1
|
Affiliation(s)
- Sergey Ryzhov
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R., D.B.S.); and the Department of Cardiac Services, Maine Medical Center, Portland (S.F., D.B.S.)
| | - Sanjeev Francis
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R., D.B.S.); and the Department of Cardiac Services, Maine Medical Center, Portland (S.F., D.B.S.)
| | - Douglas B Sawyer
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (S.R., D.B.S.); and the Department of Cardiac Services, Maine Medical Center, Portland (S.F., D.B.S.).
| |
Collapse
|
2
|
Abstract
Chlamydiae are bacterial pathogens that grow in vacuolar inclusions. Dendritic cells (DCs) disintegrate these compartments, thereby eliminating the microbes, through auto/xenophagy, which also promotes chlamydial antigen presentation via MHC I. Here, we show that TNF-α controls this pathway by driving cytosolic phospholipase (cPLA)2-mediated arachidonic acid (AA) production. AA then impairs mitochondrial function, which disturbs the development and integrity of these energy-dependent parasitic inclusions, while a simultaneous metabolic switch towards aerobic glycolysis promotes DC survival. Tubulin deacetylase/autophagy regulator HDAC6 associates with disintegrated inclusions, thereby further disrupting their subcellular localisation and stability. Bacterial remnants are decorated with defective mitochondria, mito-aggresomal structures, and components of the ubiquitin/autophagy machinery before they are degraded via mito-xenophagy. The mechanism depends on cytoprotective HSP25/27, the E3 ubiquitin ligase Parkin and HDAC6 and promotes chlamydial antigen generation for presentation on MHC I. We propose that this novel mito-xenophagic pathway linking innate and adaptive immunity is critical for effective DC-mediated anti-bacterial resistance.
Collapse
|
3
|
Abstract
Mediators of myocardial inflammation, predominantly cytokines, have for many years been implicated in the healing processes after infarction. In recent years, however, more attention has been paid to the possibility that the inflammation may result in deleterious complications for myocardial infarction. The proinflammatory cytokines may mediate myocardial dysfunction associated with myocardial infarction, severe congestive heart failure, and sepsis. A growing body of literature suggests that inflammatory mediators could play a crucial role in ischemia–reperfusion injury. Furthermore, ischemia–reperfusion not only results in the local transcriptional and translational upregulation of cytokines but also leads to tissue infiltration by inflammatory cells. These inflammatory cells are a ready source of a variety of cytokines which could be lethal for the cardiomyocytes. At the cellular level it has been shown that hypoxia causes a series of well documented changes in cardiomyocytes that includes loss of contractility, changes in lipid metabolism and subsequent irreversible cell membrane damage leading to cell death. For instance, hypoxic cardiomyocytes produce interleukin-6 (IL-6) which could contribute to the myocardial dysfunction observed in ischemia reperfusion injury. Ischemia followed by reperfusion induces a number of other multi-potent cytokines, such as IL-1, IL-8, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) as well as an angiogenic cytokine/ growth factor, vascular endothelial growth factor (VEGF), in the heart. Intrestingly, these multipotent cytokines (e.g. TNF-α) may induce an adaptive cytoprotective response in the reperfused myocardium. In this review, we have included a number of cytokines that may contribute to ventricular dysfunction and/or to the cytoprotective and adaptive changes in the reperfused heart.
Collapse
Affiliation(s)
- H S Sharma
- Department of Pharmacology Erasmus University Rotterdam The Netherlands
| | | |
Collapse
|
4
|
Fujisawa K, Miyoshi T, Tonomura Y, Izawa T, Kuwamura M, Torii M, Yamate J. Relationship of heat shock protein 25 with reactive macrophages in thioacetamide-induced rat liver injury. ACTA ACUST UNITED AC 2011; 63:599-605. [DOI: 10.1016/j.etp.2010.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/15/2010] [Accepted: 04/21/2010] [Indexed: 11/25/2022]
|
5
|
Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N. Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 2011; 15:543-62. [PMID: 20405319 DOI: 10.1007/s10741-010-9168-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased circulating and intracardiac levels of proinflammatory cytokines have been associated with chronic heart failure. Following an initial insult, the increased production of proinflammatory cytokines, including TNF-α, IL-6, IL-1, and IL-18, jeopardizes the surrounding tissue through propagation of the inflammatory response and direct effects on the cardiac myocyte structure and function. Cardiac myocyte hypertrophy, contractile dysfunction, cardiac myocyte apoptosis, and extracellular matrix remodeling contribute enormously to the development and progression of chronic heart failure. Despite the identification of efficacious pharmacological regimens and introduction of mechanical interventions, chronic heart failure remains among the leading causes of mortality worldwide. To introduce novel therapeutic strategies that modulate the inflammatory response in the context of the failing heart, it is of prime importance to determine the contributions of TNF-α, IL-6, IL-1, and IL-18 in mediating cardiac adaptive and maladaptive responses, as well as delineating their downstream intracellular signaling pathways and their potential therapeutic implications.
Collapse
Affiliation(s)
- Mona Hedayat
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
6
|
Amann K, Ridinger H, Rutenberg C, Ritz E, Mall G, Maercker C. Gene expression profiling on global cDNA arrays gives hints concerning potential signal transduction pathways involved in cardiac fibrosis of renal failure. Comp Funct Genomics 2010; 4:571-83. [PMID: 18629021 PMCID: PMC2447303 DOI: 10.1002/cfg.347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 09/03/2003] [Accepted: 10/10/2003] [Indexed: 01/07/2023] Open
Abstract
Cardiac remodelling with interstitial fibrosis in renal failure, which so far is only poorly understood on the molecular level, was investigated in the rat model by a global
gene expression profiling analysis. Sprague–Dawley rats were subjected to subtotal
nephrectomy (SNX) or sham operation (sham) and followed for 2 and 12 weeks,
respectively. Heart-specific gene expression profiling, with RZPD Rat Unigene-1
cDNA arrays containing about 27 000 gene and EST sequences revealed substantial
changes in gene expression in SNX compared to sham animals. Motor protein genes,
growth and differentiation markers, and extracellular matrix genes were upregulated
in SNX rats. Obviously, not only genes involved in cardiomyocyte hypertrophy, but
also genes involved in the expansion of non-vascular interstitial tissue are activated
very early in animals with renal failure. Together with earlier findings in the SNX
model, the present data suggest the hypothesis that the local renin–angiotensin system
(RAS) may be activated by at least two pathways: (a) via second messengers and Gproteins
(short-term signalling); and (b) via motor proteins, actins and integrins (longterm
signalling). The study documents that complex hybridization analysis yields
reproducible and promising results of patterns of gene activation pointing to signalling
pathways involved in cardiac remodelling in renal failure. The complete array data
are available via http://www.rzpd.de/cgi-bin/services/exp/viewExpressionData.pl.cgi
Collapse
Affiliation(s)
- Kerstin Amann
- Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstrasse 8-10, Erlangen D-91054, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Wheeler DS, Wong HR, Shanley TP. Genetic Polymorphisms in Critical Care and Illness. SCIENCE AND PRACTICE OF PEDIATRIC CRITICAL CARE MEDICINE 2009. [PMCID: PMC7123127 DOI: 10.1007/978-1-84800-921-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Derek S. Wheeler
- Medical Center, Div. of Critical Care Medicine, Cincinnati Children's Hospital, Burnet Avenue 3333, Cincinnati, 45229 U.S.A
| | - Hector R. Wong
- Medical Center, Div. of Critical Care Medicine, Cincinnati Children's Hospital, Burnet Avenue 3333, Cincinnati, 45229 U.S.A
| | - Thomas P. Shanley
- C.S. Mott Children's Hospital , Pediatric Critical Care Medicine , University of Michigan, E. Medical Center Drive 1500, Ann Arbor, 48109-0243 U.S.A
| |
Collapse
|
8
|
Yende S, Quasney MW, Tolley E, Zhang Q, Wunderink RG. Association of tumor necrosis factor gene polymorphisms and prolonged mechanical ventilation after coronary artery bypass surgery. Crit Care Med 2003; 31:133-40. [PMID: 12545006 DOI: 10.1097/00003246-200301000-00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Prolonged mechanical ventilation is a common complication after coronary artery bypass graft surgery. Tumor necrosis factor alpha is an important proinflammatory mediator in the post-coronary artery bypass graft inflammatory cascade. We attempted to study the effect of polymorphisms at the -308 site in the promoter region of the tumor necrosis factor gene (TNF-308) and the +250 site within the lymphotoxin-alpha gene (LT alpha+250) on the risk of prolonged mechanical ventilation after coronary artery bypass grafting. DESIGN Prospective observational study. SETTING Tertiary care center. PATIENTS A total of 400 patients undergoing coronary artery bypass grafting were enrolled. MEASUREMENTS The primary end point was time to extubate. Secondary end points were the percentages of patients extubated at 8, 24, and 48 hrs; the length of intensive care unit and hospital stay; the need for a rehabilitation facility; and 30-day mortality. Precollected blood was used for gene analysis. Genotyping was performed by polymerase chain reaction and restriction enzyme digestion. MAIN RESULTS Patients with an AA genotype at the LT alpha+250 site and those without the LT alpha+250G/-308TNFG haplotype had a shorter duration of mechanical ventilation (11.5 vs. 27.8 hrs and 11.2 vs. 29.4 hrs; =.039 and.01, respectively). The risk of prolonged mechanical ventilation at 8, 24, and 48 hrs was higher for patients with a GA or GG genotype at the LT alpha+250 site and the LT alpha+250G/TNF-308G haplotype. This association between genotype and duration of mechanical ventilation was more dramatic in patients undergoing conventional coronary artery bypass grafting than in those undergoing off-pump coronary artery bypass grafting. With Bayesian analysis, clinical criteria and genotype can be used sequentially to predict the risk of prolonged mechanical ventilation. CONCLUSIONS The LT alpha+250 and LT alpha+250G/TNF-308G haplotypes are associated with prolonged mechanical ventilation after coronary artery bypass graft. Preoperative genetic screening may guide intraoperative management to reduce postoperative complications.
Collapse
Affiliation(s)
- Sachin Yende
- Methodist Healthcare University Hospital, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
9
|
Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta -adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem 2000; 275:19395-400. [PMID: 10770956 DOI: 10.1074/jbc.m910471199] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that stimulation of beta-adrenergic receptors (beta-AR) by norepinephrine (NE) increases apoptosis in adult rat ventricular myocytes (ARVMs) via a cAMP-dependent mechanism that is antagonized by activation of G(i) protein. The family of mitogen-activated protein kinases (MAPKs) is involved in the regulation of cardiac myocyte growth and apoptosis. Here we show that beta-AR stimulation activates p38 kinase, c-jun N-terminal kinases (JNKs), and extracellular signal-regulated kinase (ERK1/2) in ARVMs. Inhibition of p38 kinase with SB-202190 (10 micrometer) potentiated beta-AR-stimulated apoptosis as measured by flow cytometry and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining. SB-202190 at this concentration specifically blocked beta-AR-stimulated activation of p38 kinase and its downstream substrate MAPK-activated protein kinase-2 (MAPKAPK2). Pertussis toxin, an inhibitor of G(i)/G(o) proteins, blocked the activation of p38 kinase and potentiated beta-AR-stimulated apoptosis. Activation of G(i) protein with the muscarinic receptor agonist carbachol protected against beta-AR-stimulated apoptosis. Carbachol also activated p38 kinase, and the protective effect of carbachol was abolished by SB-202190. PD-98059 (10 micrometer), an inhibitor of ERK1/2 pathway, blocked beta-AR-stimulated activation of ERK1/2 but had no effect on apoptosis. These data suggest that 1) beta-AR stimulation activates p38 kinase, JNKs, and ERK1/2; 2) activation of p38 kinase plays a protective role in beta-AR-stimulated apoptosis in cardiac myocytes; and 3) the protective effects of G(i) are mediated via the activation of p38 kinase.
Collapse
Affiliation(s)
- C Communal
- Myocardial Biology Unit and Cardiovascular Division, Boston University Medical Center, Boston Veterans Affairs Medical Center and Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
10
|
Pallarés-Trujillo J, Carbó N, López-Soriano FJ, Argilés JM. Does the mechanism responsible for TNF-mediated insulin resistance involve the proteasome? Med Hypotheses 2000; 54:565-9. [PMID: 10859639 DOI: 10.1054/mehy.1999.0895] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent studies have demonstrated that in many pathological states there is an overproduction of tumour necrosis factor-alpha (TNF). Interestingly, TNF also seems to be responsible for the insulin resistance associated with these pathological states, since decreases the tyrosine kinase activity of the insulin receptor. Our group has demonstrated that TNF is able to activate the proteasome-mediated ubiquitin-dependent proteolysis. Since this proteolytic system is involved in the control of receptor-associated tyrosine kinase activity (i.e. insulin receptor), it is postulated here that the mechanism of TNF-induced insulin resistance is mediated by the activation of the proteasomic, ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- J Pallarés-Trujillo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
11
|
Snawder JE, Tirmenstein MA, Mathias PI, Toraason M. Induction of stress proteins in rat cardiac myocytes by antimony. Toxicol Appl Pharmacol 1999; 159:91-7. [PMID: 10495772 DOI: 10.1006/taap.1999.8739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of nonlethal concentrations of potassium antimonyl tartrate (PAT) were examined in cultured neonatal rat cardiac myocytes. PAT (5, 10 microM) significantly increased cellular reduced glutathione (GSH) and heme oxygenase activity after 18 h. GSH levels and heme oxygenase activity were increased 2.5- and 5.4-fold, respectively, by 10 microM PAT after 18 h. In addition, total cytochrome P450 levels were decreased by PAT after an 18-h exposure. PAT exposures were associated with the induction of specific stress proteins. Nonlethal concentrations of PAT produced a dose-dependent increase in HO-1, HSP70, and HSP25/27 protein levels but did not increase HSP60 levels. Pretreatment of cardiac myocytes with low concentrations of PAT (0.5-10 microM) protected against a subsequent lethal concentration of PAT (200 microM). This protection was blocked if cells were treated with the protein synthesis inhibitor cycloheximide. Results demonstrate that low concentrations of PAT increase GSH levels and stress protein synthesis, which may be responsible for the protection that low-level PAT exposure offers against the subsequent toxicity of higher concentrations of PAT.
Collapse
Affiliation(s)
- J E Snawder
- Cellular Toxicology Section, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, USA
| | | | | | | |
Collapse
|
12
|
Sharma HS, Das DK, Verdouw PD. Enhanced expression and localization of heme oxygenase-1 during recovery phase of porcine stunned myocardium. Mol Cell Biochem 1999; 196:133-9. [PMID: 10448912 DOI: 10.1007/978-1-4615-5097-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Myocardial adaptation to ischemia involves up-regulated expression of a number of genes implicated in conferring cytoprotection. We have previously shown that myocardial ischemia followed by reperfusion leads to a co-ordinated expression of mRNAs encoding heme oxygenase-1 (HO-1) and ubiquitin in pigs. HO-1 participates in biological reaction leading to the formation of the antioxidant, bilirubin and the putative cellular messenger, carbon monoxide. In the present study, we examined the expression and cellular localization of HO-1 in the heart during myocardial stunning in anesthetized pigs. After thoracotomy, the LAD was occluded for 10 min and reperfused for 30 min (group I, n = 4), again occluded for 10 min and reperfused for 30 min (group II, n = 6), 90 min (group III, n = 4), 210 min (group IV, n = 5) and for 390 min (group V, n = 4). Myocardial tissue specimens were collected in 10% formalin as well as in liquid nitrogen and processed for immunohistochemistry and mRNA expression analysis, respectively. In the distribution territory of the LAD (experimental, E), systolic wall thickening was significantly decreased (39 +/- 6%) as compared to that of the area perfused by left circumflex coronary artery (LCx, control) in group I and remained depressed in all subsequent groups. Northern blot analysis revealed that the expression of a single mRNA species of 1.8 kb encoding HO-1 was significantly induced in E as compared to control in groups II and III with maximum mRNA levels in group II (1.9 +/- 0.4 fold vs. control). Immunoreactive HO-1 was localized in the cytoplasm of cardiomyocytes as well as in the perivascular regions in all groups. Semiquantitative analysis of HO-1 staining showed significantly enhanced levels of HO-1 in perivascular region in E as compared to respective controls derived from groups III and IV. These results suggest that myocardial adaptive response to ischemia involves up-regulation of HO-1 in cells of perivascular region indicating that this enzyme may participate in regulating vascular tone via CO and thereby, contributing in pathophysiologically important defense mechanism(s) in the heart.
Collapse
Affiliation(s)
- H S Sharma
- Department of Pharmacology, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Abstract
The phenomenon of ischaemic preconditioning, highlights a new and endogenous route to myocardial protection, which we believe could be exploited in our search for new therapeutic ways to protect the infarcting myocardium. Ischaemic preconditioning has been shown to be associated with both an early, or acute phase of protection lasting approximately 1-2 hours, as well as a delayed phase or "second window of protection" seen at least 24 hours following the initial sublethal ischaemic insult, and lasting up to 72 hours. We believe that both responses are triggered by similar receptor mediated events in addition to using the similar signalling pathways involving kinase cascades. However it is thought that the ultimate target or end-effector through which the protection is manifest may be different for the early vs. late effects. Some evidence exists that the end-effector involved in early preconditioning may be via the ATP-sensitive potassium channel (K(ATP)). With respect to the second window of protection, the cellular mechanisms underlying this are not fully understood at present, however we believe that they may be dependent upon a similar signalling transduction pathway with upregulation of cytoprotective proteins such as the heat stress proteins, and/or anti-oxidant proteins. Evidence demonstrating that preconditioning can occur in the human myocardium is also accumulating. In this respect cultured human ventricular myocytes as well as human atrial muscle have been shown to be preconditioned with brief episodes of simulated ischemia. These human preparations also respond to the known triggers and possible end-effectors of preconditioning, (e.g. adenosine receptor stimulation and K(ATP) channel opening) as well as being able to elicit their responses through the PKC signalling pathway. Further support for this phenomenon, in man, comes from PTCA studies demonstrating that this invasive procedure can put patients into a "preconditioned state"; this effect being associated with reduced ischaemic symptoms as well as the involvement of the adenosine receptor and K(ATP) channel. Of further interest is the observation that patients with a previous history of angina, prior to a MI, sustain smaller infarcts and have an improved survival. However the most direct evidence that preconditioning occurs in man comes from studies in patients undergoing coronary artery bypass surgery. The above evidence that preconditioning can occur in man makes it now possible to begin to design clinical studies investigating cardioprotective properties of drugs that can specifically mimic this phenomenon.
Collapse
Affiliation(s)
- R Carroll
- Academic and Clinical Cardiology, The Hatter Institute, University College London Hospitals and Medical School, Grafton Way, UK
| | | |
Collapse
|
14
|
Zechner D, Craig R, Hanford DS, McDonough PM, Sabbadini RA, Glembotski CC. MKK6 activates myocardial cell NF-kappaB and inhibits apoptosis in a p38 mitogen-activated protein kinase-dependent manner. J Biol Chem 1998; 273:8232-9. [PMID: 9525929 DOI: 10.1074/jbc.273.14.8232] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cardiac myocytes the stimulation of p38 mitogen-activated protein kinase activates a hypertrophic growth program and the induction of the cardiac-specific genes associated with this program. This study focused on determining whether these novel growth-promoting effects are accompanied by the p38-mediated inhibition of apoptosis, and if so, what signaling pathways might be responsible. Primary neonatal rat ventricular myocytes were driven into apoptosis by treatments known to induce apoptosis in other cell types, e.g. incubation with anisomycin or overexpression constitutively active MEKK-1 (MEKK-1COOH), a protein that strongly activates extracellular signal-regulated kinase and N-terminal c-Jun kinase, but not p38. Overexpression of constitutively active MKK6, MKK6 (Glu), which selectively activates p38 in cardiac myocytes, protected cells from either anisomycin- or MEKK-1COOH-induced apoptosis. This protection was blocked by SB 203580, a selective p38 inhibitor. MKK6 (Glu) also activated transcription mediated by NF-kappaB, a factor which protects other cell types from apoptosis. The activation of NF-kappaB and the protection from apoptosis mediated by MKK6 (Glu) were both blocked by SB 203580. Interestingly, overexpression of a mutant form of I-kappaBalpha, which inhibits nuclear translocation of NF-kappaB, completely blocked MKK6 (Glu)-activated NF-kappaB but had little effect on MKK6s anti-apoptotic effects. These findings suggest that, in part, the overexpression of MKK6 (Glu) may foster growth and survival of cardiac myocytes by protecting them from apoptosis in a p38-dependent manner. Additionally, while NF-kappaB is activated in myocardial cells by p38, this does not appear to be the major mechanism by which MKK6 (Glu) exerts its anti-apoptotic effects in this cell type, suggesting a novel pathway for p38-mediated protection from apoptosis.
Collapse
Affiliation(s)
- D Zechner
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182, USA
| | | | | | | | | | | |
Collapse
|
15
|
Okazaki T, Sharma HS, McCune SK, Tibboel D. Pulmonary vascular balance in congenital diaphragmatic hernia: enhanced endothelin-1 gene expression as a possible cause of pulmonary vasoconstriction. J Pediatr Surg 1998; 33:81-4. [PMID: 9473106 DOI: 10.1016/s0022-3468(98)90367-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pulmonary hypoplasia and persistent pulmonary hypertension (PPH) are the principal causes of the ongoing mortality in congenital diaphragmatic hernia (CDH) presenting with respiratory insufficiency within 6 hours after birth. Endothelin-1 (ET-1) is an endothelial-derived vasoconstrictor, which could play an important role in modulating pulmonary vascular tone in PPH. ET-1 exerts its role in controlling vascular tone through two different subtype receptors, endothelin-A receptor (ETA) which is responsible for vasoconstriction and endothelin-B receptor (ETB) which is responsible for vasodilatation by induction of nitric oxide synthase. METHODS We examined the pulmonary expression of ET-1, ETA and ETB mRNAs in a rat model of CDH. CDH was induced in rats by administration of 100 mg of nitrofen dissolved in olive oil on day 10 of gestation. Fetal lungs were collected after cesarean section on gestational day 22 (term) and processed for Northern blot analysis and quantitative polymerase chain reaction (PCR). RESULTS Significantly (P<.05) enhanced levels of ET-1 mRNA were observed in CDH rats compared with control rats. In contrast to equal levels of ETB mRNA, a two- to fourfold increase in ETA mRNA levels were observed in CDH as compared with control rats. CONCLUSIONS The upregulated expression of ET-1 and ETA receptor mRNA before birth strongly support the reason for pulmonary vasoconstriction and altered pulmonary vascular muscularization in CDH. Consequently in the clinical setting, the use of endothelin receptor blockade for the treatment of PPH may be considered against the background of the unpredictable and variable response to inhaled nitric oxide in newborns with CDH.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Endothelin-1/biosynthesis
- Endothelin-1/genetics
- Female
- Gene Expression
- Hernia, Diaphragmatic/chemically induced
- Hernia, Diaphragmatic/physiopathology
- Hernias, Diaphragmatic, Congenital
- Humans
- Infant, Newborn
- Lung/embryology
- Persistent Fetal Circulation Syndrome/etiology
- Phenyl Ethers
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Endothelin A
- Receptor, Endothelin B
- Receptors, Endothelin/biosynthesis
- Receptors, Endothelin/genetics
- Up-Regulation
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- T Okazaki
- Department of Pediatric Surgery, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
16
|
Zechner D, Thuerauf DJ, Hanford DS, McDonough PM, Glembotski CC. A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J Cell Biol 1997; 139:115-27. [PMID: 9314533 PMCID: PMC2139826 DOI: 10.1083/jcb.139.1.115] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/1997] [Revised: 07/09/1997] [Indexed: 02/05/2023] Open
Abstract
Three hallmark features of the cardiac hypertrophic growth program are increases in cell size, sarcomeric organization, and the induction of certain cardiac-specific genes. All three features of hypertrophy are induced in cultured myocardial cells by alpha1- adrenergic receptor agonists, such as phenylephrine (PE) and other growth factors that activate mitogen- activated protein kinases (MAPKs). In this study the MAPK family members extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 were activated by transfecting cultured cardiac myocytes with constructs encoding the appropriate kinases possessing gain-of-function mutations. Transfected cells were then analyzed for changes in cell size, sarcomeric organization, and induction of the genes for the A- and B-type natriuretic peptides (NPs), as well as the alpha-skeletal actin (alpha-SkA) gene. While activation of JNK and/or ERK with MEKK1COOH or Raf-1 BXB, respectively, augmented cell size and effected relatively modest increases in NP and alpha-SkA promoter activities, neither upstream kinase conferred sarcomeric organization. However, transfection with MKK6 (Glu), which specifically activated p38, augmented cell size, induced NP and alpha-Ska promoter activities by up to 130-fold, and elicited sarcomeric organization in a manner similar to PE. Moreover, all three growth features induced by MKK6 (Glu) or PE were blocked with the p38-specific inhibitor, SB 203580. These results demonstrate novel and potentially central roles for MKK6 and p38 in the regulation of myocardial cell hypertrophy.
Collapse
Affiliation(s)
- D Zechner
- Department of Biology and Molecular Biology Institute, San Diego State University, California 92182, USA
| | | | | | | | | |
Collapse
|