1
|
Liu Y, Hu J, Yao S, Zhou Q, Li H, Takahata T. Multiple Visuotopically Organized Subdivisions of the Lateral Pulvinar/Central Lateral Inferior Pulvinar Project into Thin and Thick Stripe Compartments of V2 in Macaques. Cereb Cortex 2021; 31:3788-3803. [PMID: 33772553 DOI: 10.1093/cercor/bhab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 11/13/2022] Open
Abstract
The lateral and central lateral inferior pulvinar (PL/PIcl) of primates has been implicated in playing an important role in visual processing, but its physiological and anatomical characteristics remain to be elucidated. It has been suggested that there are two complete visuotopic maps in the PL/PIcl, each of which sends afferents into V2 and V4 in primates. Given that functionally distinct thin and thick stripes of V2 both receive inputs from the PL/PIcl, this raises the possibility of a presence of parallel segregated pathways within the PL/PIcl. To address this question, we selectively injected three types of retrograde tracers (CTB-488, CTB-555, and BDA) into thin or thick stripes in V2 and examined labeling in the PL/PIcl in macaques. As a result, we found that every cluster of retrograde labeling in the PL/PIcl included all three types of signals next to each other, suggesting that thin stripe- and thick stripe-projecting compartments are not segregated into domains. Unexpectedly, we found at least five topographically organized retrograde labeling clusters in the PL/PIcl, indicating the presence of more than two V2-projecting maps. Our results suggest that the PL/PIcl exhibits greater compartmentalization than previously thought. They may be functionally similar but participate in multiple cortico-pulvinar-cortical loops.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, P. R. China
| | - Jiaming Hu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, P. R. China
| | - Songping Yao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, P. R. China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University,Hangzhou 310029, P. R. China
| | - Qiuying Zhou
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, P. R. China
| | - Hangqi Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, P. R. China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University,Hangzhou 310029, P. R. China
| | - Toru Takahata
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, P. R. China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University,Hangzhou 310029, P. R. China
| |
Collapse
|
2
|
Yao S, Zhou Q, Li S, Takahata T. Immunoreactivity of Vesicular Glutamate Transporter 2 Corresponds to Cytochrome Oxidase-Rich Subcompartments in the Visual Cortex of Squirrel Monkeys. Front Neuroanat 2021; 15:629473. [PMID: 33679337 PMCID: PMC7930324 DOI: 10.3389/fnana.2021.629473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome oxidase (CO) histochemistry has been used to reveal the cytoarchitecture of the primate brain, including blobs/puffs/patches in the striate cortex (V1), and thick, thin and pale stripes in the middle layer of the secondary visual cortex (V2). It has been suggested that CO activity is coupled with the spiking activity of neurons, implying that neurons in these CO-rich subcompartments are more active than surrounding regions. However, we have discussed possibility that CO histochemistry represents the distribution of thalamo-cortical afferent terminals that generally use vesicular glutamate transporter 2 (VGLUT2) as their main glutamate transporter, and not the activity of cortical neurons. In this study, we systematically compared the labeling patterns observed between CO histochemistry and immunohistochemistry (IHC) for VGLUT2 from the system to microarchitecture levels in the visual cortex of squirrel monkeys. The two staining patterns bore striking similarities at all levels of the visual cortex, including the honeycomb structure of V1 layer 3Bβ (Brodmann's layer 4A), the patchy architecture in the deep layers of V1, the superficial blobs of V1, and the V2 stripes. The microarchitecture was more evident in VGLUT2 IHC, as expected. VGLUT2 protein expression that produced specific IHC labeling is thought to originate from the thalamus since the lateral geniculate nucleus (LGN) and the pulvinar complex both show high expression levels of VGLUT2 mRNA, but cortical neurons do not. These observations support our theory that the subcompartments revealed by CO histochemistry represent the distribution of thalamo-cortical afferent terminals in the primate visual cortex.
Collapse
Affiliation(s)
- Songping Yao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuying Zhou
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuiyu Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Toru Takahata
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Tootell RBH, Nasr S. Scotopic Vision Is Selectively Processed in Thick-Type Columns in Human Extrastriate Cortex. Cereb Cortex 2021; 31:1163-1181. [PMID: 33073288 PMCID: PMC7786355 DOI: 10.1093/cercor/bhaa284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
In humans, visual stimuli can be perceived across an enormous range of light levels. Evidence suggests that different neural mechanisms process different subdivisions of this range. For instance, in the retina, stimuli presented at very low (scotopic) light levels activate rod photoreceptors, whereas cone photoreceptors are activated relatively more at higher (photopic) light levels. Similarly, different retinal ganglion cells are activated by scotopic versus photopic stimuli. However, in the brain, it remains unknown whether scotopic versus photopic information is: 1) processed in distinct channels, or 2) neurally merged. Using high-resolution functional magnetic resonance imaging at 7 T, we confirmed the first hypothesis. We first localized thick versus thin-type columns within areas V2, V3, and V4, based on photopic selectivity to motion versus color, respectively. Next, we found that scotopic stimuli selectively activated thick- (compared to thin-) type columns in V2 and V3 (in measurements of both overlap and amplitude) and V4 (based on overlap). Finally, we found stronger resting-state functional connections between scotopically dominated area MT with thick- (compared to thin-) type columns in areas V2, V3, and V4. We conclude that scotopic stimuli are processed in partially segregated parallel streams, emphasizing magnocellular influence, from retina through middle stages of visual cortex.
Collapse
Affiliation(s)
- Roger B H Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
de Souza BOF, Frigon ÉM, Tremblay-Laliberté R, Casanova C, Boire D. Laminar distribution of cortical projection neurons to the pulvinar: A comparative study in cats and mice. J Comp Neurol 2020; 529:2055-2069. [PMID: 33226127 DOI: 10.1002/cne.25072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 01/19/2023]
Abstract
The cortical processing of visual information is thought to follow a hierarchical framework. This framework of connections between visual areas is based on the laminar patterns of direct feedforward and feedback cortico-cortical projections. However, this view ignores the cortico-thalamo-cortical projections to the pulvinar nucleus in the thalamus, which provides an alternative transthalamic information transfer between cortical areas. It was proposed that corticothalamic (CT) pathways follow a similar hierarchical pattern as cortico-cortical connections. Two main types of CT projections have been recognized: drivers and modulators. Drivers originate mainly in Layer 5 whereas modulators are from Layer 6. Little is known about the laminar distribution of these projections to the pulvinar across visual cortical areas. Here, we analyzed the distribution of CT neurons projecting to the lateral posterior (LP) thalamus in two species: cats and mice. Injections of the retrograde tracer fragment B of cholera toxin (CTb) were performed in the LP. The morphology and cortical laminar distribution of CTb-labeled neurons was assessed. In cats, neurons were mostly found in Layer 6 except in Area 17, where they were mostly in Layer 5. In contrast, CT neurons in mice were mostly located in Layer 6 across all areas. Thus, our results demonstrate that CT projections in mice do not follow the same organization as cats suggesting that the transthalamic pathways play distinct roles in these species.
Collapse
Affiliation(s)
| | - Éve-Marie Frigon
- Département d'Anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | - Denis Boire
- Département d'Anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,École d'Optométrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Rockland KS. What we can learn from the complex architecture of single axons. Brain Struct Funct 2020; 225:1327-1347. [DOI: 10.1007/s00429-019-02023-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
|
6
|
Distinctive Spatial and Laminar Organization of Single Axons from Lateral Pulvinar in the Macaque. Vision (Basel) 2019; 4:vision4010001. [PMID: 31861468 PMCID: PMC7157709 DOI: 10.3390/vision4010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022] Open
Abstract
Pulvino-cortical (PC) projections are a major source of extrinsic input to early visual areas in the macaque. From bulk injections of anterograde tracers, these are known to terminate in layer 1 of V1 and densely in the middle cortical layers of extrastriate areas. Finer, single axon analysis, as reviewed here for projections from the lateral pulvinar (PL) in two macaque monkeys (n = 25 axons), demonstrates that PL axons have multiple arbors in V2 and V4, and that these are spatially separate and offset in different layers. In contrast, feedforward cortical axons, another major source of extrinsic input to extrastriate areas, are less spatially divergent and more typically terminate in layer 4. Functional implications are briefly discussed, including comparisons with the better investigated rodent brain.
Collapse
|
7
|
Huo BX, Zeater N, Lin MK, Takahashi YS, Hanada M, Nagashima J, Lee BC, Hata J, Zaheer A, Grünert U, Miller MI, Rosa MGP, Okano H, Martin PR, Mitra PP. Relation of koniocellular layers of dorsal lateral geniculate to inferior pulvinar nuclei in common marmosets. Eur J Neurosci 2019; 50:4004-4017. [PMID: 31344282 DOI: 10.1111/ejn.14529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 11/27/2022]
Abstract
Traditionally, the dorsal lateral geniculate nucleus (LGN) and the inferior pulvinar (IPul) nucleus are considered as anatomically and functionally distinct thalamic nuclei. However, in several primate species it has also been established that the koniocellular (K) layers of LGN and parts of the IPul have a shared pattern of immunoreactivity for the calcium-binding protein calbindin. These calbindin-rich cells constitute a thalamic matrix system which is implicated in thalamocortical synchronisation. Further, the K layers and IPul are both involved in visual processing and have similar connections with retina and superior colliculus. Here, we confirmed the continuity between calbindin-rich cells in LGN K layers and the central lateral division of IPul (IPulCL) in marmoset monkeys. By employing a high-throughput neuronal tracing method, we found that both the K layers and IPulCL form comparable patterns of connections with striate and extrastriate cortices; these connections are largely different to those of the parvocellular and magnocellular laminae of LGN. Retrograde tracer-labelled cells and anterograde tracer-labelled axon terminals merged seamlessly from IPulCL into LGN K layers. These results support continuity between LGN K layers and IPulCL, providing an anatomical basis for functional congruity of this region of the dorsal thalamic matrix and calling into question the traditional segregation between LGN and the inferior pulvinar nucleus.
Collapse
Affiliation(s)
- Bing-Xing Huo
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Natalie Zeater
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney University Node, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Meng Kuan Lin
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yeonsook S Takahashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan.,Integra Life Science Japan, Minato-Ku, Akasaka, Japan
| | - Mitsutoshi Hanada
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan.,Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaimi Nagashima
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan.,Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian C Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Junichi Hata
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| | - Afsah Zaheer
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ulrike Grünert
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney University Node, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Marcello G P Rosa
- Department of Physiology and Biomedicine Research Institute, Monash University, Clayton, Vic., Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Vic., Australia
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Paul R Martin
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney University Node, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Partha P Mitra
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
8
|
Moore B, Li K, Kaas JH, Liao CC, Boal AM, Mavity-Hudson J, Casagrande V. Cortical projections to the two retinotopic maps of primate pulvinar are distinct. J Comp Neurol 2018; 527:577-588. [PMID: 30078198 DOI: 10.1002/cne.24515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023]
Abstract
Comprised of at least five distinct nuclei, the pulvinar complex of primates includes two large visually driven nuclei; one in the dorsal (lateral) pulvinar and one in the ventral (inferior) pulvinar, that contain similar retinotopic representations of the contralateral visual hemifield. Both nuclei also appear to have similar connections with areas of visual cortex. Here we determined the cortical connections of these two nuclei in galagos, members of the stepsirrhine primate radiation, to see if the nuclei differed in ways that could support differences in function. Injections of different retrograde tracers in each nucleus produced similar patterns of labeled neurons, predominately in layer 6 of V1, V2, V3, MT, regions of temporal cortex, and other visual areas. More complete labeling of neurons with a modified rabies virus identified these neurons as pyramidal cells with apical dendrites extending into superficial cortical layers. Importantly, the distributions of cortical neurons projecting to each of the two nuclei were highly overlapping, but formed separate populations. Sparse populations of double-labeled neurons were found in both V1 and V2 but were very low in number (<0.1%). Finally, the labeled cortical neurons were predominately in layer 6, and layer 5 neurons were labeled only in extrastriate areas. Terminations of pulvinar projections to area 17 was largely in superficial cortical layers, especially layer 1.
Collapse
Affiliation(s)
- Brandon Moore
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - Keji Li
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee.,Department of Cellular and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Jon H Kaas
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee.,Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Andrew M Boal
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | | | - Vivien Casagrande
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee.,Department of Cellular and Developmental Biology, Vanderbilt University, Nashville, Tennessee.,Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
9
|
GABA Inactivation of the Pulvinar. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2017. [PMID: 29116452 DOI: 10.1007/978-3-319-70046-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In this chapter, we discuss the effects of GABA (gamma-aminobutyric acid) inactivation of the pulvinar on the electrophysiological responses to visual stimuli. A direct way to access the pulvinar-cortical interaction is to pharmacologically inactivate the pulvinar and measure the impact on cortical activity. To this aim, we have focused our efforts on recording in cortical visual area V2 while inactivating the topographically corresponding region of the pulvinar.
Collapse
|
10
|
Rockland KS. What do we know about laminar connectivity? Neuroimage 2017; 197:772-784. [PMID: 28729159 DOI: 10.1016/j.neuroimage.2017.07.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
In this brief review, I attempt an overview of the main components of anatomical laminar-level connectivity. These are: extrinsic outputs, excitatory and inhibitory intrinsic connectivity, and intrinsic inputs. Supporting data are biased from the visual system of nonhuman primates (NHPs), but I have drawn as much as possible from a broader span in order to treat the important issue of area-specific variability. In a second part, I briefly discuss laminar connectivity in the context of network organization (feedforward/feedback cortical connections, and the major types of corticothalamic connections). I also point out anatomical issues in need of clarification, including more systematic, whole brain coverage of tracer injections; more data on anterogradely labeled terminations; more complete, area-specific quantitative data about projection neurons, and quantitative data on terminal density and convergence. Postsynaptic targets are largely unknown, but their identification is essential for understanding the finer analysis and principles of laminar patterns. Laminar resolution MRI offers a promising new tool for exploring laminar connectivity: it is potentially fast and macro-scale, and allows for repeated investigation under different stimulus conditions. Conversely, anatomical resolution, although detailed beyond the current level of MRI visualization, offers a rich trove for experimental design and interpretation of fMRI activation patterns.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy&Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA.
| |
Collapse
|
11
|
Dumoulin SO, Harvey BM, Fracasso A, Zuiderbaan W, Luijten PR, Wandell BA, Petridou N. In vivo evidence of functional and anatomical stripe-based subdivisions in human V2 and V3. Sci Rep 2017; 7:733. [PMID: 28389654 PMCID: PMC5428808 DOI: 10.1038/s41598-017-00634-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/08/2017] [Indexed: 11/15/2022] Open
Abstract
Visual cortex contains a hierarchy of visual areas. The earliest cortical area (V1) contains neurons responding to colour, form and motion. Later areas specialize on processing of specific features. The second visual area (V2) in non-human primates contains a stripe-based anatomical organization, initially defined using cytochrome-oxidase staining of post-mortem tissue. Neurons in these stripes have been proposed to serve distinct functional specializations, e.g. processing of color, form and motion. These stripes represent an intermediate stage in visual hierarchy and serve a key role in the increasing functional specialization of visual areas. Using sub-millimeter high-field functional and anatomical MRI (7T), we provide in vivo evidence for stripe-based subdivisions in humans. Using functional MRI, we contrasted responses elicited by stimuli alternating at slow and fast temporal frequencies. We revealed stripe-based subdivisions in V2 ending at the V1/V2 border. The human stripes reach into V3. Using anatomical MRI optimized for myelin contrast within gray matter, we also observe a stripe pattern. Stripe subdivisions preferentially responding to fast temporal frequencies are more myelinated. As such, functional and anatomical measures provide independent and converging evidence for functional organization into striped-based subdivisions in human V2 and V3.
Collapse
Affiliation(s)
- Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands.
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands.
| | - Ben M Harvey
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Alessio Fracasso
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
- Department of Radiology, University Medical Centre, Utrecht, Netherlands
| | - Wietske Zuiderbaan
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Centre, Utrecht, Netherlands
| | - Brian A Wandell
- Department of Psychology, Stanford University, California, USA
| | - Natalia Petridou
- Department of Radiology, University Medical Centre, Utrecht, Netherlands
- Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
12
|
Takahata T. What Does Cytochrome Oxidase Histochemistry Represent in the Visual Cortex? Front Neuroanat 2016; 10:79. [PMID: 27489537 PMCID: PMC4951485 DOI: 10.3389/fnana.2016.00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Toru Takahata
- Laboratory of Comparative Molecular Neuroanatomy, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University Hangzhou, China
| |
Collapse
|
13
|
Dietrich S, Hertrich I, Ackermann H. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners. PLoS One 2015; 10:e0132196. [PMID: 26148062 PMCID: PMC4492787 DOI: 10.1371/journal.pone.0132196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the “parsing” of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA.
Collapse
Affiliation(s)
- Susanne Dietrich
- Department of General Neurology, Hertie Institute for Clinical Brain Research, Center for Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
- * E-mail:
| | - Ingo Hertrich
- Department of General Neurology, Hertie Institute for Clinical Brain Research, Center for Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| | - Hermann Ackermann
- Department of General Neurology, Hertie Institute for Clinical Brain Research, Center for Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| |
Collapse
|
14
|
Marion R, Li K, Purushothaman G, Jiang Y, Casagrande VA. Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J Comp Neurol 2013; 521:813-32. [PMID: 22826174 DOI: 10.1002/cne.23203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/21/2012] [Accepted: 07/20/2012] [Indexed: 11/09/2022]
Abstract
The flow of visual information is clear at the earliest stages: the retina provides the driving (main signature) activity for the lateral geniculate nucleus (LGN), which in turn drives the primary visual cortex (V1). These driving pathways can be distinguished anatomically from other modulatory pathways that innervate LGN and V1. The path of visual information after V1, however, is less clear. There are two primary feedforward projections to the secondary visual cortex (V2), one from the lateral/inferior pulvinar and the other from V1. Because both lateral/inferior pulvinar and V2 cannot be driven visually following V1 removal, either or both of these inputs to V2 could be drivers. Retinogeniculate and geniculocortical projections are privileged over modulatory projections by their layer of termination, their bouton size, and the presence of vesicular glutamate transporter 2 (Vglut2) or parvalbumin (PV). It has been suggested that such properties might also distinguish drivers from modulators in extrastriate cortex. We tested this hypothesis by comparing lateral pulvinar to V2 and V1 to V2 projections with LGN to V1 projections. We found that V1 and lateral pulvinar projections to V2 are similar in that they target the same layers and lack PV. Projections from pulvinar to V2, however, bear a greater similarity to projections from LGN to V1 because of their larger boutons (measured at the same location in V2) and positive staining for Vglut2. These data lend support to the hypothesis that the pulvinar could act as a driver for V2.
Collapse
Affiliation(s)
- Roan Marion
- Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
15
|
Nakagami Y, Watakabe A, Yamamori T. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset. Front Neural Circuits 2013; 7:43. [PMID: 23576954 PMCID: PMC3620563 DOI: 10.3389/fncir.2013.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/03/2013] [Indexed: 12/03/2022] Open
Abstract
We investigated the time course of the expression of several activity-dependent genes evoked by visual inputs in the primary visual cortex (V1) in adult marmosets. In order to examine the rapid time course of activity-dependent gene expression, marmosets were first monocularly inactivated by tetrodotoxin (TTX), kept in darkness for two days, and then exposed to various length of light stimulation. Activity-dependent genes including HTR1B, HTR2A, whose activity-dependency were previously reported by us, and well-known immediate early genes (IEGs), c-FOS, ZIF268, and ARC, were examined by in situ hybridization. Using this system, first, we demonstrated the ocular dominance type of gene expression pattern in V1 under this condition. IEGs were expressed in columnar patterns throughout layers II–VI of all the tested monocular marmosets. Second, we showed the regulation of HTR1B and HTR2A expressions by retinal spontaneous activity, because HTR1B and HTR2A mRNA expressions sustained a certain level regardless of visual stimulation and were inhibited by a blockade of the retinal activity with TTX. Third, IEGs dynamically changed its laminar distribution from half an hour to several hours upon a stimulus onset with the unique time course for each gene. The expression patterns of these genes were different in neurons of each layer as well. These results suggest that the regulation of each neuron in the primary visual cortex of marmosets is subjected to different regulation upon the change of activities from retina. It should be related to a highly differentiated laminar structure of marmoset visual systems, reflecting the functions of the activity-dependent gene expression in marmoset V1.
Collapse
Affiliation(s)
- Yuki Nakagami
- Division of Brain Biology, Department of Neurobiology, National Institute for Basic Biology Okazaki, Japan
| | | | | |
Collapse
|
16
|
Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system. J Chem Neuroanat 2013; 50-51:21-38. [PMID: 23524295 DOI: 10.1016/j.jchemneu.2013.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/21/2022]
Abstract
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006).
Collapse
|
17
|
Garcia-Marin V, Ahmed TH, Afzal YC, Hawken MJ. Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human. J Comp Neurol 2013; 521:130-51. [PMID: 22684983 DOI: 10.1002/cne.23165] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/18/2011] [Accepted: 06/04/2012] [Indexed: 11/05/2022]
Abstract
The majority of thalamic terminals in V1 arise from lateral geniculate nucleus (LGN) afferents. Thalamic afferent terminals are preferentially labeled by an isoform of the vesicular glutamate transporter, VGluT2. The goal of our study was to determine the distribution of VGluT2-ir puncta in macaque and human visual cortex. First, we investigated the distribution of VGluT2-ir puncta in all layers of macaque monkey primary visual cortex (V1), and found a very close correspondence between the known distribution of LGN afferents from previous studies and the distribution of VGluT2-immunoreactive (-ir) puncta. There was also a close correspondence between cytochrome oxidase density and VGluT2-ir puncta distribution. After validating the correspondence in macaque, we made a comparative study in human V1. In many aspects, the distribution of VGluT2-ir puncta in human was qualitatively similar to that of the macaque: high densities in layer 4C, patches of VGluT2-ir puncta in the supragranular layer (2/3), lower but clear distribution in layers 1 and 6, and very few puncta in layers 5 and 4B. However, there were also important differences between macaques and humans. In layer 4A of human, there was a sparse distribution of VGluT2-ir puncta, whereas in macaque, there was a dense distribution with the characteristic honeycomb organization. The results suggest important changes in the pattern of cortical VGluT2 immunostaining that may be related to evolutionary differences in the cortical organization of LGN afferents between Old World monkeys and humans.
Collapse
|
18
|
Baldwin MKL, Kaskan PM, Zhang B, Chino YM, Kaas JH. Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys. J Comp Neurol 2012; 520:544-69. [PMID: 21800316 DOI: 10.1002/cne.22732] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Connections of primary (V1) and secondary (V2) visual areas were revealed in macaque monkeys ranging in age from 2 to 16 weeks by injecting small amounts of cholera toxin subunit B (CTB). Cortex was flattened and cut parallel to the surface to reveal injection sites, patterns of labeled cells, and patterns of cytochrome oxidase (CO) staining. Projections from the lateral geniculate nucleus and pulvinar to V1 were present at 4 weeks of age, as were pulvinar projections to thin and thick CO stripes in V2. Injections into V1 in 4- and 8-week-old monkeys labeled neurons in V2, V3, middle temporal area (MT), and dorsolateral area (DL)/V4. Within V1 and V2, labeled neurons were densely distributed around the injection sites, but formed patches at distances away from injection sites. Injections into V2 labeled neurons in V1, V3, DL/V4, and MT of monkeys 2-, 4-, and 8-weeks of age. Injections in thin stripes of V2 preferentially labeled neurons in other V2 thin stripes and neurons in the CO blob regions of V1. A likely thick stripe injection in V2 at 4 weeks of age labeled neurons around blobs. Most labeled neurons in V1 were in superficial cortical layers after V2 injections, and in deep layers of other areas. Although these features of adult V1 and V2 connectivity were in place as early as 2 postnatal weeks, labeled cells in V1 and V2 became more restricted to preferred CO compartments after 2 weeks of age.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, Nashville Tennessee 37212, USA
| | | | | | | | | |
Collapse
|
19
|
Murayama Y, Augath M, Logothetis NK. Activation of SC during electrical stimulation of LGN: retinal antidromic stimulation or corticocollicular activation? Magn Reson Imaging 2011; 29:1351-7. [PMID: 21920684 DOI: 10.1016/j.mri.2011.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022]
Abstract
We have recently used combined electrostimulation, neurophysiology, microinjection and functional magnetic resonance imaging (fMRI) to study the cortical activity patterns elicited during stimulation of cortical afferents in monkeys. We found that stimulation of a site in lateral geniculate nucleus (LGN) increases the fMRI signal in the regions of primary visual cortex receiving input from that site, but suppresses it in the retinotopically matched regions of extrastriate cortex. Intracortical injection experiments showed that such suppression is due to synaptic inhibition. During these experiments, we have consistently observed activation of superior colliculus (SC) following LGN stimulation. Since LGN does not directly project to SC, the current study investigated the origin of SC activation. By examining experimental manipulations inactivating the primary visual cortex, we present here evidence that the robust SC activation, which follows the stimulation of LGN, is due to the activation of corticocollicular pathway.
Collapse
Affiliation(s)
- Yusuke Murayama
- Max-Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
20
|
Yamamori T. Selective gene expression in regions of primate neocortex: implications for cortical specialization. Prog Neurobiol 2011; 94:201-22. [PMID: 21621585 DOI: 10.1016/j.pneurobio.2011.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 03/30/2011] [Accepted: 04/13/2011] [Indexed: 01/17/2023]
Abstract
The neocortex, which is characteristic of mammals, has evolved to play important roles in cognitive and perceptual functions. The localization of different functions in different regions of the neocortex was well established within the last century. Studies on the formation of the neocortex have advanced at the molecular level, thus clarifying the mechanisms that control neural or glial cell differentiation and sensory projections. However, mechanisms that underlie cortical area specialization remain unsolved. To address this problem, our approach has been to isolate and characterize the genes that are selectively expressed in particular subsets of neocortical areas in primates; these areas are most distinctive among mammals. By differential display and restriction landmark cDNA scanning (RLCS) methods, we have identified two major classes of genes that are specifically expressed in the adult macaque monkey neocortical areas: one is expressed in the primary sensory areas, particularly, in the primary visual cortex (V1) and the other is expressed in the association areas. The genes that show these specific expression patterns are limited to only several gene families among our large-scale screening. In this review, I first describe the isolation and characterization of these genes, along with another class of genes specifically expressed in motor areas. Then, I discuss their functional significance in the primate neocortex. Finally, I discuss the implication of these gene expression patterns in neocortical specialization in primates and possible future research directions.
Collapse
Affiliation(s)
- Tetsuo Yamamori
- Brain Biology, National Institute for Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
21
|
Vascularization of cytochrome oxidase-rich blobs in the primary visual cortex of squirrel and macaque monkeys. J Neurosci 2011; 31:1246-53. [PMID: 21273409 DOI: 10.1523/jneurosci.2765-10.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The close correlation between energy supply by blood vessels and energy consumption by cellular processes in the brain is the basis of blood flow-related functional imaging techniques. Regional differences in vascular density can be detected using high-resolution functional magnetic resonance imaging. Therefore, inhomogeneities in vascularization might help to identify anatomically distinct areas noninvasively in vivo. It was reported previously that cytochrome oxidase-rich blobs in the striate cortex of squirrel monkeys are characterized by a notably higher vascular density (42% higher than interblob regions). However, blobs have so far never been identified in vivo on the basis of their vascular density. Here, we analyzed blobs of the primary visual cortex of squirrel monkeys and macaques with respect to the relationship between vascularization and cytochrome oxidase activity. By double staining with cytochrome oxidase enzyme histochemistry to define the blobs and collagen type IV immunohistochemistry to quantify the blood vessels, a close correlation between oxidative metabolism and vascularization was confirmed and quantified in detail. The vascular length density in cytochrome oxidase blobs was on average 4.5% higher than in the interblob regions, a difference almost one order of magnitude smaller than previously reported. Thus, the vascular density that is closely associated with local average metabolic activity is a structural equivalent of cerebral metabolism and blood flow. However, the quantitative differences in vascularization between blob and interblob regions are small and below the detectability threshold of the noninvasive hemodynamic imaging methods of today.
Collapse
|
22
|
Abstract
This review attempts to summarise some of the major areas of neocortical research as it pertains to neocortical layer 6. After a brief summary of the development of this intriguing layer, the major pyramidal cell classes to be found in layer 6 are described and compared. The connections made and received by these different classes of neurones are then discussed and the possible functions of these connections, with particular reference to the shaping of responses in visual cortex and thalamus. Inhibition in layer 6 is discussed where appropriate, but not in great detail. Many types of interneurones are to be found in each cortical layer and layer 6 is no exception, but the functions of each type remain to be elucidated (Gonchar et al., 2007).
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy, University of London London, UK
| |
Collapse
|
23
|
Sincich LC, Jocson CM, Horton JC. V1 interpatch projections to v2 thick stripes and pale stripes. J Neurosci 2010; 30:6963-74. [PMID: 20484638 PMCID: PMC3156557 DOI: 10.1523/jneurosci.5506-09.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/22/2010] [Accepted: 03/27/2010] [Indexed: 11/21/2022] Open
Abstract
Cytochrome oxidase (CO) reveals two compartments in V1 (patches and interpatches) and three compartments in V2 (thin, pale, and thick stripes). Previously, it was shown that thin stripes receive input predominantly from patches. Here we examined the projections to thick and pale stripes in macaques, revealed by retrograde tracer injections. After thick stripe injection, cells were distributed in layer 2/3 (67%), layer 4A (7%), layer 4B (23%), and layer 5/6 (2%). Except in layer 5/6, cells were concentrated in interpatches, with a stronger bias in layer 2/3 (84%) than in layer 4B (75%). After pale stripe injection, cells were found in layer 2/3 (87%), layer 4A (2%), layer 4B (10%), and layer 5/6 (2%). As for thick stripes, cells were located preferentially in interpatches in layer 2/3 (84%) and layer 4B (72%) but not in layer 5/6. Thick stripes received a higher proportion of their input from layer 4B, compared with pale stripes, consistent with reports that thick stripe neurons exhibit a pronounced layer 4B influence. This difference aside, both stripe types receive similar inputs from V1, at least in terms of cortical layer and CO compartment. This finding was bolstered by injecting different tracers into pale and thick stripes; 10-27% of cells were double labeled, with most located in interpatches. These results suggest that the distinctive receptive field properties of neurons in thick and pale stripes are generated by local V2 circuits, or by other specific projections, rather than by differing sources of laminar and compartmental input from V1.
Collapse
Affiliation(s)
- Lawrence C Sincich
- Beckman Vision Center, University of California, San Francisco, San Francisco, California 94143-0730, USA.
| | | | | |
Collapse
|
24
|
Abstract
This review attempts to summarise some of the major areas of neocortical research as it pertains to neocortical layer 6. After a brief summary of the development of this intriguing layer, the major pyramidal cell classes to be found in layer 6 are described and compared. The connections made and received by these different classes of neurones are then discussed and the possible functions of these connections, with particular reference to the shaping of responses in visual cortex and thalamus. Inhibition in layer 6 is discussed where appropriate, but not in great detail. Many types of interneurones are to be found in each cortical layer and layer 6 is no exception, but the functions of each type remain to be elucidated (Gonchar et al., 2007).
Collapse
Affiliation(s)
- Alex M. Thomson
- Department of Pharmacology, The School of Pharmacy, University of LondonLondon, UK
| |
Collapse
|
25
|
Takahata T, Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, Yamamori T. Differential expression patterns of occ1-related genes in adult monkey visual cortex. ACTA ACUST UNITED AC 2008; 19:1937-51. [PMID: 19073625 PMCID: PMC2705702 DOI: 10.1093/cercor/bhn220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins.
Collapse
Affiliation(s)
- Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Our studies on brightness information processing in Macaque monkey visual cortex suggest that the thin stripes in the secondary visual area (V2) are preferentially activated by brightness stimuli (such as full field luminance modulation and illusory edge-induced brightness modulation). To further examine this possibility, we used intrinsic signal optical imaging to examine contrast response of different functional domains in primary and secondary visual areas (V1 and V2). Color and orientation stimuli were used to map functional domains in V1 (color domains, orientation domains) and V2 (thin stripes, thick/pale stripes). To examine contrast response, sinusoidal gratings at different contrasts and spatial frequencies were presented. We find that, consistent with previous studies, the optical signal increased systematically with contrast level. Unlike single-unit responses, optical signals for both color domains and orientation domains in V1 exhibit linear contrast response functions, thereby providing a large dynamic range for V1 contrast response. In contrast to domains in V1, domains in V2 exhibit nonlinear responses, characterized by high gain at low contrasts, saturating at a mid-high contrast levels. At high contrasts, thin stripes exhibit increasing response, whereas thick/pale stripes saturate, consistent with a strong parvocellular input to thin stripes. These findings suggest that, with respect to contrast encoding, thin stripes have a larger dynamic range than thick/pale stripes and further support a role for thin stripes in processing of brightness information.
Collapse
Affiliation(s)
- Haidong D Lu
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA.
| | | |
Collapse
|
27
|
Isbell LA. Snakes as agents of evolutionary change in primate brains. J Hum Evol 2006; 51:1-35. [PMID: 16545427 DOI: 10.1016/j.jhevol.2005.12.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Revised: 10/04/2005] [Accepted: 12/28/2005] [Indexed: 10/24/2022]
Abstract
Current hypotheses that use visually guided reaching and grasping to explain orbital convergence, visual specialization, and brain expansion in primates are open to question now that neurological evidence reveals no correlation between orbital convergence and the visual pathway in the brain that is associated with reaching and grasping. An alternative hypothesis proposed here posits that snakes were ultimately responsible for these defining primate characteristics. Snakes have a long, shared evolutionary existence with crown-group placental mammals and were likely to have been their first predators. Mammals are conservative in the structures of the brain that are involved in vigilance, fear, and learning and memory associated with fearful stimuli, e.g., predators. Some of these areas have expanded in primates and are more strongly connected to visual systems. However, primates vary in the extent of brain expansion. This variation is coincident with variation in evolutionary co-existence with the more recently evolved venomous snakes. Malagasy prosimians have never co-existed with venomous snakes, New World monkeys (platyrrhines) have had interrupted co-existence with venomous snakes, and Old World monkeys and apes (catarrhines) have had continuous co-existence with venomous snakes. The koniocellular visual pathway, arising from the retina and connecting to the lateral geniculate nucleus, the superior colliculus, and the pulvinar, has expanded along with the parvocellular pathway, a visual pathway that is involved with color and object recognition. I suggest that expansion of these pathways co-occurred, with the koniocellular pathway being crucially involved (among other tasks) in pre-attentional visual detection of fearful stimuli, including snakes, and the parvocellular pathway being involved (among other tasks) in protecting the brain from increasingly greater metabolic demands to evolve the neural capacity to detect such stimuli quickly. A diet that included fruits or nectar (though not to the exclusion of arthropods), which provided sugars as a neuroprotectant, may have been a required preadaptation for the expansion of such metabolically active brains. Taxonomic differences in evolutionary exposure to venomous snakes are associated with similar taxonomic differences in rates of evolution in cytochrome oxidase genes and in the metabolic activity of cytochrome oxidase proteins in at least some visual areas in the brains of primates. Raptors that specialize in eating snakes have larger eyes and greater binocularity than more generalized raptors, and provide non-mammalian models for snakes as a selective pressure on primate visual systems. These models, along with evidence from paleobiogeography, neuroscience, ecology, behavior, and immunology, suggest that the evolutionary arms race begun by constrictors early in mammalian evolution continued with venomous snakes. Whereas other mammals responded by evolving physiological resistance to snake venoms, anthropoids responded by enhancing their ability to detect snakes visually before the strike.
Collapse
Affiliation(s)
- Lynne A Isbell
- Department of Anthropology, University of California, Davis, 95616, USA.
| |
Collapse
|
28
|
Yamamori T, Rockland KS. Neocortical areas, layers, connections, and gene expression. Neurosci Res 2006; 55:11-27. [PMID: 16546282 DOI: 10.1016/j.neures.2006.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 02/05/2006] [Accepted: 02/09/2006] [Indexed: 11/23/2022]
Abstract
Cortical patterns of gene expression provide a new approach to long standing issues of lamination, and area identity and formation. In this review, we summarize recent findings where molecular biological techniques have revealed a small number of area-specific genes in the nonhuman primate cortex. One of these (occ1) is strongly expressed in primary visual cortex and is associated with thalamocortical connections. Another gene, RBP, is more strongly expressed in association areas. It is not clear whether RBP might be linked with any particular connectional system, but several possibilities are raised. We also discuss possible roles of area-specific genes in postnatal development, and conclude with a brief sketch of future directions.
Collapse
Affiliation(s)
- Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Aichi 444-8585, Japan.
| | | |
Collapse
|
29
|
Abstract
Primary and secondary visual cortex (V1 and V2) form the foundation of the cortical visual system. V1 transforms information received from the lateral geniculate nucleus (LGN) and distributes it to separate domains in V2 for transmission to higher visual areas. During the past 20 years, schemes for the functional organization of V1 and V2 have been based on a tripartite framework developed by Livingstone & Hubel (1988) . Since then, new anatomical data have accumulated concerning V1's input, its internal circuitry, and its output to V2. These new data, along with physiological and imaging studies, now make it likely that the visual attributes of color, form, and motion are not neatly segregated by V1 into different stripe compartments in V2. Instead, there are just two main streams, originating from cytochrome oxidase patches and interpatches, that project to V2. Each stream is composed of a mixture of magno, parvo, and konio geniculate signals. Further studies are required to elucidate how the patches and interpatches differ in the output they convey to extrastriate cortex.
Collapse
Affiliation(s)
- Lawrence C Sincich
- Beckman Vision Center, University of California-San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
30
|
Horton JC, Adams DL. The cortical column: a structure without a function. Philos Trans R Soc Lond B Biol Sci 2005; 360:837-62. [PMID: 15937015 PMCID: PMC1569491 DOI: 10.1098/rstb.2005.1623] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This year, the field of neuroscience celebrates the 50th anniversary of Mountcastle's discovery of the cortical column. In this review, we summarize half a century of research and come to the disappointing realization that the column may have no function. Originally, it was described as a discrete structure, spanning the layers of the somatosensory cortex, which contains cells responsive to only a single modality, such as deep joint receptors or cutaneous receptors. Subsequently, examples of columns have been uncovered in numerous cortical areas, expanding the original concept to embrace a variety of different structures and principles. A "column" now refers to cells in any vertical cluster that share the same tuning for any given receptive field attribute. In striate cortex, for example, cells with the same eye preference are grouped into ocular dominance columns. Unaccountably, ocular dominance columns are present in some species, but not others. In principle, it should be possible to determine their function by searching for species differences in visual performance that correlate with their presence or absence. Unfortunately, this approach has been to no avail; no visual faculty has emerged that appears to require ocular dominance columns. Moreover, recent evidence has shown that the expression of ocular dominance columns can be highly variable among members of the same species, or even in different portions of the visual cortex in the same individual. These observations deal a fatal blow to the idea that ocular dominance columns serve a purpose. More broadly, the term "column" also denotes the periodic termination of anatomical projections within or between cortical areas. In many instances, periodic projections have a consistent relationship with some architectural feature, such as the cytochrome oxidase patches in V1 or the stripes in V2. These tissue compartments appear to divide cells with different receptive field properties into distinct processing streams. However, it is unclear what advantage, if any, is conveyed by this form of columnar segregation. Although the column is an attractive concept, it has failed as a unifying principle for understanding cortical function. Unravelling the organization of the cerebral cortex will require a painstaking description of the circuits, projections and response properties peculiar to cells in each of its various areas.
Collapse
|
31
|
Soares JGM, Diogo ACM, Fiorani M, Souza APB, Gattass R. Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys. Clin Exp Pharmacol Physiol 2004; 31:580-90. [PMID: 15479164 DOI: 10.1111/j.1440-1681.2004.04051.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. In the present study, we investigated the influence of the pulvinar nucleus upon response properties of single cells in the second visual area (V2) of Cebus monkeys. The method used consisted of the inactivation of a portion of the lateral pulvinar by GABA injections while studying the response properties of cells in V2 at the same visuotopic location as that of the inactivation. 2. After GABA injection in the pulvinar, most cells in V2 (67%) showed changes in spontaneous and/or stimulus-driven activities. Contrary to the effect found with inactivation of the striate cortex, which promotes a reduction in the response of V2 neurons, we found that the main effect of pulvinar inactivation was an increment in stimulus-driven responses of V2 cells (39% of units studied). A reduction of responses was observed in 27% of units. 3. A change in orientation and/or direction selectivity was found in 91% of cells after inactivation of the pulvinar. Most commonly, the orientation selectivity of a neuron was decreased during pulvinar inactivation. 4. The inactivation results indicate that the pulvinar projections have a modulatory effect on the activity of V2 cells.
Collapse
Affiliation(s)
- J G M Soares
- Laboratory de Fisiologia da Cognição, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
32
|
Padberg J, Seltzer B, Cusick CG. Architectonics and cortical connections of the upper bank of the superior temporal sulcus in the rhesus monkey: an analysis in the tangential plane. J Comp Neurol 2004; 467:418-34. [PMID: 14608603 DOI: 10.1002/cne.10932] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Area TPO in the upper bank of the superior temporal sulcus (STS) of macaque monkeys is thought to correspond to the superior temporal polysensory (STP) cortex, but has been shown to have neurochemical/connectional subdivisions. To examine directly the relationship between chemoarchitecture and cortical connections of area TPO, the upper bank of the STS was sectioned tangential to the cortical surface. Three subdivisions of area TPO (TPOr, TPOi, and TPOc) were examined with cytochrome oxidase (CO) histochemistry and neurofilament protein (NF) immunoreactivity and architectonic patterns were compared with connections on the same or adjacent sections. Area TPOc, which may partly overlap with the location of the medial superior temporal area MST, exhibited regular patchy staining for CO in layers III/IV and a complementary pattern in the NF stain. Area TPOr, but not TPOi, also had a patchy pattern of complementary staining in CO and neurofilament similar to TPOc, although not as distinct. Tracer injections within cortex including the frontal eye fields (areas 46 and 8) labeled areas TPOc, TPOi, and TPOr. The caudal inferior parietal lobule (IPL) projected to all three areas. The projections from prearcuate and posterior parietal cortices showed both overlap and nonoverlap with each other within TPOc, TPOi, and TPOr. Projections were to all neurochemical components within the subdivisions of TPO. The findings support the parcellation of area TPO into three subdivisions and extend findings of chemoarchitectonic modules within high-order association cortices.
Collapse
Affiliation(s)
- Jeffrey Padberg
- Neuroscience Program, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
33
|
Shipp S. The functional logic of cortico-pulvinar connections. Philos Trans R Soc Lond B Biol Sci 2004; 358:1605-24. [PMID: 14561322 PMCID: PMC1693262 DOI: 10.1098/rstb.2002.1213] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pulvinar is an 'associative' thalamic nucleus, meaning that most of its input and output relationships are formed with the cerebral cortex. The function of this circuitry is little understood and its anatomy, though much investigated, is notably recondite. This is because pulvinar connection patterns disrespect the architectural subunits (anterior, medial, lateral and inferior pulvinar nuclei) that have been the traditional reference system. This article presents a simplified, global model of the organization of cortico-pulvinar connections so as to pursue their structure-function relationships. Connections between the cortex and pulvinar are topographically organized, and as a result the pulvinar contains a 'map' of the cortical sheet. However, the topography is very blurred. Hence the pulvinar connection zones of nearby cortical areas overlap, allowing indirect transcortical communication via the pulvinar. A general observation is that indirect cortico-pulvino-cortical circuits tend to mimic direct cortico-cortical pathways: this is termed 'the replication principle'. It is equally apt for certain pairs (or groups) of nearby cortical areas that happen not to connect with each other. The 'replication' of this non-connection is achieved by discontinuities and dislocations of the cortical topography within the pulvinar, such that the associated pair of connection zones do not overlap. Certain of these deformations can be used to divide the global cortical topography into specific sub-domains, which form the natural units of a connectional subdivision of the pulvinar. A substantial part of the pulvinar also expresses visual topography, reflecting visual maps in occipital cortex. There are just two well-ordered visual maps in the pulvinar, that both receive projections from area V1, and several other occipital areas; the resulting duplication of cortical topography means that each visual map also acts as a separate connection domain. In summary, the model identifies four topographically ordered connection domains, and reconciles the coexistence of visual and cortical maps in two of them. The replication principle operates at and below the level of domain structure. It is argued that cortico-pulvinar circuitry replicates the pattern of cortical circuitry but not its function, playing a more regulatory role instead. Thalamic neurons differ from cortical neurons in their inherent rhythmicity, and the pattern of cortico-thalamic connections must govern the formation of specific resonant circuits. The broad implication is that the pulvinar acts to coordinate cortical information processing by facilitating and sustaining the formation of synchronized trans-areal assemblies; a more pointed suggestion is that, owing to the considerable blurring of cortical topography in the pulvinar, rival cortical assemblies may be in competition to recruit thalamic elements in order to outlast each other in activity.
Collapse
Affiliation(s)
- S Shipp
- Wellcome Department of Cognitive Neurology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
34
|
Tochitani S, Hashikawa T, Yamamori T. Expression of occ1 mRNA in the visual cortex during postnatal development in macaques. Neurosci Lett 2003; 337:114-6. [PMID: 12527401 DOI: 10.1016/s0304-3940(02)01311-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously reported that the occ1 gene is specifically expressed in the primary visual cortex of adult monkeys in an activity-dependent manner (Tochitani et al., Eur. J. Neurosci., 3, 297-307, 2001). In this report, we compared occ1 mRNA expression in the primary visual cortex during the development of newborn, 3-month-old and adult monkeys. occ1 mRNA was already expressed preferentially in the primary visual cortex of newborn monkeys, but the laminar pattern of occ1 expression in the visual cortex changed as development proceeded. This suggests the possible importance of experience-dependent developmental regulations of occ1 in the developing primary visual cortex.
Collapse
Affiliation(s)
- Shiro Tochitani
- Division of Speciation Mechanisms I, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | |
Collapse
|
35
|
Sincich LC, Horton JC. Pale cytochrome oxidase stripes in V2 receive the richest projection from macaque striate cortex. J Comp Neurol 2002; 447:18-33. [PMID: 11967892 DOI: 10.1002/cne.10174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Once the visual pathway reaches striate cortex, it fans out to a number of extrastriate areas. The projections to the second visual area (V2) are known to terminate in a patchy manner. V2 contains a system of repeating pale-thin-pale- thick stripes of cytochrome oxidase (CO) activity. We examined whether the patchy terminal fields arising from primary visual cortex (V1) projections are systematically related to the CO stripes in V2. Large injections of an anterograde tracer, [(3)H]proline, were made into V1 of both hemispheres in 5 macaques. The resulting V2 label appeared in layers 2-6, with the densest concentration in layer 4. In 21/29 injections, comparison of adjacent flatmount sections processed either for autoradiography or CO activity showed that the heaviest [(3)H]proline labeling was located in pale CO stripes. In 7/29 injections, there was no clear enrichment of labeling in the CO pale stripes. In 1 injection, the proline label correlated with dark CO stripes. On a fine scale, CO levels vary within V2 stripes, giving them an irregular, mottled appearance. In all stripe types, the density of proline label would often wax and wane in opposing contrast to these local fluctuations in CO density. Our data showed that V1 input is generally anti-correlated with the intensity of CO staining in V2, with strongest input to pale stripes. It is known that the pulvinar projects preferentially to dark stripes. Therefore, V2 receives interleaved projections from V1 and the pulvinar. Because these projections favor different stripe types, they may target separate populations of neurons.
Collapse
Affiliation(s)
- Lawrence C Sincich
- Beckman Vision Center, University of California, San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
36
|
Distler C, Mustari MJ, Hoffmann KP. Cortical projections to the nucleus of the optic tract and dorsal terminal nucleus and to the dorsolateral pontine nucleus in macaques: a dual retrograde tracing study. J Comp Neurol 2002; 444:144-58. [PMID: 11835187 DOI: 10.1002/cne.10127] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system (NOT-DTN) along with the dorsolateral pontine nucleus (DLPN) have been shown to play a role in controlling slow eye movements and in maintaining stable vision during head movements. Both nuclei are known to receive cortical input from striate and extrastriate cortex. To determine to what degree this cortical input arises from the same areas and potentially from the same individual neurons, we placed different retrograde tracers into the NOT-DTN and the DLPN. In the ipsilateral cortical hemisphere the two projections mainly overlapped in the posterior part of the superior temporal sulcus (STS) comprising the middle temporal area (MT), the middle superior temporal area (MST), and the visual area in the fundus of the STS (FST) and the surrounding cortex. In these areas, neurons projecting to the NOT-DTN or the DLPN were closely intermingled. Nevertheless, only 3-11% of the labeled neurons in MT and MST were double-labeled in our various cases. These results indicate that the cortical input to the NOT-DTN and DLPN arises from largely separate neuronal subpopulations in the motion sensitive areas in the posterior STS. Only a small percentage of the projection neurons bifurcate to supply both targets. These findings are discussed in relation to the optokinetic and the smooth pursuit system.
Collapse
Affiliation(s)
- Claudia Distler
- Allgemeine Zoologie & Neurobiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | | |
Collapse
|
37
|
Abstract
Single axon analysis of visual cortical connections is an important extension of previous anterograde studies using 3H-amino acids or wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP). The higher resolution tracers-Phaseolus vulgaris-leucoagglutinin (PHA-L), biocytin, biotinylated dextran amine (BDA) and dextran-conjugates-have already produced new results, simply by providing improved visualization, concerning laminar definition and possible subtypes of connections, as well as the beginning of a database of morphometrics and microstructure. The comparative approach, comparing geniculocortical terminations and cortical connections across several areas, has suggested both specific structural-functional correlations (for example, in extrastriate area MT/V5) and more subtle, possibly gradient-wise variations. Likely future directions for this line of research include more direct correlations of axon geometry with functional architectures, investigations of microcircuitry at the level of electron or confocal microscopy, anatomical and functional investigations of connectional convergence and interactions, and, not least, a more comprehensive database.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
38
|
Rumberger A, Tyler CJ, Lund JS. Intra- and inter-areal connections between the primary visual cortex V1 and the area immediately surrounding V1 in the rat. Neuroscience 2001; 102:35-52. [PMID: 11226668 DOI: 10.1016/s0306-4522(00)00475-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have qualitatively and quantitatively analysed the anatomical connections within and between rat primary visual cortex (V1) and the rim region surrounding area V1, using both ortho- and retrograde anatomical tracers (biotinylated dextran amine, biocytin, cholera toxin b subunit). From the analysis of the projection patterns, and with the assumption that single points in the rat visual cortex, as in other species, have projection fields made up of multiple patches of terminals, we have concluded that just two V1 recipient areas occupy the entire rim region: an anterolateral area, probably homologous with V2 in other mammals, previously named Oc2L, and a medial area, corresponding to Oc2M. A non-reciprocal projection from the anterolateral area to the medial area was identified. Small injections (300-600microm uptake zone diameter) of the anatomical tracers in area V1, or in the rim region, label orthograde intra-areal connections from each injection site to offset small patches. This is found in all regions of the rim and within at least the relatively expanded central dorsal field representation of V1. From the extent of these projections in V1 and the two rim regions, we have estimated that the neurons at the injection site send diverging laterally spreading projections to other neurons whose receptive fields share any part of the area included in the pooled receptive fields of the neurons at the injection site. Orthogradely labelled inter-areal feedforward projections from V1 to either rim region are estimated to diverge in their projections to neurons that share any part of the area of the pooled receptive fields of the V1 intra-areal connectional field of the same injection. The orthogradely labelled feedback projections to V1, from injection sites in either rim region, reach V1 neurons whose pooled receptive fields match those of the neurons in the rim injection site, i.e. with no divergence. Despite patchy anatomical connectional fields, our estimates indicate that visual space is represented continuously in the receptive fields of neurons postsynaptic to each intra- or inter-areal field of orthograde label. We suggest that, despite the absence of regularly mapped functions in rat V1 (e.g. regularly arranged orientation specificity), which in other species (e.g. primates and cats) relate to the patchy connectional patterns, the rat visual cortex intra- and inter-areal anatomical connections follow similar patterns and scaling factors to those in other species.
Collapse
Affiliation(s)
- A Rumberger
- Department of Visual Science, Institute of Ophthalmology, UCL, 11-43 Bath Street, EC1 V9EL, London, UK
| | | | | |
Collapse
|
39
|
Abstract
To investigate the organization of the dorsal pulvinar complex, patterns of neurochemical staining were correlated with cortico-pulvinar connections in macaques (Macaca mulatta). Three major neurochemical subdivisions of the dorsal pulvinar were identified by acetylcholinesterase (AChE) histochemistry, as well as immunostaining for calbindin-D(28K) and parvalbumin. The dorsal lateral pulvinar nucleus (PLd) was defined on histochemical criteria as a distinct AChE- and parvalbumin-dense, calbindin-poor wedge that was found to continue caudally along the dorsolateral edge of the pulvinar to within 1 mm of its caudal pole. The ventromedial border of neurochemical PLd with the rest of the dorsal pulvinar, termed the medial pulvinar (PM), was sharply defined. Overall, PM was lighter than PLd for AChE and parvalbumin and displayed lateral (PMl) and medial (PMm) histochemical divisions. PMm contained a central "oval" (PMm-c) that stained darker for AChE and parvalbumin than the surrounding region. The neurochemically defined PLd was labeled by tracer injections in the inferior parietal lobule (IPL) and dorsolateral prefrontal cortex but not the superior temporal gyrus (STG). Label within PMl was found after prefrontal and IPL and, to a lesser extent, after STG injections. The PMm was labeled after injections of the IPL and STG, but only sparsely following prefrontal injections. The histochemically distinct subregion or module of PMm, PMm-c, was labeled only by STG injections. Overlapping labeling was found in dorsal pulvinar divisions PMl and PLd following paired IPL/prefrontal, but not IPL/STG or these particular STG/prefrontal, injections. Thus, PLd may be a visuospatially related region whereas PM appears to contain several types of territories, some related to visual or auditory inputs, and others that receive directly converging input from posterior parietal and prefrontal cortex and may participate in a distributed cortical network concerned with visuospatial functions.
Collapse
Affiliation(s)
- C Gutierrez
- Neuroscience Program, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
To examine the functional interactions between the color and form pathways in the primate visual cortex, we have examined the functional connectivity between pairs of color oriented and nonoriented V1 and V2 neurons in Macaque monkeys. Optical imaging maps for color selectivity, orientation preference, and ocular dominance were used to identify specific functional compartments within V1 and V2 (blobs and thin stripes). These sites then were targeted with multiple electrodes, single neurons isolated, and their receptive fields characterized for orientation selectivity and color selectivity. Functional interactions between pairs of V1 and V2 neurons were inferred by cross-correlation analysis of spike firing. Three types of color interactions were studied: nonoriented V1/nonoriented V2 cell pairs, nonoriented V1/oriented V2 cell pairs, and oriented V1/nonoriented V2 cell pairs. In general, interactions between V1 and V2 neurons are highly dependent on color matching. Different cell pairs exhibited differing dependencies on spatial overlap. Interactions between nonoriented color cells in V1 and V2 are dependent on color matching but not on receptive field overlap, suggesting a role for these interactions in coding of color surfaces. In contrast, interactions between nonoriented V1 and oriented V2 color cells exhibit a strong dependency on receptive field overlap, suggesting a separate pathway for processing of color contour information. Yet another pattern of connectivity was observed between oriented V1 and nonoriented V2 cells; these cells exhibited interactions only when receptive fields were far apart and failed to interact when spatially overlapped. Such interactions may underlie the induction of color and brightness percepts from border contrasts. Our findings thus suggest the presence of separate color pathways between V1 and V2, each with differing patterns of convergence and divergence and distinct roles in color and form vision.
Collapse
Affiliation(s)
- A W Roe
- Section in Neurobiology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
42
|
Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J Neurosci 1999. [PMID: 10407035 DOI: 10.1523/jneurosci.19-14-05967.1999] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To identify molecules that may play a role in the initiation of cerebral cortical area formation, we examined the expression of the Eph receptors and their ligands, the ephrins, during primate corticogenesis. We selected the macaque monkey neocortex because of its clear areal subdivisions, large surface area, protracted development (gestation = 165 d), and similarity to the human brain. In situ hybridizations, performed at early [embryonic day 65 (E65)], middle (E80), and late (E95) stages of cortical development, revealed that EphA system family members are expressed in distinct gradients and laminar and areal domains in the embryonic neocortex. Indeed, several regionally restricted molecular patterns are already apparent within the cortical plate at E65, before the formation of thalamocortical connections, suggesting that the initial expression of some EphA system members is regulated by programs intrinsic to cortical cells. For example, EphA3, EphA6, and EphA7 are all selectively expressed within the presumptive visual cortex. However, although EphA6 and EphA7 are present throughout this region, EphA3 is only expressed in the prospective extrastriate cortex, suggesting that cortical cells harbor functional biases that may influence the formation of appropriate synaptic connections. Although several patterns of early gene expression are stable (e.g., EphA3, EphA4, and EphA6), others change as development proceeds (e.g., EphA5, EphA7, ephrin-A2, ephrin-A3, and ephrin-A5), perhaps responding to extrinsic cues. Thus, at E95, after connections between the cortical plate and thalamus have formed, receptor subtypes EphA3, EphA5, EphA6, and EphA7 and the ligand ephrin-A5 are expressed in posterior regions, whereas EphA4 and ephrin-A2 and ephrin-A3 are either uniformly distributed or anteriorly biased. Taken together, our results demonstrate molecular distinctions among cells of the embryonic primate neocortex, revealing hitherto unrecognized compartmentalization early in corticogenesis.
Collapse
|
43
|
Abstract
We examined profiles in the neuropil of the lateral division of the lateral posterior (LP) nucleus of the cat stained with antibodies against choline acetyl transferase (ChAT) or gamma-aminobutyric acid (GABA), and several differences in the synaptic circuitry of the lateral LP nucleus compared with the pulvinar nucleus and lateral geniculate nucleus (LGN) were identified. In the lateral LP nucleus, there are fewer glomerular arrangements, fewer GABAergic terminals, and fewer cholinergic terminals. Correspondingly, the neuropil of the lateral LP nucleus appears to be composed of a higher percentage of small type I cortical terminals (RS profiles). Similar to the pulvinar nucleus and the LGN, the cholinergic terminals present in the lateral LP nucleus contact both GABA-negative profiles (thalamocortical cells; 74%) and GABA-positive profiles (interneurons; 26%). However, in contrast to the pulvinar nucleus and the LGN, the majority of cholinergic terminals in the lateral LP nucleus contact small-caliber dendritic shafts outside of glomeruli (60 of 82; 73%). Consequently, most cholinergic terminals are in close proximity to RS profiles. Therefore, whereas the cholinergic input to the LGN and pulvinar nucleus appears to be positioned to selectively influence the response of thalamocortical cells to terminals that innervate glomeruli (retinal terminals or large type II cortical terminals), the cholinergic input to the lateral LP nucleus may function primarily in the modulation of responses to terminals that innervate distal dendrites (small type I cortical terminals).
Collapse
Affiliation(s)
- N C Patel
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Kentucky 40292, USA
| | | | | |
Collapse
|
44
|
Rockland KS, Andresen J, Cowie RJ, Robinson DL. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J Comp Neurol 1999; 406:221-50. [PMID: 10096608 DOI: 10.1002/(sici)1096-9861(19990405)406:2<221::aid-cne7>3.0.co;2-k] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pulvinar nucleus is a major source of input to visual cortical areas, but many important facts are still unknown concerning the organization of pulvinocortical (PC) connections and their possible interactions with other connectional systems. In order to address some of these questions, we labeled PC connections by extracellular injections of biotinylated dextran amine into the lateral pulvinar of two monkeys, and analyzed 25 individual axons in several extrastriate areas by serial section reconstruction. This approach yielded four results: (1) in all extrastriate areas examined (V2, V3, V4, and middle temporal area [MT]/V5), PC axons consistently have 2-6 multiple, spatially distributed arbors; (2) in each area, there is a small number of larger caliber axons, possibly originating from a subpopulation of calbindin-positive giant projection neurons in the pulvinar; (3) as previously reported by others, most terminations in extrastriate areas are concentrated in layer 3, but they can occur in other layers (layers 4,5,6, and, occasionally, layer 1) as collaterals of a single axon; in addition, (4) the size of individual arbors and of the terminal field as a whole varies with cortical area. In areas V2 and V3, there is typically a single principal arbor (0.25-0.50 mm in diameter) and several smaller arbors. In area V4, the principal arbor is larger (2.0- to 2.5-mm-wide), but in area MT/V5, the arbors tend to be smaller (0.15 mm in diameter). Size differences might result from specializations of the target areas, or may be more related to the particular injection site and how this projects to individual cortical areas. Feedforward cortical axons, except in area V2, have multiple arbors, but these do not show any obvious size progression. Thus, in areas V2, V3, and especially V4, PC fields are larger than those of cortical axons, but in MT/V5 they are smaller. Terminal specializations of PC connections tend to be larger than those of corticocortical, but the projection foci are less dense. Further work is necessary to determine the differential interactions within and between systems, and how these might result in the complex patterns of suppression and enhancement, postulated as gating mechanisms in cortical attentional effects, or in different states of arousal.
Collapse
Affiliation(s)
- K S Rockland
- Department of Neurology, University of Iowa, Iowa City 52242-1053, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Corticopulvinar connections consist of at least two morphologically distinct subpopulations. In one subgroup (E, type 1), axons have an "elongated" terminal field and thin, spinous terminations; in the other (R, type 2), axons have a small, round arbor and large, beaded terminations. Previous work (Rockland, 1996) indicates that E-type axons from several occipitotemporal areas branch extensively within and sometimes between pulvinar subdivisions, but that R-type axons tend to have spatially delimited arbors. The present report is a further investigation of R-type axons from areas V1 and MT and was initiated to test the generality of the previous findings. There are four main results: 1) By serial section reconstruction of anterogradely labeled axons, 10 of 25 axons originating in area V1 had two or three spatially separate arbors (8 and 2 axons, respectively). Sixteen axons analyzed from area MT, however, all had single arbors, although the arbors were often formed by the convergence of widely separate branches. 2) Multiple (at least 2-5) R-type corticopulvinar axons, from V1 or from MT, can converge in a single focus. 3) R-type axons originating from both areas V1 and MT can branch to other structures; namely, the superior colliculus, the pretectal area, and/or the reticular nucleus of the thalamus. 4) Finally, corticopulvinar terminations from area V1 are predominantly R-type, whereas those from MT are more predominantly E-type. These results thus provide additional evidence of the special relationship of area V1 to the pulvinar. They also emphasize that the idea of corticopulvinocortical "feedback loops," although convenient as a shorthand nomenclature, does not adequately convey the full complexity of the system.
Collapse
Affiliation(s)
- K S Rockland
- Department of Neurology, University of Iowa, College of Medicine, Iowa City 52242-1053, USA.
| |
Collapse
|
46
|
Crick F, Koch C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 1998; 391:245-50. [PMID: 9440687 DOI: 10.1038/34584] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The many distinct cortical areas of the macaque monkey visual system can be arranged hierarchically, but not in a unique way. We suggest that the connections between these cortical areas never form strong, directed loops. For connections between the visual cortex and particular thalamic nuclei, we predict that certain types of connections will not be found. If strong, directed loops were to exist, we suggest that the cortex would go into uncontrolled oscillations.
Collapse
Affiliation(s)
- F Crick
- The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
47
|
Rosa MG, Fritsches KA, Elston GN. The second visual area in the marmoset monkey: visuotopic organisation, magnification factors, architectonical boundaries, and modularity. J Comp Neurol 1997; 387:547-67. [PMID: 9373013 DOI: 10.1002/(sici)1096-9861(19971103)387:4<547::aid-cne6>3.0.co;2-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The organisation of the second visual area (V2) in marmoset monkeys was studied by means of extracellular recordings of responses to visual stimulation and examination of myelin- and cytochrome oxidase-stained sections. Area V2 forms a continuous cortical belt of variable width (1-2 mm adjacent to the foveal representation of V1, and 3-3.5 mm near the midline and on the tentorial surface) bordering V1 on the lateral, dorsal, medial, and tentorial surfaces of the occipital lobe. The total surface area of V2 is approximately 100 mm2, or about 50% of the surface area of V1 in the same individuals. In each hemisphere, the receptive fields of V2 neurones cover the entire contralateral visual hemifield, forming an ordered visuotopic representation. As in other simians, the dorsal and ventral halves of V2 represent the lower and upper contralateral quadrants, respectively, with little invasion of the ipsilateral hemifield. The representation of the vertical meridian forms the caudal border of V2, with V1, whereas a field discontinuity approximately coincident with the horizontal meridian forms the rostral border of V2, with other visually responsive areas. The bridge of cortex connecting dorsal and ventral V2 contains neurones with receptive fields centred within 1 degree of the centre of the fovea. The visuotopy, size, shape and location of V2 show little variation among individuals. Analysis of cortical magnification factor (CMF) revealed that the V2 map of the visual field is highly anisotropic: for any given eccentricity, the CMF is approximately twice as large in the dimension parallel to the V1/V2 border as it is perpendicular to this border. Moreover, comparison of V2 and V1 in the same individuals demonstrated that the representation of the central visual field is emphasised in V2, relative to V1. Approximately half of the surface area of V2 is dedicated to the representation of the central 5 degrees of the visual field. Calculations based on the CMF, receptive field scatter, and receptive field size revealed that the point-image size measured parallel to the V1/V2 border (2-3 mm) equals the width of a full cycle of cytochrome oxidase stripes in V2, suggesting a close correspondence between physiological and anatomical estimates of the dimensions of modular components in this area.
Collapse
Affiliation(s)
- M G Rosa
- Vision, Touch & Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, Australia.
| | | | | |
Collapse
|
48
|
Jacobs B, Driscoll L, Schall M. Life-span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative golgi study. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971006)386:4<661::aid-cne11>3.0.co;2-n] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Abel PL, O'Brien BJ, Lia B, Olavarria JF. Distribution of neurons projecting to the superior colliculus correlates with thick cytochrome oxidase stripes in macaque visual area V2. J Comp Neurol 1997; 377:313-23. [PMID: 8989648 DOI: 10.1002/(sici)1096-9861(19970120)377:3<313::aid-cne1>3.0.co;2-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In visual area V2 of macaque monkeys, cytochrome oxidase (CO) histochemistry reveals a pattern of alternating densely labeled thick and thin stripe compartments and lightly labeled interstripe compartments. This modular organization has been associated with functionally separate pathways in the visual system. We examined this idea further by comparing the pattern of CO stripes with the distribution of neurons in V2 that project to the superior colliculus. Visually evoked activity in the superior colliculus is known to be greatly reduced by blocking magnocellular but not parvocellular layers of the lateral geniculate nucleus (LGN). From previous evidence that V2 thick stripes are closely associated with the magnocellular LGN pathway, we predicted that a significant proportion of V2 neurons projecting to the superior colliculus would reside in the thick stripes. To test this prediction, the tangential distribution of retrogradely labeled corticotectal cells in V2 was compared with the pattern of CO stripes. We found that neurons projecting to the superior colliculus accumulated preferentially into band-like clusters that were in alignment with alternate CO dense stripes. These stripes were identified as thick stripes on the basis of their physical appearance and/or by their affinity to the monoclonal antibody Cat-301. A significantly smaller proportion of labeled cells was observed in thin and interstripe compartments. These data provide further evidence that the spatial distribution of subcortically projecting neurons can correlate with the internal modular organization of visual areas. Moreover, they support the notion that CO compartments in V2 are associated with functionally different pathways.
Collapse
Affiliation(s)
- P L Abel
- Department of Psychology, University of Washington, Seattle 98195-1525, USA
| | | | | | | |
Collapse
|
50
|
|