression.
Collapse
Affiliation(s)
- H Nogami
- Department of Anatomy, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
11
|
Abstract
Prolactin (PRL) is synthesized in pituitary cells called mammotrophs (PRL cells). Ample evidence demonstrates that the PRL cell population consists of structurally and functionally heterogeneous PRL cells. Multiple variants of PRL molecules are found in various species. Prolactin cells may be divided into various subtypes in the rat and mouse. Secretory activities differ among the PRL cell population. These heterogeneities may reflect various phases of the maturation process of PRL cells, or the integrated outcome of various functional differences in PRL cells. To clarify the significance of heterogeneities among PRL cells, we present updated reports on the differentiation, proliferation, and development of PRL cells, and discuss factors responsible for the functional differences in PRL cell population. The age-related alteration in PRL secretion in the rat is summarized, because it is one of the most important aspects of the developmental changes in PRL cells. A mammosomatotroph, which secretes growth hormone and PRL, is found in various species. Prolactin cells and somatotrophs are derived from the same lineage. The possible relationship among PRL cells, somatotrophs, and mammosomatotrophs is discussed.
Collapse
Affiliation(s)
- S Takahashi
- Department of Biology, Faculty of Science, Okayama University, Japan
| |
Collapse
|
12
|
Nagata S, Rosenfeld MG, Inoue K. Development of Prolactin and Growth Hormone Production in the Fetal Rat Pituitary: An Immunochemical Study. (hormone production/ontogeny/fetal rat pituitary/immunochemistry). Dev Growth Differ 1992. [DOI: 10.1111/j.1440-169x.1992.00473.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Vargas MA, Herrera J, Uribe RM, Charli JL, Joseph-Bravo P. Ontogenesis of pyroglutamyl peptidase II activity in rat brain, adenohypophysis and pancreas. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 66:251-6. [PMID: 1351427 DOI: 10.1016/0165-3806(92)90087-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamyl peptidase II (PPII; E.C. 3.4.19.-) is a highly specific membrane-bound ectoenzyme degrading thyrotropin releasing hormone (TRH). The ontogenesis of this enzyme was measured in rat brain regions, adenohypophysis and pancreas. In hypothalamus PPII activity was maximal at day 8 postnatal, decreasing to adult values at day 45. The postnatal ontogenic patterns in posterior cerebral cortex and hypothalamus were similar. In olfactory bulb, two peaks of activity were observed (3th and 22nd day) while in adenohypophysis it appeared only at day 8, increased to day 30, decreasing thereafter to adult values.
Collapse
Affiliation(s)
- M A Vargas
- Departamento de Bioquímica, Universidad Nacional Autónoma de México, Cuernavaca
| | | | | | | | | |
Collapse
|
14
|
Khachaturian H, Kwak SP, Schafer MK, Watson SJ. Pro-opiomelanocortin mRNA and peptide co-expression in the developing rat pituitary. Brain Res Bull 1991; 26:195-201. [PMID: 1849441 DOI: 10.1016/0361-9230(91)90226-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pro-opiomelanocortin (POMC) is synthesized in both the pituitary gland and the brain. Various peptide products of this precursor, namely beta-endorphin, ACTH and alpha-MSH are co-localized in the anterior lobe corticotrophs, all intermediate lobe cells and in hypothalamic neurons. Messenger RNA (mRNA) for POMC has further been shown to exist in these tissues. In this study, we have shown that POMC mRNA, and peptide accumulation as detected by in situ hybridization and immunocytochemistry, respectively, occur simultaneously within the rat pituitary gland during ontogeny and that their maturation occurs in parallel during prenatal and early postnatal development.
Collapse
Affiliation(s)
- H Khachaturian
- Mental Health Research Institute, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|