1
|
Derby CD, Caprio J. What are olfaction and gustation, and do all animals have them? Chem Senses 2024; 49:bjae009. [PMID: 38422390 DOI: 10.1093/chemse/bjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/02/2024] Open
Abstract
Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
2
|
Giraldo YM, Muscedere ML, Traniello JFA. Eusociality and Senescence: Neuroprotection and Physiological Resilience to Aging in Insect and Mammalian Systems. Front Cell Dev Biol 2021; 9:673172. [PMID: 34211973 PMCID: PMC8239293 DOI: 10.3389/fcell.2021.673172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Are eusociality and extraordinary aging polyphenisms evolutionarily coupled? The remarkable disparity in longevity between social insect queens and sterile workers-decades vs. months, respectively-has long been recognized. In mammals, the lifespan of eusocial naked mole rats is extremely long-roughly 10 times greater than that of mice. Is this robustness to senescence associated with social evolution and shared mechanisms of developmental timing, neuroprotection, antioxidant defenses, and neurophysiology? Focusing on brain senescence, we examine correlates and consequences of aging across two divergent eusocial clades and how they differ from solitary taxa. Chronological age and physiological indicators of neural deterioration, including DNA damage or cell death, appear to be decoupled in eusocial insects. In some species, brain cell death does not increase with worker age and DNA damage occurs at similar rates between queens and workers. In comparison, naked mole rats exhibit characteristics of neonatal mice such as protracted development that may offer protection from aging and environmental stressors. Antioxidant defenses appear to be regulated differently across taxa, suggesting independent adaptations to life history and environment. Eusocial insects and naked mole rats appear to have evolved different mechanisms that lead to similar senescence-resistant phenotypes. Careful selection of comparison taxa and further exploration of the role of metabolism in aging can reveal mechanisms that preserve brain functionality and physiological resilience in eusocial species.
Collapse
Affiliation(s)
- Ysabel Milton Giraldo
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Mario L. Muscedere
- Department of Biology, Boston University, Boston, MA, United States
- Undergraduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - James F. A. Traniello
- Department of Biology, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
3
|
Roy Khurana T, Sane SP. Airflow and optic flow mediate antennal positioning in flying honeybees. eLife 2016; 5. [PMID: 27097104 PMCID: PMC4902562 DOI: 10.7554/elife.14449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI:http://dx.doi.org/10.7554/eLife.14449.001 Insects combine information from different senses to help them navigate during flight. Flying insects see moving images, which the brain can use to measure their speeds. Insect antennae also help to judge speed, as they signal to the brain about the physical forces that result from the insect moving through the air. To accurately detect these forces, and also to detect odors from the surrounding environment, insects must precisely position their antennae as they fly. To investigate how honeybees use different types of sensory information to position their antennae during flight, Roy Khurana and Sane first placed freely-flying and tethered bees in a wind tunnel. Flying forward causes air to flow from the front to the back of the bee. The experiments revealed that a bee brings its antennae forward and holds them in a specific position that depends on the rate of airflow. As the bee flies forward more quickly (or airflow increases), the antennae are positioned further forward. Roy Khurana and Sane then investigated how the movement of images across the insect’s eyes causes their antennae to change position. This unexpectedly revealed that moving images across the eye from front to back, which simulates what bees see when flying forward, causes the bees to move their antennae backward. However, exposing the bees to both the frontal airflow and front-to-back image motion as normally experienced during forward flight caused the bees to maintain their antennae in a fixed position. This behaviour results from the opposing responses of the antennae to the two stimuli. Future challenges will be to determine how the brain of a honeybee combines the information from different senses to position the antennae, and to discover what this behaviour implies for insect flight in general. DOI:http://dx.doi.org/10.7554/eLife.14449.002
Collapse
Affiliation(s)
- Taruni Roy Khurana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
4
|
Lee SG, Poole K, Linn CE, Vickers NJ. Transplant Antennae and Host Brain Interact to Shape Odor Perceptual Space in Male Moths. PLoS One 2016; 11:e0147906. [PMID: 26816291 PMCID: PMC4729490 DOI: 10.1371/journal.pone.0147906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
Abstract
Behavioral responses to odors rely first upon their accurate detection by peripheral sensory organs followed by subsequent processing within the brain’s olfactory system and higher centers. These processes allow the animal to form a unified impression of the odor environment and recognize combinations of odorants as single entities. To investigate how interactions between peripheral and central olfactory pathways shape odor perception, we transplanted antennal imaginal discs between larval males of two species of moth Heliothis virescens and Heliothis subflexa that utilize distinct pheromone blends. During metamorphic development olfactory receptor neurons originating from transplanted discs formed connections with host brain neurons within olfactory glomeruli of the adult antennal lobe. The normal antennal receptor repertoire exhibited by males of each species reflects the differences in the pheromone blends that these species employ. Behavioral assays of adult transplant males revealed high response levels to two odor blends that were dissimilar from those that attract normal males of either species. Neurophysiological analyses of peripheral receptor neurons and central olfactory neurons revealed that these behavioral responses were a result of: 1. the specificity of H. virescens donor olfactory receptor neurons for odorants unique to the donor pheromone blend and, 2. central odor recognition by the H. subflexa host brain, which typically requires peripheral receptor input across 3 distinct odor channels in order to elicit behavioral responses.
Collapse
Affiliation(s)
- Seong-Gyu Lee
- Dept. of Biology, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Kathy Poole
- Dept. of Entomology, Cornell University, Geneva, NY 14456, United States of America
| | - Charles E. Linn
- Dept. of Entomology, Cornell University, Geneva, NY 14456, United States of America
| | - Neil J. Vickers
- Dept. of Biology, University of Utah, Salt Lake City, UT 84112, United States of America
- * E-mail:
| |
Collapse
|
5
|
Willis MA, Avondet JL, Zheng E. The role of vision in odor-plume tracking by walking and flying insects. ACTA ACUST UNITED AC 2012; 214:4121-32. [PMID: 22116754 DOI: 10.1242/jeb.036954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The walking paths of male cockroaches, Periplaneta americana, tracking point-source plumes of female pheromone often appear similar in structure to those observed from flying male moths. Flying moths use visual-flow-field feedback of their movements to control steering and speed over the ground and to detect the wind speed and direction while tracking plumes of odors. Walking insects are also known to use flow field cues to steer their trajectories. Can the upwind steering we observe in plume-tracking walking male cockroaches be explained by visual-flow-field feedback, as in flying moths? To answer this question, we experimentally occluded the compound eyes and ocelli of virgin P. americana males, separately and in combination, and challenged them with different wind and odor environments in our laboratory wind tunnel. They were observed responding to: (1) still air and no odor, (2) wind and no odor, (3) a wind-borne point-source pheromone plume and (4) a wide pheromone plume in wind. If walking cockroaches require visual cues to control their steering with respect to their environment, we would expect their tracks to be less directed and more variable if they cannot see. Instead, we found few statistically significant differences among behaviors exhibited by intact control cockroaches or those with their eyes occluded, under any of our environmental conditions. Working towards our goal of a comprehensive understanding of chemo-orientation in insects, we then challenged flying and walking male moths to track pheromone plumes with and without visual feedback. Neither walking nor flying moths performed as well as walking cockroaches when there was no visual information available.
Collapse
Affiliation(s)
- Mark A Willis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
6
|
Kalberer NM, Reisenman CE, Hildebrand JG. Male moths bearing transplanted female antennae express characteristically female behaviour and central neural activity. ACTA ACUST UNITED AC 2010; 213:1272-80. [PMID: 20348339 DOI: 10.1242/jeb.033167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The primary olfactory centres of the sphinx moth Manduca sexta, the antennal lobes, contain a small number of sexually dimorphic glomeruli: the male-specific macroglomerular complex and the large female glomeruli. These glomeruli play important roles in sex-specific behaviours, such as the location of conspecific females and the selection of appropriate host plants for oviposition. The development of sexually dimorphic glomeruli depends strictly on the ingrowth of sex-specific olfactory receptor cell afferents. In the present study we tested the role of female-specific olfactory receptor cells (ORCs) in mediating female-specific host plant approach behaviour and in determining the response of downstream antennal lobe neurons. We generated male gynandromorphs by excising one imaginal disc from a male larva and replacing it with the antennal imaginal disc from a female donor. Most male gynandromorphs had an apparently normal female antenna and a feminised antennal lobe. These gynandromorphs were tested for flight responses in a wind tunnel towards tomato plants, a preferred host plant for oviposition in M. sexta. Male gynandromorphs landed on host plants as often as normal females, demonstrating that the presence of the induced female-specific glomeruli was necessary and sufficient to produce female-like, odour-oriented behaviour, i.e. orientation towards host plants. We also characterised the physiological and morphological properties of antennal lobe neurons of male gynandromorphs. We found that projection neurons with arborisations in the induced female-specific glomeruli showed physiological responses akin to those of female-specific projection neurons in normal females. These results therefore indicate that ORCs confer specific odour tuning to their glomerular targets and, furthermore, instruct odour-specific behaviour.
Collapse
Affiliation(s)
- N M Kalberer
- Department of Neuroscience, University of Arizona, 1040 E. Fourth Street, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
7
|
Olsson SB, Linn CE, Feder JL, Michel A, Dambroski HR, Berlocher SH, Roelofs WL. Comparing peripheral olfactory coding with host preference in the rhagoletis species complex. Chem Senses 2008; 34:37-48. [PMID: 18791185 DOI: 10.1093/chemse/bjn053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that flies from sympatric populations of Rhagoletis pomonella infesting hawthorn, apple, and flowering dogwood fruit can distinguish among unique volatile blends identified from each host. Analysis of peripheral chemoreception in Rhagoletis flies suggests that changes in receptor specificity and/or receptor neuron sensitivity could impact olfactory preference among the host populations and their hybrids. In an attempt to validate these claims, we have combined flight tunnel analyses and single sensillum electrophysiology in F(2) and backcross hybrids displaying a variety of behavioral phenotypes. Results show that differences in peripheral chemoreception among second-generation adults do not provide a direct correlation between peripheral coding and olfactory behavior. We conclude that either the plasticity of the central nervous system in Rhagoletis can compensate for significant alterations in peripheral coding or that peripheral changes present subtle effects on behavior not easily detectable with current techniques. The results of this study imply that the basis for olfactory behavior in Rhagoletis has a complicated genetic and neuronal basis, even for populations with a recent divergence in preference.
Collapse
Affiliation(s)
- Shannon B Olsson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knöll, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lipscomb BW, Tolbert LP. Temporally staggered glomerulus development in the moth Manduca sexta. Chem Senses 2006; 31:237-47. [PMID: 16407570 DOI: 10.1093/chemse/bjj024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glomeruli, neuropilar structures composed of olfactory receptor neuron (ORN) axon terminals and central neuron dendrites, are a common feature of olfactory systems. Typically, ORN axons segregate into glomeruli based on odor specificity, making glomeruli the basic unit for initial processing of odorant information. Developmentally, glomeruli arise from protoglomeruli, loose clusters of ORN axons that gradually synapse onto dendrites. Previous work in the moth Manduca sexta demonstrated that protoglomeruli develop in a wave across the antennal lobe (AL) during stage 5 of the 18 stages of metamorphic adult development. However, ORN axons from the distal segments of the antenna arrive at the AL for several more days. We report that protoglomeruli present at stage 5 account for only approximately two or three of adult glomeruli with the number of structures increasing over subsequent stages. How do these later arriving axons incorporate into glomeruli? Examining the dendritic projections of a unique serotonin-containing neuron into glomeruli at later stages revealed glomeruli with immature dendritic arbors intermingled among more mature glomeruli. Labeling ORN axons that originate in proximal segments of the antenna suggested that early-arriving axons target a limited number of glomeruli. We conclude that AL glomeruli form over an extended time period, possibly as a result of ORNs expressing new odorant receptors arriving from distal antennal segments.
Collapse
Affiliation(s)
- Brian W Lipscomb
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tuscon, AZ 85721-0077, USA
| | | |
Collapse
|
9
|
Hoballah ME, Stuurman J, Turlings TCJ, Guerin PM, Connétable S, Kuhlemeier C. The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. PLANTA 2005; 222:141-50. [PMID: 15891900 DOI: 10.1007/s00425-005-1506-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Accepted: 01/14/2005] [Indexed: 05/02/2023]
Abstract
In the genus Petunia, distinct pollination syndromes may have evolved in association with bee-visitation (P. integrifolia spp.) or hawk moth-visitation (P. axillaris spp). We investigated the extent of congruence between floral fragrance and olfactory perception of the hawk moth Manduca sexta. Hawk moth pollinated P. axillaris releases high levels of several compounds compared to the bee-pollinated P. integrifolia that releases benzaldehyde almost exclusively. The three dominating compounds in P. axillaris were benzaldehyde, benzyl alcohol and methyl benzoate. In P. axillaris, benzenoids showed a circadian rhythm with an emission peak at night, which was absent from P. integrifolia. These characters were highly conserved among different P. axillaris subspecies and P. axillaris accessions, with some differences in fragrance composition. Electroantennogram (EAG) recordings using flower-blends of different wild Petunia species on female M. sexta antennae showed that P. axillaris odours elicited stronger responses than P. integrifolia odours. EAG responses were highest to the three dominating compounds in the P. axillaris flower odours. Further, EAG responses to odour-samples collected from P. axillaris flowers confirmed that odours collected at night evoked stronger responses from M. sexta than odours collected during the day. These results show that timing of odour emissions by P. axillaris is in tune with nocturnal hawk moth activity and that flower-volatile composition is adapted to the antennal perception of these pollinators.
Collapse
Affiliation(s)
- Maria Elena Hoballah
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Huetteroth W, Schachtner J. Standard three-dimensional glomeruli of the Manduca sexta antennal lobe: a tool to study both developmental and adult neuronal plasticity. Cell Tissue Res 2005; 319:513-24. [PMID: 15672266 DOI: 10.1007/s00441-004-1016-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 10/05/2004] [Indexed: 10/25/2022]
Abstract
The metamorphosing antennal lobe (AL) of the sphinx moth Manduca sexta serves as an established model system for studying neuronal development. To improve our understanding of mechanisms involved in neuronal plasticity, we have analyzed the size, shape, and localization of ten identified glomeruli at three different time points during development and in the adult, viz., (1) 13 days after pupal eclosion (P13), which reflects a time when the basic glomerular map has formed, (2) immediately after adult eclosion (A0), which represents a time when the newly formed glomeruli are uninfluenced by external odors, and (3) 4 days after adult eclosion (A4), which reflects a time when the animals have been exposed to surrounding odors. Our data from normally developing ALs of male M. sexta from P13 to A0 revealed an increase in size of all examined glomeruli of between 40% and 130%, with the strongest increases occurring in two of the three sex-specific glomeruli (cumulus, toroid). From A0 to A4, the cumulus and toroid increased significantly when correlated to AL volume, whereas the other glomeruli reached the sizes gained after A0. This study was based on antibody staining against the ubiquitous synaptic vesicle protein synaptotagmin, confocal laser scan microscopy, and the three-dimensional (3D) analysis tool AMIRA. Tissue permeability and therefore reliability of the staining quality was enhanced by using formalin/methanol fixation. The standard 3D glomeruli introduced in this study can now be used as basic tools for further examination of neuronal plasticity at the level of the identified neuropil structures, viz., the glomeruli of the AL of M. sexta.
Collapse
Affiliation(s)
- Wolf Huetteroth
- Fachbereich Biologie, Tierphysiologie, Philipps-Universität, 35043, Marburg, Germany
| | | |
Collapse
|
11
|
Vickers NJ, Poole K, Linn CE. Consequences of interspecies antennal imaginal disc transplantation on organization of olfactory glomeruli and pheromone blend discrimination. J Comp Neurol 2003; 466:377-88. [PMID: 14556295 DOI: 10.1002/cne.10890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The antennal imaginal disc was transplanted between male larvae of two different heliothine moth species, Heliothis virescens (HV) and Helicoverpa zea (HZ). Males of these species respond to distinct pheromone blends, have different peripheral and central olfactory neuron specificities, as well as distinct arrangements of antennal lobe olfactory glomeruli, in the specialized male macroglomerular complex (MGC). After pupal development and adult eclosion, unilateral (with one antennal disc left intact) and bilateral antennal transplant males were assayed in a wind tunnel to both species' pheromone blends to determine their ability to discriminate between the two signals. The postmetamorphic developmental effects of interspecific transplantation upon the primary olfactory centers in the moth brain were then examined in these same individuals. Behavioral tests showed that both types of unilateral transplant continued to exhibit upwind anemotactic flight to the normal recipient blend with occasional flights to the donor blend. In contrast, bilateral transplants preferred the HV pheromone blend regardless of the direction of transplant, with some males of each type also responding to the HZ blend. Neuroanatomic evaluation of the MGC revealed that the donor arrangement of MGC glomeruli was induced in 73% HZ donor to HV recipient transplants and 56% of the reciprocal transplant. Surprisingly, several V-Z bilateral transplant males responded to both HV and HZ pheromone blends and had two HV MGC structures. This behavioral outcome was unexpected, because responses to the HV blend are mediated by inputs that are normally antagonistic to HZ males and the normal HV antenna lacks olfactory receptor neurons capable of responding to the essential minor pheromone component of the HZ blend. These data indicate a plasticity in developmental pathways regulating the expression of peripheral olfactory receptor neurons and in the glomerular processing of species-specific olfactory information.
Collapse
Affiliation(s)
- Neil J Vickers
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
12
|
Steullet P, Dudar O, Flavus T, Zhou M, Derby CD. Selective ablation of antennular sensilla on the Caribbean spiny lobsterPanulirus argussuggests that dual antennular chemosensory pathways mediate odorant activation of searching and localization of food. J Exp Biol 2001; 204:4259-69. [PMID: 11815650 DOI: 10.1242/jeb.204.24.4259] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn spiny lobsters and other decapod crustaceans, odorant-mediated searching behavior patterns are driven primarily by chemosensory neurons in the antennules. Two groups of antennular chemosensory neurons can be distinguished on the basis of the sensilla that they innervate and their central projections: those that innervate the aesthetasc sensilla on the lateral flagella and project into the glomerularly organized olfactory lobes, and those that innervate other (i.e. non-aesthetasc) sensilla on both lateral and medial flagella and project into the stratified and non-glomerularly organized lateral antennular neuropils. By ablating different groups of antennular sensory neurons or sensilla, we examined the role of aesthetasc and non-aesthetasc chemosensory neurons in regulating local searching behavior of Caribbean spiny lobsters, Panulirus argus, for food (squid) in a low-flow environment. The results show that odorant-mediated activation of searching and localization of food under these conditions requires only a subset of functional antennular chemosensory neurons, since neither aesthetasc chemosensory neurons nor non-aesthetasc chemosensory neurons are by themselves necessary for these types of behavior. However, ablation of aesthetasc chemosensory neurons together with subsets of non-aesthetasc chemosensory neurons from either the medial or lateral flagella impairs the ability of lobsters to locate the food. This reveals a large degree of functional redundancy but also some complementary functions between aesthetasc and non-aesthetasc chemosensory neurons, and hence between these dual antennular chemosensory pathways, in odorant-mediated searching behavior of lobsters under these conditions.
Collapse
Affiliation(s)
- P Steullet
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Invertebrate olfactory systems offer many advantages for cellular and molecular studies of development and for functional studies of developmental plasticity. For example, nematodes have chemical senses that can be studied using genetic approaches. Arthropods, which include insects and crustacea, have the advantages that certain neurons can be reliably identified from one individual to another, and that olfactory receptor neurons are located on peripheral appendages and thus can be manipulated independently of their brain targets even very early in development. Among the insects, olfactory learning can be displayed and used as a basis for studying olfactory plasticity in bees; genes are especially tractable in flies; individual growth cones can be visualized in the grasshopper embryo; and receptor neurons and glomeruli of known olfactory specificity and behavioral significance can be followed during early development in moths. In addition, many insect nervous systems are amenable to organ culture and dissociated-cell culture, opening the door to experimental studies of cellular interactions that can not be performed in situ. Recent research in the moth Manduca sexta attempts to identify the nature of the interactions between olfactory sensory axons, olfactory neurons of the brain, and glial cells in the creation of the array of glomeruli that underlie olfaction in the adult. Results indicate that timing of the ingrowth of olfactory receptor axons is critical for normal glomerulus development, that a subset of axons expresses a fasciclin II-like molecule that may play a role in guidance of their growth, and that glial cells must surround developing glomeruli in order to stabilize the 'protoglomerular' template made by receptor axon terminals. Moreover, glial cells are dye-coupled to each other early in glomerulus development and gradually become uncoupled. Electrical activity in neurons is not necessary for glomerulus formation; and some intercellular interactions, perhaps involving soluble factors, appear to involve tyrosine phosphorylation. In sum, a detailed picture is emerging of the cellular interactions that lead to the formation of glomeruli.
Collapse
Affiliation(s)
- L P Tolbert
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson 85721-0077, USA.
| |
Collapse
|
14
|
Oland LA, Tolbert LP. Glomerulus development in the absence of a set of mitral-like neurons in the insect olfactory lobe. JOURNAL OF NEUROBIOLOGY 1998; 36:41-52. [PMID: 9658337 DOI: 10.1002/(sici)1097-4695(199807)36:1<41::aid-neu4>3.0.co;2-a] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitral cells are the first neurons in the mammalian olfactory bulb to synapse with olfactory receptor axons during glomerulus development, and in an invertebrate, the moth Manduca sexta, mitral-like neurons overlap very early with olfactory receptor axons as they begin to form protoglomeruli. The possibility for early interaction between receptor neurons and mitral-like neurons led us to ask whether such an interaction plays an essential role in glomerulus development. In the current study in the moth, we surgically removed a major class of these mitral-like neurons before glomeruli began to form and asked: (a) Is the formation of the array of olfactory glomeruli triggered by an interaction of the first-arriving receptor axons with the dendrites of mitral-like neurons? (b) At the level of individual glomeruli, must the mitral-like dendrites be in place either to maintain receptor axons in a glomerular arrangement, or to guide later-growing dendrites of other types into the developing glomeruli? Our results indicate that even without the participation of this group of mitral-like neurons, the array of sexually isomorphic ordinary glomeruli forms and the basic substructure of individual glomeruli develops apparently normally. We conclude that the mitral-like neurons in Manduca are not essential for the formation of ordinary olfactory glomeruli during development.
Collapse
Affiliation(s)
- L A Oland
- Arizona Research Laboratories, University of Arizona, Tuscon 85721, USA
| | | |
Collapse
|
15
|
Todd JL, Baker TC. Antennal lobe partitioning of behaviorally active odors in female cabbage looper moths. Naturwissenschaften 1996. [DOI: 10.1007/bf01152215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Koster NL, Costanzo RM. Electrophysiological characterization of the olfactory bulb during recovery from sensory deafferentation. Brain Res 1996; 724:117-20. [PMID: 8816264 DOI: 10.1016/0006-8993(96)00281-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Axonal transection results in degeneration of the olfactory sensory neurons (OSNs). Replacement OSNs reinnervate the olfactory bulb. To document reinnervation, lateral OSN fibers were stimulated while bulb negative evoked potentials (NEPs) were recorded. For control adult hamsters and at 20, 30, and 120 days after transection, lateral fibers were connected to the lateral more than the medial bulb. The percentage of lateral bulb positions with NEPs was similar to control at 30 and 120 days, but NEP amplitude did not reach control level.
Collapse
Affiliation(s)
- N L Koster
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| | | |
Collapse
|
17
|
Oland LA, Tolbert LP. Multiple factors shape development of olfactory glomeruli: insights from an insect model system. JOURNAL OF NEUROBIOLOGY 1996; 30:92-109. [PMID: 8727986 DOI: 10.1002/(sici)1097-4695(199605)30:1<92::aid-neu9>3.0.co;2-b] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The antennal system of the moth Manduca sexta is a useful model for studies of the development of olfactory glomeruli, the complex synaptic structures that typically underlie the initial processing of olfactory input in vertebrates and invertebrates. In this review, we summarize cellular events in the construction of glomeruli in Manduca and highlight experiments that reveal factors that influence glomerulus development. By methodically manipulating each of various cell types, both neuronal and glial, that contribute to glomerular architecture, we have found that: olfactory receptor axons lay a template for developing glomeruli, stabilization of the template by glial cells is necessary to permit subsequent steps in development of the glomeruli, and the hormone that regulates adult development causes production of adequate numbers of glial cells. Neither electrical activity nor the presence of a serotonin-containing neuron that persists throughout development is required for a glomerular pattern to develop; these factors might, however, influence the synaptic organization of individual glomeruli.
Collapse
Affiliation(s)
- L A Oland
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson 85721, USA.
| | | |
Collapse
|