1
|
Smoktunowicz M, Wawrzyniak R, Jonca J, Waleron M, Waleron K. Untargeted metabolomics coupled with genomics in the study of sucrose and xylose metabolism in Pectobacterium betavasculorum. Front Microbiol 2024; 15:1323765. [PMID: 38812674 PMCID: PMC11133636 DOI: 10.3389/fmicb.2024.1323765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Pectobacterium betavasculorum is a member of the Pectobacerium genus that inhabits a variety of niches and is found in all climates. Bacteria from the Pectobacterium genus can cause soft rot disease on various plants due to the secretion of plant cell wall degrading enzymes (PCWDEs). The species P. betavasculorum is responsible for the vascular necrosis of sugar beet and soft rot of many vegetables. It also infects sunflowers and artichokes. The main sugar present in sugar beet is sucrose while xylose is one of the main sugars in artichoke and sunflower. Methods In our work, we applied metabolomic studies coupled with genomics to investigate the metabolism of P. betavasculorum in the presence of xylose and sucrose as the only carbon source. The ability of the strains to use various sugars as the only carbon source were confirmed by the polypyridyl complex of Ru(II) method in 96-well plates. Results Our studies provided information on the metabolic pathways active during the degradation of those substrates. It was observed that different metabolic pathways are upregulated in the presence of xylose in comparison to sucrose. Discussion The presence of xylose enhances extracellular metabolism of sugars and glycerol as well as stimulates EPS and IPS synthesis. In contrast, in the presence of sucrose the intensive extracellular metabolism of amines and amino acids is promoted.
Collapse
Affiliation(s)
- Magdalena Smoktunowicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Renata Wawrzyniak
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Jonca
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Wu Y, Li Y, Zhang Y, Liu Y, Li J, Du G, Lv X, Liu L. Efficient Protein Expression and Biosynthetic Gene Cluster Regulation in Bacillus subtilis Driven by a T7-BOOST System. ACS Synth Biol 2023; 12:3328-3339. [PMID: 37885173 DOI: 10.1021/acssynbio.3c00331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bacillus subtilis is a generally recognized as safe microorganism that is widely used for protein expression and chemical production, but has a limited number of genetic regulatory components compared with the Gram-negative model microorganism Escherichia coli. In this study, a two-module plug-and-play T7-based optimized output strategy for transcription (T7-BOOST) systems with low leakage expression and a wide dynamic range was constructed based on the inducible promoters Phy-spank and PxylA. The first T7 RNA polymerase-driven module was seamlessly integrated into the genome based on the CRISPR/Cpf1 system, while the second expression control module was introduced into low, medium, and high copy plasmids for characterization. As a proof of concept, the T7-BOOST systems were successfully employed for whole-cell catalysis production of γ-aminobutyric acid (109.8 g/L with a 98.0% conversion rate), expression of human αS1 casein and human lactoferrin, and regulation of exogenous lycopene biosynthetic gene cluster and endogenous riboflavin biosynthetic gene cluster. Overall, the T7-BOOST system serves as a stringent, controllable, and effective tool for regulating gene expression in B. subtilis.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yuting Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Baima Future Foods Research Institute, Nanjing 211225, China
| |
Collapse
|
3
|
Hanko EKR, Joosab Noor Mahomed TA, Stoney RA, Breitling R. TFBMiner: A User-Friendly Command Line Tool for the Rapid Mining of Transcription Factor-Based Biosensors. ACS Synth Biol 2023; 12:1497-1507. [PMID: 37053505 DOI: 10.1021/acssynbio.2c00679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Transcription factors responsive to small molecules are essential elements in synthetic biology designs. They are often used as genetically encoded biosensors with applications ranging from the detection of environmental contaminants and biomarkers to microbial strain engineering. Despite our efforts to expand the space of compounds that can be detected using biosensors, the identification and characterization of transcription factors and their corresponding inducer molecules remain labor- and time-intensive tasks. Here, we introduce TFBMiner, a new data mining and analysis pipeline that enables the automated and rapid identification of putative metabolite-responsive transcription factor-based biosensors (TFBs). This user-friendly command line tool harnesses a heuristic rule-based model of gene organization to identify both gene clusters involved in the catabolism of user-defined molecules and their associated transcriptional regulators. Ultimately, biosensors are scored based on how well they fit the model, providing wet-lab scientists with a ranked list of candidates that can be experimentally tested. We validated the pipeline using a set of molecules for which TFBs have been reported previously, including sensors responding to sugars, amino acids, and aromatic compounds, among others. We further demonstrated the utility of TFBMiner by identifying a biosensor for S-mandelic acid, an aromatic compound for which a responsive transcription factor had not been found previously. Using a combinatorial library of mandelate-producing microbial strains, the newly identified biosensor was able to distinguish between low- and high-producing strain candidates. This work will aid in the unraveling of metabolite-responsive microbial gene regulatory networks and expand the synthetic biology toolbox to allow for the construction of more sophisticated self-regulating biosynthetic pathways.
Collapse
Affiliation(s)
- Erik K R Hanko
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Tariq A Joosab Noor Mahomed
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Ruth A Stoney
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
4
|
Li Y, Wu Y, Liu Y, Li J, Du G, Lv X, Liu L. A genetic toolkit for efficient production of secretory protein in Bacillus subtilis. BIORESOURCE TECHNOLOGY 2022; 363:127885. [PMID: 36064082 DOI: 10.1016/j.biortech.2022.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Bacillus subtilis is a microbial cell factory widely used to produce recombinant proteins, but the expression of heterologous proteins is often severely hampered. This study constructed a genetic toolkit for improving the secretory efficiency of heterologous proteins in Bacillus subtilis. First, the protease-deficient hosts were reconstructed. Then, two endogenous constitutive promoters, Phag and PspovG, were screened. Next, a method called systemic combinatorial optimization of ribosome binding site (RBS) equipped with signal peptide (SCORES) was designed for optimizing the secretion and translation of the heterologous protein. Finally, Serratia marcescens nonspecific endonuclease (SMNE), which causes cell death by degrading nucleic acids, was expressed. The enzyme activity in the shake flask reached 7.5 × 106 U/L, which was 7.5-times that of the control RBS and signal peptide combination (RS0). This study not only expanded on the synthetic biology toolbox in B. subtilis but also provided strategies to create a prokaryotic protein expression system.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Lekshmi Sundar MS, Madhavan Nampoothiri K. An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid. BIORESOURCE TECHNOLOGY 2022; 345:126548. [PMID: 34906704 DOI: 10.1016/j.biortech.2021.126548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Xylose, the most abundant pentose sugar of the hemicellulosic fraction of lignocellulosic biomass, has to be utilized rationally for the commercial viability of biorefineries. An effective pre-treatment strategy for the release of xylose from the biomass and an appropriate microbe of the status of an Industrial strain for the utilization of this pentose sugar are key challenges which need special attention for the economic success of the biomass value addition to chemicals. Xylitol and xylonic acid, the alcohol and acid derivatives of xylose are highly demanded commodity chemicals globally with plenty of applications in the food and pharma industries. This review emphasis on the natural and metabolically engineered strains utilizing xylose and the progressive and innovative fermentation strategies for the production and subsequent recovery of the above said chemicals from pre-treated biomass medium.
Collapse
Affiliation(s)
- M S Lekshmi Sundar
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
6
|
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products.
Collapse
|
7
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
8
|
Hartz P, Gehl M, König L, Bernhardt R, Hannemann F. Development and application of a highly efficient CRISPR-Cas9 system for genome engineering in Bacillus megaterium. J Biotechnol 2021; 329:170-179. [PMID: 33600891 DOI: 10.1016/j.jbiotec.2021.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
Bacillus megaterium has become increasingly important for the biotechnological production of valuable compounds of industrial and pharmaceutical importance. Despite recent advances in rational strain design of B. megaterium, these studies have been largely impaired by the lack of molecular tools that are not state-of-the-art for comprehensive genome engineering approaches. In the current work, we describe the adaptation of the CRISPR-Cas9 vector pJOE8999 to enable efficient genome editing in B. megaterium. Crucial modifications comprise the exchange of promoter elements and associated ribosomal binding sites as well as the implementation of a 5-fluorouracil based counterselection system to facilitate proper plasmid curing. In addition, the functionality and performance of the new CRISPR-Cas9 vector pMOE was successfully evaluated by chromosomal disruption studies of the endogenous β-galactosidase gene (BMD_2126) and demonstrated an outstanding efficiency of 100 % based on combinatorial pheno- and genotype analyses. Furthermore, pMOE was applied for the genomic deletion of a steroid esterase gene (BMD_2256) that was identified among several other candidates as the gene encoding the esterase, which prevented accumulation of pharmaceutically important glucocorticoid esters. Recombinant expression of the bacterial chloramphenicol acetyltransferase 1 gene (cat1) in the resulting esterase deficient B. megaterium strain ultimately yielded C21-acetylated as well as novel C21-esterified derivates of cortisone.
Collapse
Affiliation(s)
- Philip Hartz
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Manuel Gehl
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany; Present address: Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Lisa König
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
9
|
Baena Lozada LP, Hoppert M, Hertel R. Phage vB_BmeM-Goe8 infecting Bacillus megaterium DSM319. Arch Virol 2019; 165:515-517. [PMID: 31863264 DOI: 10.1007/s00705-019-04513-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022]
Abstract
vB_BmeM-Goe8 is a phage preying on Bacillus megaterium. Its genome has a GC content of 38.9%, is 161,583 bp in size, and has defined ends consisting of 7436-bp-long terminal repeats. It harbours 11 genes encoding tRNAs and 246 coding DNA sequences, 66 of which were annotated. The particle reveals Myoviridae morphology, and the formation of a double baseplate upon tail sheath contraction indicates morphological relatedness to the group of SPO1-like phages. BLASTn comparison against the NCBI non-redundant nucleotide database revealed that Bacillus phage Mater is the closest relative of vB_BmeM-Goe8.
Collapse
Affiliation(s)
- Lina Paola Baena Lozada
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Michael Hoppert
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Robert Hertel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Whole-Genome Sequence of Bacillus megaterium Strain SGAir0080, Isolated from an Indoor Air Sample. Microbiol Resour Announc 2019; 8:8/50/e01249-19. [PMID: 31831612 PMCID: PMC6908797 DOI: 10.1128/mra.01249-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus megaterium strain SGAir0080 was isolated from a tropical air sample in Singapore. Its genome was assembled using single-molecule real-time (SMRT) sequencing and MiSeq reads. It has one chromosome of 5.06 Mbp and seven plasmids (average length, 62.8 kbp). It possesses 5,339 protein-coding genes, 130 tRNAs, and 35 rRNAs.
Collapse
|
11
|
Castillo-Hair SM, Baerman EA, Fujita M, Igoshin OA, Tabor JJ. Optogenetic control of Bacillus subtilis gene expression. Nat Commun 2019; 10:3099. [PMID: 31308373 PMCID: PMC6629627 DOI: 10.1038/s41467-019-10906-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabolic enzymes for production of the chromophore phycocyanobilin (PCB), and an output promoter to control transcription of a gene of interest into B. subtilis. Following an initial non-functional design, we optimize expression of pathway genes, enhance PCB production via a translational fusion of the biosynthetic enzymes, engineer a strong chimeric output promoter, and increase dynamic range with a miniaturized photosensor kinase. Our final design exhibits over 70-fold activation and rapid response dynamics, making it well-suited to studying a wide range of gene regulatory processes. In addition, the synthetic biology methods we develop to port this pathway should make B. subtilis easier to engineer in the future.
Collapse
Affiliation(s)
| | - Elliot A Baerman
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd., Houston, TX, 77004, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Theoretical Biophysics, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA.
| |
Collapse
|
12
|
Expanding the promoter toolbox of Bacillus megaterium. J Biotechnol 2019; 294:38-48. [DOI: 10.1016/j.jbiotec.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/02/2023]
|
13
|
Xu Z, Xie J, Zhang H, Wang D, Shen Q, Zhang R. Enhanced Control of Plant Wilt Disease by a Xylose-Inducible degQ Gene Engineered into Bacillus velezensis Strain SQR9XYQ. PHYTOPATHOLOGY 2019; 109:36-43. [PMID: 29927357 DOI: 10.1094/phyto-02-18-0048-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacillus velezensis SQR9 (former B. amyloliquefaciens SQR9) is a plant-growth-promoting rhizobacterium (PGPR) that promotes plant growth and health. The colonization of PGPR strains along plant roots is a prerequisite for them to execute their specific functions. However, one problem of microbial introduction in practice is that the applied PGPR strains do not always successfully colonize the rhizosphere. In Bacillus spp., two-component signal transduction system (TCS) DegS/U regulates flagellar motility, biofilm formation and antibiotic production. Phosphorylation of DegU by DegS is positively affected by DegQ protein. In this study, we constructed a xylose-inducible degQ genetically engineered strain SQR9XYQ to improve the biocontrol activity. The results from in vitro, root in situ, greenhouse experiments and RT-qPCR studies demonstrate that (i) the phosphorylation of DegU in SQR9XYQ can be gradually activated by xylose, which is a component of both cucumber and tomato root exudates, and (ii) biofilm formation, antibiotic expression, colonization activity, and biocontrol efficiency were improved in SQR9XYQ compared with the wild-type strain SQR9. These results suggest that colonization trait is important to biocontrol strains for maintenance of plant health.
Collapse
Affiliation(s)
- Zhihui Xu
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Jiyu Xie
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Huihui Zhang
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Dandan Wang
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Qirong Shen
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Ruifu Zhang
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| |
Collapse
|
14
|
Noguchi Y, Kashiwagi N, Uzura A, Ogino C, Kondo A, Ikeda H, Sota M. Development of a strictly regulated xylose-induced expression system in Streptomyces. Microb Cell Fact 2018; 17:151. [PMID: 30241528 PMCID: PMC6149001 DOI: 10.1186/s12934-018-0991-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background Genetic tools including constitutive and inducible promoters have been developed over the last few decades for strain engineering in Streptomyces. Inducible promoters are useful for controlling gene expression, however only a limited number are applicable to Streptomyces. The aim of this study is to develop a controllable protein expression system based on an inducible promoter using sugar inducer, which has not yet been widely applied in Streptomyces. Results To determine a candidate promoter, inducible protein expression was first examined in Streptomyces avermitilis MA-4680 using various carbon sources. Xylose isomerase (xylA) promoter derived from xylose (xyl) operon was selected due to strong expression of xylose isomerase (XylA) in the presence of d-xylose. Next, a xylose-inducible protein expression system was constructed by investigating heterologous protein expression (chitobiase as a model protein) driven by the xylA promoter in Streptomyces lividans. Chitobiase activity was detected at high levels in S. lividans strain harboring an expression vector with xylA promoter (pXC), under both xylose-induced and non-induced conditions. Thus, S. avermitilis xylR gene, which encodes a putative repressor of xyl operon, was introduced into constructed vectors in order to control protein expression by d-xylose. Among strains constructed in the study, XCPR strain harboring pXCPR vector exhibited strict regulation of protein expression. Chitobiase activity in the XCPR strain was observed to be 24 times higher under xylose-induced conditions than that under non-induced conditions. Conclusion In this study, a strictly regulated protein expression system was developed based on a xylose-induced system. As far as we could ascertain, this is the first report of engineered inducible protein expression in Streptomyces by means of a xylose-induced system. This system might be applicable for controllable expression of toxic products or in the field of synthetic biology using Streptomyces strains. Electronic supplementary material The online version of this article (10.1186/s12934-018-0991-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuji Noguchi
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Atsuko Uzura
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masahiro Sota
- Nagase R&D Center, Nagase & Co., Ltd., 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| |
Collapse
|
15
|
Mariscal AM, Kakizawa S, Hsu JY, Tanaka K, González-González L, Broto A, Querol E, Lluch-Senar M, Piñero-Lambea C, Sun L, Weyman PD, Wise KS, Merryman C, Tse G, Moore AJ, Hutchison CA, Smith HO, Tomita M, Venter JC, Glass JI, Piñol J, Suzuki Y. Tuning Gene Activity by Inducible and Targeted Regulation of Gene Expression in Minimal Bacterial Cells. ACS Synth Biol 2018; 7:1538-1552. [PMID: 29786424 DOI: 10.1021/acssynbio.8b00028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional genomics studies in minimal mycoplasma cells enable unobstructed access to some of the most fundamental processes in biology. Conventional transposon bombardment and gene knockout approaches often fail to reveal functions of genes that are essential for viability, where lethality precludes phenotypic characterization. Conditional inactivation of genes is effective for characterizing functions central to cell growth and division, but tools are limited for this purpose in mycoplasmas. Here we demonstrate systems for inducible repression of gene expression based on clustered regularly interspaced short palindromic repeats-mediated interference (CRISPRi) in Mycoplasma pneumoniae and synthetic Mycoplasma mycoides, two organisms with reduced genomes actively used in systems biology studies. In the synthetic cell, we also demonstrate inducible gene expression for the first time. Time-course data suggest rapid kinetics and reversible engagement of CRISPRi. Targeting of six selected endogenous genes with this system results in lowered transcript levels or reduced growth rates that agree with lack or shortage of data in previous transposon bombardment studies, and now produces actual cells to analyze. The ksgA gene encodes a methylase that modifies 16S rRNA, rendering it vulnerable to inhibition by the antibiotic kasugamycin. Targeting the ksgA gene with CRISPRi removes the lethal effect of kasugamycin and enables cell growth, thereby establishing specific and effective gene modulation with our system. The facile methods for conditional gene activation and inactivation in mycoplasmas open the door to systematic dissection of genetic programs at the core of cellular life.
Collapse
Affiliation(s)
- Ana M Mariscal
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Shigeyuki Kakizawa
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
- National Institute of Advanced Industrial Science and Technology , Tsukuba , Ibaraki 305-8560 , Japan
| | - Jonathan Y Hsu
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093 , United States
| | - Kazuki Tanaka
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
- Institute for Advanced Biosciences , Keio University , Tsuruoka , Yamagata 997-0035 , Japan
- Faculty of Environment and Information Studies , Keio University , Fujisawa , Kanagawa 252-0882 , Japan
| | - Luis González-González
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Alicia Broto
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG) , The Barcelona Institute of Science and Technology , Barcelona 08036 , Spain
- Universitat Pompeu Fabra (UPF) , Barcelona 08002 , Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG) , The Barcelona Institute of Science and Technology , Barcelona 08036 , Spain
- Universitat Pompeu Fabra (UPF) , Barcelona 08002 , Spain
| | - Carlos Piñero-Lambea
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG) , The Barcelona Institute of Science and Technology , Barcelona 08036 , Spain
- Universitat Pompeu Fabra (UPF) , Barcelona 08002 , Spain
| | - Lijie Sun
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| | - Philip D Weyman
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| | - Kim S Wise
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| | - Chuck Merryman
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| | - Gavin Tse
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093 , United States
| | - Adam J Moore
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093 , United States
| | - Clyde A Hutchison
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| | - Hamilton O Smith
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| | - Masaru Tomita
- Institute for Advanced Biosciences , Keio University , Tsuruoka , Yamagata 997-0035 , Japan
| | - J Craig Venter
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| | - John I Glass
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Yo Suzuki
- Synthetic Biology Group , J. Craig Venter Institute , La Jolla , California 92037 , United States
| |
Collapse
|
16
|
Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria. Proc Natl Acad Sci U S A 2018; 115:E4340-E4349. [PMID: 29666238 PMCID: PMC5948957 DOI: 10.1073/pnas.1715806115] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Native cell-free transcription-translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription-translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription-translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.
Collapse
|
17
|
Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microb Cell Fact 2017; 16:88. [PMID: 28532451 PMCID: PMC5440981 DOI: 10.1186/s12934-017-0704-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Background Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. Results In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. Conclusions We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher γ-PGA production than the NK-1 strain. This work proposed a new strategy for improving the target product in microbial cell factories. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0704-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Feng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.,Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.,Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yufen Quan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yanyan Gu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.,Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Fenghong Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaozhong Huang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Haosheng Shen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yulei Dang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Weixia Gao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Cunjiang Song
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
18
|
Westbrook AW, Moo-Young M, Chou CP. Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis. Appl Environ Microbiol 2016; 82:4876-95. [PMID: 27260361 PMCID: PMC4968543 DOI: 10.1128/aem.01159-16] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The establishment of a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system for strain construction in Bacillus subtilis is essential for its progression toward industrial utility. Here we outline the development of a CRISPR-Cas9 tool kit for comprehensive genetic engineering in B. subtilis In addition to site-specific mutation and gene insertion, our approach enables continuous genome editing and multiplexing and is extended to CRISPR interference (CRISPRi) for transcriptional modulation. Our tool kit employs chromosomal expression of Cas9 and chromosomal transcription of guide RNAs (gRNAs) using a gRNA transcription cassette and counterselectable gRNA delivery vectors. Our design obviates the need for multicopy plasmids, which can be unstable and impede cell viability. Efficiencies of up to 100% and 85% were obtained for single and double gene mutations, respectively. Also, a 2.9-kb hyaluronic acid (HA) biosynthetic operon was chromosomally inserted with an efficiency of 69%. Furthermore, repression of a heterologous reporter gene was achieved, demonstrating the versatility of the tool kit. The performance of our tool kit is comparable with those of systems developed for Escherichia coli and Saccharomyces cerevisiae, which rely on replicating vectors to implement CRISPR-Cas9 machinery. IMPORTANCE In this paper, as the first approach, we report implementation of the CRISPR-Cas9 system in Bacillus subtilis, which is recognized as a valuable host system for biomanufacturing. The study enables comprehensive engineering of B. subtilis strains with virtually any desired genotypes/phenotypes and biochemical properties for extensive industrial application.
Collapse
Affiliation(s)
- Adam W Westbrook
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
19
|
Biedendieck R. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:97-113. [PMID: 27165321 DOI: 10.1007/978-3-319-27216-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany. .,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
20
|
Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity. Appl Environ Microbiol 2015; 81:5976-86. [PMID: 26116677 DOI: 10.1128/aem.00807-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
During the past 2 decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single-cell level using green fluorescent protein as a model product revealed cell culture heterogeneity characterized by a significant proportion of less productive bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time lapse microscopy and flow cytometry. Cell culture heterogeneity was not caused simply by plasmid loss: instead, an asymmetric distribution of plasmids during cell division was detected during the exponential-growth phase. Multicopy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was achieved mainly by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multicopy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species.
Collapse
|
21
|
Panda AK, Bisht SS, DeMondal S, Senthil Kumar N, Gurusubramanian G, Panigrahi AK. Brevibacillus as a biological tool: a short review. Antonie van Leeuwenhoek 2014; 105:623-39. [DOI: 10.1007/s10482-013-0099-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/11/2013] [Indexed: 01/12/2023]
|
22
|
Polka JK, Kollman JM, Mullins RD. Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling. Proc Natl Acad Sci U S A 2014; 111:2176-81. [PMID: 24481252 PMCID: PMC3926056 DOI: 10.1073/pnas.1304127111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In bacteria, some plasmids are partitioned to daughter cells by assembly of actin-like proteins (ALPs). The best understood ALP, ParM, has a core set of biochemical properties that contributes to its function, including dynamic instability, spontaneous nucleation, and bidirectional elongation. AlfA, an ALP that pushes plasmids apart in Bacillus, relies on a different set of underlying properties to segregate DNA. AlfA elongates unidirectionally and is not dynamically unstable; its assembly and disassembly are regulated by a cofactor, AlfB. Free AlfB breaks up AlfA bundles and promotes filament turnover. However, when AlfB is bound to the centromeric DNA sequence, parN, it forms a segrosome complex that nucleates and stabilizes AlfA filaments. When reconstituted in vitro, this system creates polarized, motile comet tails that associate by antiparallel filament bundling to form bipolar, DNA-segregating spindles.
Collapse
Affiliation(s)
- Jessica K. Polka
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158; and
| | - Justin M. Kollman
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada H3A 2B2
| | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158; and
| |
Collapse
|
23
|
Development of a tunable wide-range gene induction system useful for the study of streptococcal toxin-antitoxin systems. Appl Environ Microbiol 2013; 79:6375-84. [PMID: 23934493 DOI: 10.1128/aem.02320-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Despite the plethora of genetic tools that have been developed for use in Streptococcus mutans, the S. mutans genetic system still lacks an effective gene induction system exhibiting low basal expression and strong inducibility. Consequently, we created two hybrid gene induction cassettes referred to as Xyl-S1 and Xyl-S2. Both Xyl-S cassettes are xylose inducible and controlled by the Bacillus megaterium xylose repressor. The Xyl-S cassettes each demonstrated >600-fold-increased reporter activity in the presence of 1.2% (wt/vol) xylose. However, the Xyl-S1 cassette yielded a much higher maximum level of gene expression, whereas the Xyl-S2 cassette exhibited much lower uninduced basal expression. The cassettes also performed similarly in Streptococcus sanguinis and Streptococcus gordonii, which suggests that they are likely to be useful in a variety of streptococci. We demonstrate how both Xyl-S cassettes are particularly useful for the study of toxin-antitoxin (TA) modules using both the previously characterized S. mutans mazEF TA module and a previously uncharacterized HicAB TA module in S. mutans. HicAB TA modules are widely distributed among bacteria and archaea, but little is known about their function. We show that HicA serves as the toxin component of the module, while HicB serves as the antitoxin. Our results suggest that, in contrast to that of typical TA modules, HicA toxicity in S. mutans is modest at best. The implications of these results for HicAB function are discussed.
Collapse
|
24
|
Lin Z, Deng B, Jiao Z, Wu B, Xu X, Yu D, Li W. A versatile mini-mazF-cassette for marker-free targeted genetic modification in Bacillus subtilis. J Microbiol Methods 2013; 95:207-14. [PMID: 23911571 DOI: 10.1016/j.mimet.2013.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022]
Abstract
There are some drawbacks for MazF-cassette constructed in previous reports for marker-free genetic manipulation in Bacillus subtilis, including cloning-dependent methodology and non-strictly controlled expression system. In our study, the modifications on mazF-cassette are carried out, such as using mini Zeocin resistance gene as positive-selectable marker and strictly controlled xyl promoter from the B. subtilis to replace non-strictly controlled IPTG-inducible Pspac or xyl promoter from Bacillus megaterium. Then the mini-mazF-cassette was successfully applied to knock-out the amyE gene, to delete a 90-kb gene cluster, and to knock-in a green fluorescent protein expression cassette employing a cloning-independent methodology, without introducing undesirable redundant sequences at the modified locus in the B. subtilis 1A751. Besides, the mini-mazF-cassette could be used repeatedly to delete multiple genes or gene clusters with only a 2- to 2.5-kb PCR-fused fragment, which largely reduced the frequency of nucleic acid mutations generated by PCR compared to previous reports. We further demonstrated that the frequency of spontaneous mazF-resistant mutants was lower, and the frequency of generating desired clones was nearly 100%. The entire procedure for marker-free genetic manipulation using the mini-mazF-cassette can be finished in about 3days. This modified cassette has remarkable improvement compared to existing approaches and is applicable for available manipulating Bacillus species chromosomes.
Collapse
Affiliation(s)
- Zhiwei Lin
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Inducible cell lysis systems in microbial production of bio-based chemicals. Appl Microbiol Biotechnol 2013; 97:7121-9. [DOI: 10.1007/s00253-013-5100-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 02/02/2023]
|
26
|
High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter. Microb Cell Fact 2013; 12:12. [PMID: 23374160 PMCID: PMC3582527 DOI: 10.1186/1475-2859-12-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. RESULTS Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP) was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA). The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds) than those obtained using the available plasmids based on the P2 constitutive promoter. CONCLUSION Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio) and B. megaterium (from Mobitec), we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus.
Collapse
|
27
|
Korneli C, David F, Biedendieck R, Jahn D, Wittmann C. Getting the big beast to work--systems biotechnology of Bacillus megaterium for novel high-value proteins. J Biotechnol 2012; 163:87-96. [PMID: 22750448 DOI: 10.1016/j.jbiotec.2012.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
The high industrial relevance of the soil bacterium Bacillus megaterium as host for recombinant proteins is driving systems-wide analyses of its metabolic and regulatory networks. The present review highlights novel systems biology tools available to unravel the various cellular components on the level of metabolic and regulatory networks. These provide a rational platform for systems metabolic engineering of B. megaterium. In line, a number of interesting studies have particularly focused on studying recombinant B. megaterium in its industrial bioprocess environment thus integrating systems metabolic engineering with systems biotechnology and providing the full picture toward optimal processes.
Collapse
Affiliation(s)
- Claudia Korneli
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
28
|
Knobloch D, Clemens A, Ostermann K, Rödel G. The xylA promoter of Bacillus megaterium mediates constitutive gene expression in Escherichia coli. Eng Life Sci 2011. [DOI: 10.1002/elsc.201000225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Khan AW, Rahman MS, Zohora US, Okanami M, Ano T. Production of surfactin using pentose carbohydrate by Bacillus subtilis. J Environ Sci (China) 2011; 23 Suppl:S63-S65. [PMID: 25084596 DOI: 10.1016/s1001-0742(11)61079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Interest in microbial surfactants has been steadily increasing in recent years due to their diversity, mass production possibility, selectivity, performance under extreme conditions and potential applications in environmental protection. In this study two pentose sugars (xylose and arabinose) were investigated for the submerged fermentation (SmF) of Bacillus subtilis in surfactant production medium for bio-surfactant surfactin production. An excellent vegetative growth of B. subtilis (× 10(10) CFU/mL) was observed for xylose and arabinose containing medium which were comparable to glucose supplemented medium. Low growth (× 10(8) CFU/mL) was found when medium was not supplemented with any of the sugars. Surfactin production in xylose, arabinose and glucose containing medium was 2700, 2600 and 2000 mg/L, respectively, whereas, medium without any sugar showed low surfactin (700 mg/L) production. These results clearly indicate the effect of pentose sugars on production of surfactin. Gradual depletion of the xylose and arabinose were confirmed by HPLC analysis during the growth phase of the strain that ultimately produced the surfactin.
Collapse
Affiliation(s)
- Abdul Wahab Khan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Institute of Biological Resources, Anise Corporation, N605 Building #C, 1-12 Minamiwatarida-cho, Kawasaki-ku, Kawasaki-shi 210-0855, Japan
| | - Mohammad Shahedur Rahman
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Institute of Biological Resources, Anise Corporation, N605 Building #C, 1-12 Minamiwatarida-cho, Kawasaki-ku, Kawasaki-shi 210-0855, Japan
| | - Umme Salma Zohora
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Institute of Biological Resources, Anise Corporation, N605 Building #C, 1-12 Minamiwatarida-cho, Kawasaki-ku, Kawasaki-shi 210-0855, Japan
| | - Masahiro Okanami
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa-city, Wakayama, 649-6493, Japan
| | - Takashi Ano
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa-city, Wakayama, 649-6493, Japan
| |
Collapse
|
30
|
Functional analysis of the response regulator DegU in Bacillus megaterium DSM319 and comparative secretome analysis of degSU mutants. Appl Microbiol Biotechnol 2011; 91:699-711. [DOI: 10.1007/s00253-011-3302-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
|
31
|
Summpunn P, Chaijan S, Isarangkul D, Wiyakrutta S, Meevootisom V. Characterization, gene cloning, and heterologous expression of β-mannanase from a thermophilic Bacillus subtilis. J Microbiol 2011; 49:86-93. [PMID: 21369984 DOI: 10.1007/s12275-011-0357-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
Abstract
Bacillus subtilis BCC41051 producing a thermostable β-mannanase was isolated from soybean meal-enriched soil and was unexpectedly found to be thermophilic in nature. The extracellular β-mannanase (ManA) produced was hydrophilic, as it was not precipitated even with ammonium sulfate at 80% saturation. The estimated molecular weight of ManA was 38.0 kDa by SDS-PAGE with a pi value of 5.3. Optimal pH and temperature for mannan-hydrolyzing activity was 7.0 and 60°C, respectively. The enzyme was stable over a pH range of 5.0-11.5, and at temperatures of up to 60°C for 30 min, with more than 80% of its activity retained. ManA was strongly inhibited by Hg(2+) (1 mM), but was sensitive to other divalent ions to a lesser degree. The gene of ManA encoded a protein of 362 amino acid residues, with the first 26 residues identified as a signal peptide. High expression of recombinant ManA was achieved in both Escherichia coli BL21 (DE3) (415.18 U/ml) and B. megaterium UNcat (359 U/ml).
Collapse
Affiliation(s)
- Pijug Summpunn
- Department of Biotechnology, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | | | | | | | | |
Collapse
|
32
|
Biedendieck R, Borgmeier C, Bunk B, Stammen S, Scherling C, Meinhardt F, Wittmann C, Jahn D. Systems biology of recombinant protein production using Bacillus megaterium. Methods Enzymol 2011; 500:165-95. [PMID: 21943898 DOI: 10.1016/b978-0-12-385118-5.00010-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
High-yield intra- and extracellular protein production using Bacillus megaterium. Appl Environ Microbiol 2010; 76:4037-46. [PMID: 20435764 DOI: 10.1128/aem.00431-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus megaterium protein production system based on the inducible promoter of the xyl operon (P(xylA)) was systematically optimized. Multiple changes in basic promoter elements, such as the -10 and -35 region and the ribosome-binding site, resulted in an 18-fold increase of protein production compared to the production of the previously established system. The production in shaking-flask culture of green fluorescent protein (Gfp) as a model product led to 82.5 mg per g cell dry weight (g(CDW)) or 124 mg liter(-1). In fed-batch cultivation, the volumetric protein yield was increased 10-fold to 1.25 g liter(-1), corresponding to 36.8 mg protein per g(CDW). Furthermore, novel signal peptides for Sec-dependent protein secretion were predicted in silico using the B. megaterium genome. Subsequently, leader peptides of Vpr, NprM, YngK, YocH, and a computationally designed artificial peptide were analyzed experimentally for their potential to facilitate the secretion of the heterologous model protein Thermobifida fusca hydrolase (Tfh). The best extracellular protein production, 5,000 to 6,200 U liter(-1) (5.3 to 6.6 mg liter(-1)), was observed for strains where the Tfh export was facilitated by a codon-optimized leader peptide of YngK and by the signal peptide of YocH. Further increases in extracellular protein production were achieved when leader peptides were used in combination with the optimized expression system. In this case, the greatest extracellular enzyme amount of 7,200 U liter(-1), 7.7 mg liter(-1), was achieved by YocH leader peptide-mediated protein export. Nevertheless, the observed principal limitations in protein export might be related to components of the Sec-dependent protein transport system.
Collapse
|
34
|
An improved transconjugation protocol for Bacillus megaterium facilitating a direct genetic knockout. Appl Microbiol Biotechnol 2010; 86:1959-65. [PMID: 20217076 DOI: 10.1007/s00253-010-2503-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
We provide a simple but very efficient transconjugation protocol for Bacillus megaterium. By combining utile attributes of known transconjugation methods (small size of the transferred DNA, close physical contact between donor and recipient cells, and heat treatment of the latter) and by determining the appropriate donor/recipient ratio, mating approaches yielded 5 x 10(-5) transconjugants/recipient. Counter-selection for eliminating Escherichia coli donor cells from the mating mixture was possible by pasteurization in case a wild type sporulation proficient B. megaterium served as the mating partner. For nonsporulating mutants, the sacB gene from Bacillus subtilis coding for levansucrase was successfully employed to select against the E. coli donor. The transfer efficiency, up to 15,000 transconjugants acquirable in a single experiment, sufficed--for the first time in this species--to directly select a gene (uvrA) knockout in a one-step procedure. By making use of a mobilizable B. megaterium suicide vector, ten out of the 40 sampled putative transconjugants displayed the expected UV sensitivity and were found to harbor the suicide vector at the anticipated position. Along with the soon available information arising from current B. megaterium sequencing projects, the possibility to quickly inactivate genetic loci will considerably speed up genetic work with this biotechnologically relevant species.
Collapse
|
35
|
Bunk B, Schulz A, Stammen S, Münch R, Warren MJ, Rohde M, Jahn D, Biedendieck R. A short story about a big magic bug. Bioeng Bugs 2010; 1:85-91. [PMID: 21326933 PMCID: PMC3026448 DOI: 10.4161/bbug.1.2.11101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/04/2010] [Indexed: 11/19/2022] Open
Abstract
Bacillus megaterium, the "big beast," is a Gram-positive bacterium with a size of 4 × 1.5 µm. During the last years, it became more and more popular in the field of biotechnology for its recombinant protein production capacity. For the purpose of intra- as well as extracellular protein synthesis several vectors were constructed and commercialized (MoBiTec GmbH, Germany). On the basis of two compatible vectors, a T7 RNA polymerase driven protein production system was established. Vectors for chromosomal integration enable the direct manipulation of the genome. The vitamin B(12) biosynthesis of B. megaterium served as a model for the systematic development of a production strain using these tools. For this purpose, the overexpression of chromosomal and plasmid encoded genes and operons, the synthesis of anti-sense RNA for gene silencing, the removal of inhibitory regulatory elements in combination with the utilization of strong promoters, directed protein design, and the recombinant production of B(12) binding proteins to overcome feedback inhibition were successfully employed. For further system biotechnology based optimization strategies the genome sequence will provide a closer look into genomic capacities of B. megaterium. DNA arrays are available. Proteome, fluxome and metabolome analyses are possible. All data can be integrated by using a novel bioinformatics platform. Finally, the size of the "big beast" B. megaterium invites for cell biology research projects. All these features provide a solid basis for challenging biotechnological approaches.
Collapse
Affiliation(s)
- Boyke Bunk
- Institute of Microbiology; Technische Universität Braunschweig; Braunschweig, Germany
| | | | - Simon Stammen
- Institute of Microbiology; Technische Universität Braunschweig; Braunschweig, Germany
| | - Richard Münch
- Institute of Microbiology; Technische Universität Braunschweig; Braunschweig, Germany
| | - Martin J Warren
- Protein Science Group; Department of Biosciences; University of Kent; Canterbury, Kent UK
| | - Manfred Rohde
- Department of Microbial Pathogenesis; HZ1-Helmholtz Ceter for Infection Research; Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology; Technische Universität Braunschweig; Braunschweig, Germany
| | - Rebekka Biedendieck
- Protein Science Group; Department of Biosciences; University of Kent; Canterbury, Kent UK
| |
Collapse
|
36
|
Biedendieck R, Bunk B, Fürch T, Franco-Lara E, Jahn M, Jahn D. Systems biology of recombinant protein production in Bacillus megaterium. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:133-161. [PMID: 20140656 DOI: 10.1007/10_2009_62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent, CT27NJ, UK
| | | | | | | | | | | |
Collapse
|
37
|
Biedendieck R, Malten M, Barg H, Bunk B, Martens JH, Deery E, Leech H, Warren MJ, Jahn D. Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microb Biotechnol 2009; 3:24-37. [PMID: 21255303 PMCID: PMC3815944 DOI: 10.1111/j.1751-7915.2009.00125.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cobalamin (vitamin B12) production in Bacillus megaterium has served as a model system for the systematic evaluation of single and multiple directed molecular and genetic optimization strategies. Plasmid and genome‐based overexpression of genes involved in vitamin B12 biosynthesis, including cbiX, sirA, modified hemA, the operons hemAXCDBL and cbiXJCDETLFGAcysGAcbiYbtuR,and the regulatory gene fnr, significantly increased cobalamin production. To reduce flux along the heme branch of the tetrapyrrole pathway, an antisense RNA strategy involving silencing of the hemZ gene encoding coproporphyrinogen III oxidase was successfully employed. Feedback inhibition of the initial enzyme of the tetrapyrrole biosynthesis, HemA, by heme was overcome by stabilized enzyme overproduction. Similarly, the removal of the B12 riboswitch upstream of the cbiXJCDETLFGAcysGAcbiYbtuRoperon and the recombinant production of three different vitamin B12 binding proteins (glutamate mutase GlmS, ribonucleotide triphosphate reductase RtpR and methionine synthase MetH) partly abolished B12‐dependent feedback inhibition. All these strategies increased cobalamin production in B. megaterium. Finally, combinations of these strategies enhanced the overall intracellular vitamin B12 concentrations but also reduced the volumetric cellular amounts by placing the organism under metabolic stress.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microbiol 2009; 75:4636-40. [PMID: 19429561 DOI: 10.1128/aem.00548-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-level production (880 mg liter(-1)) and isolation of the anteiso-C(17) isoform of the lipopeptide mycosubtilin produced by a genetically engineered Bacillus subtilis strain are reported. Antifungal activity of this isoform, as determined via culture and fluorometric and cell leakage assays, suggests its potential therapeutic use as an antifungal agent, in particular against Candida spp.
Collapse
|
39
|
Bäumchen C, Roth AHFJ, Biedendieck R, Malten M, Follmann M, Sahm H, Bringer-Meyer S, Jahn D. D-mannitol production by resting state whole cell biotrans-formation of D-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium. Biotechnol J 2008; 2:1408-16. [PMID: 17619232 DOI: 10.1002/biot.200700055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An in vivo system was developed for the biotransformation of D-fructose into D-mannitol by the expression of the gene mdh encoding mannitol dehydrogenase (MDH) from Leuconostoc pseudomesenteroides ATCC12291 in Bacillus megaterium. The NADH reduction equivalents necessary for MDH activity were regenerated via the oxidation of formate to carbon dioxide by coexpression of the gene fdh encoding Mycobacterium vaccae N10 formate dehydrogenase (FDH). High-level protein production of MDH in B. megaterium required the adaptation of the corresponding ribosome binding site. The fdh gene was adapted to B. megaterium codon usage via complete chemical gene synthesis. Recombinant B. megaterium produced up to 10.60 g/L D-mannitol at the shaking flask scale. Whole cell biotransformation in a fed-batch bioreactor increased D-mannitol concentration to 22.00 g/L at a specific productivity of 0.32 g D-mannitol (gram cell dry weight)(-1) h(-1) and a D-mannitol yield of 0.91 mol/mol. The nicotinamide adenine dinucleotide (NAD(H)) pool of the B. megaterium producing D-mannitol remained stable during biotransformation. Intra- and extracellular pH adjusted itself to a value of 6.5 and remained constant during the process. Data integration revealed that substrate uptake was the limiting factor of the overall biotransformation. The information obtained identified B. megaterium as a useful production host for D-mannitol using a resting cell biotransformation approach.
Collapse
Affiliation(s)
- Carsten Bäumchen
- Institute of Biotechnology 1, Research Centre Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Biedendieck R, Gamer M, Jaensch L, Meyer S, Rohde M, Deckwer WD, Jahn D. A sucrose-inducible promoter system for the intra- and extracellular protein production in Bacillus megaterium. J Biotechnol 2007; 132:426-30. [PMID: 17692983 DOI: 10.1016/j.jbiotec.2007.07.494] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/06/2007] [Accepted: 07/03/2007] [Indexed: 10/23/2022]
Abstract
A sucrose-inducible promoter system (P(sacB)) from Bacillus megaterium was identified using a secretome approach. It was successfully employed for the extracellular production of the homologous levansucrase SacB (4252.4 U l(-1)) and the heterologous green fluorescent protein GFP (7.9 mg g(CDW)(-1)). Mutational analysis of B. megaterium P(sacB) allowed the identification of important promoter elements. The sucrose-inducible promoter provides a useful alternative to the established xylose-inducible promoter system (P(xylA)) for recombinant gene expression in B. megaterium.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Vary PS, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer WD, Jahn D. Bacillus megaterium—from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol 2007; 76:957-67. [PMID: 17657486 DOI: 10.1007/s00253-007-1089-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Bacillus megaterium has been industrially employed for more than 50 years, as it possesses some very useful and unusual enzymes and a high capacity for the production of exoenzymes. It is also a desirable cloning host for the production of intact proteins, as it does not possess external alkaline proteases and can stably maintain a variety of plasmid vectors. Genetic tools for this species include transducing phages and several hundred mutants covering the processes of biosynthesis, catabolism, division, sporulation, germination, antibiotic resistance, and recombination. The seven plasmids of B. megaterium strain QM B1551 contain several unusual metabolic genes that may be useful in bioremediation. Recently, several recombinant shuttle vectors carrying different strong inducible promoters and various combinations of affinity tags for simple protein purification have been constructed. Leader sequences-mediated export of affinity-tagged proteins into the growth medium was made possible. These plasmids are commercially available. For a broader application of B. megaterium in industry, sporulation and protease-deficient as well as UV-sensitive mutants were constructed. The genome sequence of two different strains, plasmidless DSM319 and QM B1551 carrying seven natural plasmids, is now available. These sequences allow for a systems biotechnology optimization of the production host B. megaterium. Altogether, a "toolbox" of hundreds of genetically characterized strains, genetic methods, vectors, hosts, and genomic sequences make B. megaterium an ideal organism for industrial, environmental, and experimental applications.
Collapse
Affiliation(s)
- Patricia S Vary
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Meissner D, Vollstedt A, van Dijl JM, Freudl R. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol 2007; 76:633-42. [PMID: 17453196 DOI: 10.1007/s00253-007-0934-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/06/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the secretory production of heterologous proteins via the Sec system. In this study, the potential for Tat-dependent heterologous protein secretion was compared in the three Gram-positive bacteria Staphylococcus carnosus, Bacillus subtilis, and Corynebacterium glutamicum using green fluorescent protein (GFP) as a model protein. In all three microorganisms, fusion of a Tat signal peptide to GFP resulted in its Tat-dependent translocation across the corresponding cytoplasmic membranes. However, striking differences with respect to the final localization and folding status of the exported GFP were observed. In S. carnosus, GFP was trapped entirely in the cell wall and not released into the supernatant. In B. subtilis, GFP was secreted into the supernatant, however, in an inactive form. In contrast, C. glutamicum effectively secreted active GFP. Our results clearly demonstrate that a comparative evaluation of different Gram-positive host microorganisms is a crucial step on the way to an efficient Tat-mediated secretory production process for a desired heterologous target protein.
Collapse
Affiliation(s)
- Daniel Meissner
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | | | | | | |
Collapse
|
43
|
Biedendieck R, Yang Y, Deckwer WD, Malten M, Jahn D. Plasmid system for the intracellular production and purification of affinity-tagged proteins in Bacillus megaterium. Biotechnol Bioeng 2007; 96:525-37. [PMID: 16964623 DOI: 10.1002/bit.21145] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A multiple vector system for the intracellular high-level production of affinity tagged recombinant proteins in Bacillus megaterium was developed. The N- and C-terminal fusion of a protein of interest to a Strep II and a His(6)-tag is possible. Corresponding genes are expressed under the control of a xylose-inducible promoter in a xylose isomerase deficient host strain. The exemplatory protein production of green fluorescent protein (GFP) showed differences in produced and recovered protein amounts in dependence of the employed affinity tag and its N- or C-terminal location. Up to 9 mg GFP per liter shake flask culture were purified using one-step affinity chromatography. Integration of a protease cleavage site into the recombinant fusion protein allowed tag removal via tobacco etch virus (TEV) protease or Factor Xa treatment and a second affinity chromatographic step. Up to 274 mg/L culture were produced at 52 g CDW/L using a glucose limited fedbatch cultivation. GFP production and viability of the production host were followed by flow cytometry.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
44
|
Yang Y, Malten M, Grote A, Jahn D, Deckwer WD. Codon optimizedThermobifida fusca hydrolase secreted byBacillus megaterium. Biotechnol Bioeng 2007; 96:780-94. [PMID: 16948171 DOI: 10.1002/bit.21167] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Production and secretion of a 28,172 Da hydrolase from Thermobifida fusca (TFH) in Bacillus megaterium MS941 and WH323 was investigated in shake flask and pH controlled bioreactors. Successful production of heterologous TFH was achieved by adapting the original tfh gene to the optimal codon usage of B. megaterium. A codon adaption index close to one was reached. The codon optimized tfh was cloned into an open reading frame with DNA sequence for the N-terminal signal peptide of B. megaterium lipase A and a C-terminal His(6)-tag, all under the control of a xylose inducible promoter. Successful TFH production and secretion were observed using batch reactor cultivations with complex medium. Expression of the tfh gene from the P(xylA) promoter and secretion of produced TFH were compared in detail to batch reactor cultivations with semi-defined growth medium. For the first time, significant TFH secretion was achieved using a semi-defined medium in glucose limited fed batch cultivations yielding 10-fold higher cell densities compared to LB medium cultivation. Comparable volumetric TFH activities were obtained for both cultivation strategies. Surprisingly, measured specific TFH activities exhibited drastic discrepancies between preparations from LB and semi-defined medium grown B. megaterium. TFH recovery by Ni-chelate affinity chromatography resulted in higher purification factors when LB medium was used. These results indicated that secreted TFH is favorably produced by batch cultures of B. megaterium WH323 in LB medium.
Collapse
Affiliation(s)
- Yang Yang
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
45
|
Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U. Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. J Bacteriol 2006; 189:2181-5. [PMID: 17172333 PMCID: PMC1855722 DOI: 10.1128/jb.01438-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic data suggest that the oligotrophic freshwater bacterium Caulobacter crescentus metabolizes D-xylose through a pathway yielding alpha-ketoglutarate, comparable to the recently described L-arabinose degradation pathway of Azospirillum brasilense. Enzymes of the C. crescentus pathway, including an NAD(+)-dependent xylose dehydrogenase, are encoded in the xylose-inducible xylXABCD operon (CC0823-CC0819).
Collapse
Affiliation(s)
- Craig Stephens
- Biology Department, Santa Clara University, Santa Clara, CA 95053, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Yang Y, Biedendieck R, Wang W, Gamer M, Malten M, Jahn D, Deckwer WD. High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium. Microb Cell Fact 2006; 5:36. [PMID: 17132166 PMCID: PMC1687198 DOI: 10.1186/1475-2859-5-36] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 11/28/2006] [Indexed: 11/22/2022] Open
Abstract
Background During the last years B. megaterium was continuously developed as production host for the secretion of proteins into the growth medium. Here, recombinant production and export of B. megaterium ATCC14945 penicillin G amidase (PGA) which is used in the reverse synthesis of β-lactam antibiotics were systematically improved. Results For this purpose, the PGA leader peptide was replaced by the B. megaterium LipA counterpart. A production strain deficient in the extracellular protease NprM and in xylose utilization to prevent gene inducer deprivation was constructed and employed. A buffered mineral medium containing calcium ions and defined amino acid supplements for optimal PGA production was developed in microscale cultivations and scaled up to a 2 Liter bioreactor. Productivities of up to 40 mg PGA per L growth medium were reached. Conclusion The combination of genetic and medium optimization led to an overall 7-fold improvement of PGA production and export in B. megaterium. The exclusion of certain amino acids from the minimal medium led for the first time to higher volumetric PGA activities than obtained for complex medium cultivations.
Collapse
Affiliation(s)
- Yang Yang
- Biochemical Engineering, TU-BCE, HZI-Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Rebekka Biedendieck
- Institute of Microbiology, Technical University Braunschweig, Spielmannstraße 7, D-38106 Braunschweig, Germany
| | - Wei Wang
- Biochemical Engineering, TU-BCE, HZI-Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Martin Gamer
- Institute of Microbiology, Technical University Braunschweig, Spielmannstraße 7, D-38106 Braunschweig, Germany
| | - Marco Malten
- Institute of Microbiology, Technical University Braunschweig, Spielmannstraße 7, D-38106 Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technical University Braunschweig, Spielmannstraße 7, D-38106 Braunschweig, Germany
| | - Wolf-Dieter Deckwer
- Biochemical Engineering, TU-BCE, HZI-Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
47
|
Wang W, Hollmann R, Deckwer WD. Comparative proteomic analysis of high cell density cultivations with two recombinant Bacillus megaterium strains for the production of a heterologous dextransucrase. Proteome Sci 2006; 4:19. [PMID: 17022804 PMCID: PMC1622742 DOI: 10.1186/1477-5956-4-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/05/2006] [Indexed: 11/30/2022] Open
Abstract
High cell density cultivations were performed under identical conditions for two Bacillus megaterium strains (MS941 and WH320), both carrying a heterologous dextransucrase (dsrS) gene under the control of the xylA promoter. At characteristic points of the cultivations (end of batch, initial feeding, before and after induction) the proteome was analyzed based on two dimensional gel electrophoresis and mass spectrometric protein identification using the protein database "bmegMEC.v2" recently made available. High expression but no secretion of DsrS was found for the chemical mutant WH320 whereas for MS 941, a defined protease deficient mutant of the same parent strain (DSM319), not even expression of DsrS could be detected. The proteomic analysis resulted in the identification of proteins involved in different cellular pathways such as in central carbon and overflow metabolism, in protein synthesis, protein secretion and degradation, in cell wall metabolism, in cell division and sporulation, in membrane transport and in stress responses. The two strains exhibited considerable variations in expression levels of specific proteins during the different phases of the cultivation process, whereas induction of DsrS production had, in general, little effect. The largely differing behaviour of the two strains with regard to DsrS expression can be attributed, at least in part, to changes observed in the proteome which predominantly concern biosynthetic enzymes and proteins belonging to the membrane translocation system, which were strongly down-regulated at high cell densities in MS941 compared with WH320. At the same time a cell envelope-associated quality control protease and two peptidoglycan-binding proteins related to cell wall turnover were strongly expressed in MS941 but not found in WH320. However, to further explain the very different physiological responses of the two strains to the same cultivation conditions, it is necessary to identify the mutated genes in WH320 in addition to the known lacZ. In view of the results of this proteomic study it seems that at high cell density conditions and hence low growth rates MS941, in contrast to WH320, does not maintain a vegetative growth which is essential for the expression of the foreign dsrS gene by using the xylA promoter. It is conceivable that applications of a promoter which is highly active under nutrient-limited cultivation conditions is necessary, at least for MS941, for the overexpression of recombinant genes in such B. megaterium fed-batch cultivation process. However to obtain a heterologous protein in secreted and properly folded form stills remains a big challenge.
Collapse
Affiliation(s)
- Wei Wang
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Rajan Hollmann
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Wolf-Dieter Deckwer
- Biochemical Engineering, Technical University Braunschweig, GBF/TU-BCE, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| |
Collapse
|
48
|
Hollmann R, Malten M, Biedendieck R, Yang Y, Wang W, Jahn D, Deckwer WD. Bacillus megaterium as a Host for Recombinant Protein Production. Eng Life Sci 2006. [DOI: 10.1002/elsc.200620147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
49
|
Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2006; 72:211-22. [PMID: 16791589 DOI: 10.1007/s00253-006-0465-8] [Citation(s) in RCA: 630] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/28/2022]
Abstract
During the proteomics period, the growth in the use of recombinant proteins has increased greatly in the recent years. Bacterial systems remain most attractive due to low cost, high productivity, and rapid use. However, the rational choice of the adequate promoter system and host for a specific protein of interest remains difficult. This review gives an overview of the most commonly used systems: As hosts, Bacillus brevis, Bacillus megaterium, Bacillus subtilis, Caulobacter crescentus, other strains, and, most importantly, Escherichia coli BL21 and E. coli K12 and their derivatives are presented. On the promoter side, the main features of the l-arabinose inducible araBAD promoter (PBAD), the lac promoter, the l-rhamnose inducible rhaP BAD promoter, the T7 RNA polymerase promoter, the trc and tac promoter, the lambda phage promoter p L , and the anhydrotetracycline-inducible tetA promoter/operator are summarized.
Collapse
Affiliation(s)
- Kay Terpe
- IBA GmbH, 37079, Göttingen, Germany.
| |
Collapse
|
50
|
Hollmann R, Malten M, Biedendieck R, Yang Y, Wang W, Jahn D, Deckwer WD. Bacillus megaterium als Produktionssystem für rekombinante Proteine. CHEM-ING-TECH 2006. [DOI: 10.1002/cite.200500158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|