1
|
Lee YG, Jo HY, Lee DH, Yoon JW, Song YH, Kweon DH, Kim KH, Park YC, Seo JH. De novo biosynthesis of 2'-fucosyllactose by bioengineered Corynebacterium glutamicum. Biotechnol J 2024; 19:e2300461. [PMID: 37968827 DOI: 10.1002/biot.202300461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
2'-Fucosyllactose (2'-FL) which is well-known human milk oligosaccharide was biotechnologically synthesized using engineered Corynebacterium glutamicum, a GRAS microbial workhorse. By construction of the complete de novo pathway for GDP-L-fucose supply and heterologous expression of Escherichia coli lactose permease and Helicobacter pylori α-1,2-fucosyltransferase, bioengineered C. glutamicum BCGW_TL successfully biosynthesized 0.25 g L-1 2'-FL from glucose. The additional genetic perturbations including the expression of a putative 2'-FL exporter and disruption of the chromosomal pfkA gene allowed C. glutamicum BCGW_cTTLEΔP to produce 2.5 g L-1 2'-FL batchwise. Finally, optimized fed-batch cultivation of the BCGW_cTTLEΔP using glucose, fructose, and lactose resulted in 21.5 g L-1 2'-FL production with a productivity of 0.12 g L-1 •h, which were more than 3.3 times higher value relative to the batch culture of the BCGW_TL. Conclusively, it would be a groundwork to adopt C. glutamicum for biotechnological production of other food additives including human milk oligosaccharides.
Collapse
Affiliation(s)
- Ye-Gi Lee
- Department of Bio and Fermentation Convergence Technology and Center for Bioconvergence, Kookmin University, Seoul, South Korea
- Department of Agricultural Biotechnology and Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Hae-Yong Jo
- Department of Agricultural Biotechnology and Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Do-Haeng Lee
- Department of Agricultural Biotechnology and Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Won Yoon
- Advanced Protein Technologies Corp. Yeongtong-gu, Suwon, Gyeonggi, South Korea
| | - Young-Ha Song
- Advanced Protein Technologies Corp. Yeongtong-gu, Suwon, Gyeonggi, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, South Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology and Center for Bioconvergence, Kookmin University, Seoul, South Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Lad BC, Coleman SM, Alper HS. Microbial valorization of underutilized and nonconventional waste streams. J Ind Microbiol Biotechnol 2022; 49:kuab056. [PMID: 34529075 PMCID: PMC9118980 DOI: 10.1093/jimb/kuab056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
The growing burden of waste disposal coupled with natural resource scarcity has renewed interest in the remediation, valorization, and/or repurposing of waste. Traditional approaches such as composting, anaerobic digestion, use in fertilizers or animal feed, or incineration for energy production extract very little value out of these waste streams. In contrast, waste valorization into fuels and other biochemicals via microbial fermentation is an area of growing interest. In this review, we discuss microbial valorization of nonconventional, aqueous waste streams such as food processing effluents, wastewater streams, and other industrial wastes. We categorize these waste streams as carbohydrate-rich food wastes, lipid-rich wastes, and other industrial wastes. Recent advances in microbial valorization of these nonconventional waste streams are highlighted, along with a discussion of the specific challenges and opportunities associated with impurities, nitrogen content, toxicity, and low productivity.
Collapse
Affiliation(s)
- Beena C Lad
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, Texas 78712, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, USA
| |
Collapse
|
4
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
5
|
Shen J, Chen J, Jensen PR, Solem C. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production. Microb Cell Fact 2019; 18:51. [PMID: 30857537 PMCID: PMC6410493 DOI: 10.1186/s12934-019-1091-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Delactosed whey permeate (DWP) is a side stream of whey processing, which often is discarded as waste, despite of its high residual content of lactose, typically 10-20%. Microbial fermentation is one of the most promising approaches for valorizing nutrient rich industrial waste streams, including those generated by the dairies. Here we present a novel microbial platform specifically designed to generate useful compounds from dairy waste. As a starting point we use Corynebacterium glutamicum, an important workhorse used for production of amino acids and other important compounds, which we have rewired and complemented with genes needed for lactose utilization. To demonstrate the potential of this novel platform we produce ethanol from lactose in DWP. RESULTS First, we introduced the lacSZ operon from Streptococcus thermophilus, encoding a lactose transporter and a β-galactosidase, and achieved slow growth on lactose. The strain could metabolize the glucose moiety of lactose, and galactose accumulated in the medium. After complementing with the Leloir pathway (galMKTE) from Lactococcus lactis, co-metabolization of galactose and glucose was accomplished. To further improve the growth and increase the sugar utilization rate, the strain underwent adaptive evolution in lactose minimal medium for 100 generations. The outcome was strain JS95 that grew fast in lactose mineral medium. Nevertheless, JS95 still grew poorly in DWP. The growth and final biomass accumulation were greatly stimulated after supplementation with NH4+, Mn2+, Fe2+ and trace minerals. In only 24 h of cultivation, a high cell density (OD600 of 56.8 ± 1.3) was attained. To demonstrate the usefulness of the platform, we introduced a plasmid expressing pyruvate decarboxylase and alcohol dehydrogenase, and managed to channel the metabolic flux towards ethanol. Under oxygen-deprived conditions, non-growing suspended cells could convert 100 g/L lactose into 46.1 ± 1.4 g/L ethanol in DWP, a yield of 88% of the theoretical. The resting cells could be re-used at least three times, and the ethanol productivities obtained were 0.96 g/L/h, 2.2 g/L/h, and 1.6 g/L/h, respectively. CONCLUSIONS An efficient process for producing ethanol from DWP, based on C. glutamicum, was demonstrated. The results obtained clearly show a great potential for this newly developed platform for producing value-added chemicals from dairy waste.
Collapse
Affiliation(s)
- Jing Shen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jun Chen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Lee MJ, Kim P. Recombinant Protein Expression System in Corynebacterium glutamicum and Its Application. Front Microbiol 2018; 9:2523. [PMID: 30416490 PMCID: PMC6213972 DOI: 10.3389/fmicb.2018.02523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Corynebacterium glutamicum, a soil-derived gram-positive actinobacterium, has been widely used for the production of biochemical molecules such as amino acids (i.e., L-glutamate and L-lysine), nucleic acids, alcohols, and organic acids. The metabolism of the bacterium has been engineered to increase the production of the target biochemical molecule, which requires a cytosolic enzyme expression. As recent demand for new proteinaceous biologics (such as antibodies, growth factors, and hormones) increase, C. glutamicum is attracting industrial interest as a recombinant protein expression host for therapeutic protein production due to the advantages such as low protease activity without endotoxin activity. In this review, we have summarized the recent studies on the heterologous expression of the recombinant protein in C. glutamicum for metabolic engineering, expansion of substrate availability, and recombinant protein secretion. We have also outlined the advances in genetic components such as promoters, surface anchoring systems, and secretory signal sequences in C. glutamicum for effective recombinant protein expression.
Collapse
Affiliation(s)
| | - Pil Kim
- Department of Biotechnology, The Catholirc University of Korea, Bucheon, South Korea
| |
Collapse
|
7
|
Pérez-García F, Wendisch VF. Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol Lett 2018; 365:5047308. [DOI: 10.1093/femsle/fny166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstr. 25, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
8
|
Becker J, Wittmann C. Industrial Microorganisms: Corynebacterium glutamicum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Judith Becker
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| |
Collapse
|
9
|
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University; Genetics of Prokaryotes, Faculty of Biology and CeBiTec; Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
10
|
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 2016; 234:139-157. [DOI: 10.1016/j.jbiotec.2016.07.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
|
11
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Saeui CT, Urias E, Liu L, Mathew MP, Yarema KJ. Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications. Glycoconj J 2015; 32:425-41. [PMID: 25931032 DOI: 10.1007/s10719-015-9583-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/12/2022]
Abstract
Metabolic glycoengineering is a specialization of metabolic engineering that focuses on using small molecule metabolites to manipulate biosynthetic pathways responsible for oligosaccharide and glycoconjugate production. As outlined in this article, this technique has blossomed in mammalian systems over the past three decades but has made only modest progress in prokaryotes. Nevertheless, a sufficient foundation now exists to support several important applications of metabolic glycoengineering in bacteria based on methods to preferentially direct metabolic intermediates into pathways involved in lipopolysaccharide, peptidoglycan, teichoic acid, or capsule polysaccharide production. An overview of current applications and future prospects for this technology are provided in this report.
Collapse
Affiliation(s)
- Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Esteban Urias
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Lingshu Liu
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Mohit P Mathew
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, The Johns Hopkins University, 5029 Robert H. & Clarice Smith Building, 400 North Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
13
|
Liu X, Yang Y, Zhang W, Sun Y, Peng F, Jeffrey L, Harvey L, McNeil B, Bai Z. Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications. Crit Rev Biotechnol 2015; 36:652-64. [PMID: 25714007 DOI: 10.3109/07388551.2015.1004519] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Corynebacterium glutamicum (C. glutamicum) is a highly promising alternative prokaryotic host for recombinant protein expression, as it possesses several significant advantages over Escherichia coli (E. coli), the currently leading bacterial protein expression system. During the past decades, several experimental techniques and vector components for genetic manipulation of C. glutamicum have been developed and validated, including strong promoters for tightly regulating target gene expression, various types of plasmid vectors, protein secretion systems and methods of genetically modifying the host strain genome to improve protein production potential. This review critically discusses current progress in establishing C. glutamicum as a host for recombinant protein expression, and examines, in depth, some successful case studies of actual application of this expression system. The established "expression tool box" for developing novel constructs based on C. glutamicum as a host are also evaluated. Finally, the existing issues and solutions in process development with C. glutamicum as a host are specifically addressed.
Collapse
Affiliation(s)
- Xiuxia Liu
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Yankun Yang
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Wei Zhang
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Yang Sun
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Feng Peng
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| | - Laura Jeffrey
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Linda Harvey
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Brian McNeil
- b Institute of Pharmacy & Biomedical Sciences, Strathclyde University , Glasgow , UK
| | - Zhonghu Bai
- a National Engineering Laboratory of Cereal Fermentation Technology , School of Biotechnology, JiangNan University , Wuxi , China and
| |
Collapse
|
14
|
Kortmann M, Kuhl V, Klaffl S, Bott M. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb Biotechnol 2014; 8:253-65. [PMID: 25488698 PMCID: PMC4353339 DOI: 10.1111/1751-7915.12236] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/09/2023] Open
Abstract
Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum.
Collapse
Affiliation(s)
- Maike Kortmann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, D-52425, Germany
| | | | | | | |
Collapse
|
15
|
Angelov A, Li H, Geissler A, Leis B, Liebl W. Toxicity of indoxyl derivative accumulation in bacteria and its use as a new counterselection principle. Syst Appl Microbiol 2013; 36:585-92. [PMID: 23871391 DOI: 10.1016/j.syapm.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
Abstract
In this work we describe the conditional toxic effect of the expression of enzymes that cleave 5-bromo-4-chloro-3-indolyl (BCI) substrates and its use as a new counterselection principle useful for the generation of clean and unmarked mutations in the genomes of bacteria. The application of this principle was demonstrated in the thermophile Thermus thermophilus HB27 and in a mesophile for which currently no counterselection markers are available, Micrococcus luteus ATCC 27141. For T. thermophilus, the indigogenic substrate BCI-β-glucoside was used in combination with the T. thermophilus β-glucosidase gene (bgl). For M. luteus, a combination of BCI-β-galactoside and the E. coli lacZ gene was implemented. We observed a strong growth-inhibiting effect when the strains were grown on agar plates containing the appropriate BCI substrates, the inhibition being proportional to the substrate concentration and the level of bgl/lacZ expression. The growth inhibition apparently depends on intracellular BCI substrate cleavage and accumulation of toxic indoxyl precipitates. The bgl and lacZ genes were used as counterselection markers for the rapid generation of scar-less chromosomal deletions in T. thermophilus HB27 (both in a Δbgl and in a wild type background) and in M. luteus ATCC 27141. In addition to Thermus and Micrococcus, sensitivity to BCI substrate cleavage was observed for other Gram-negative and Gram-positive species belonging to various bacterial phyla, including representatives of the genera Staphylococcus, Bacillus, Corynebacterium, Rhodococcus, Paracoccus and Xanthomonas. Thus, the toxicity of indoxyl derivative accumulation upon BCI substrate cleavage can be used for selection purposes in a broad range of microorganisms.
Collapse
Affiliation(s)
- Angel Angelov
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, D-85354 Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
16
|
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 2012; 6:131-40. [PMID: 23164409 PMCID: PMC3917455 DOI: 10.1111/1751-7915.12001] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 11/29/2022] Open
Abstract
Because of their abundance in hemicellulosic wastes arabinose and xylose are an interesting source of carbon for biotechnological production processes. Previous studies have engineered several Corynebacterium glutamicum strains for the utilization of arabinose and xylose, however, with inefficient xylose utilization capabilities. To improve xylose utilization, different xylose isomerase genes were tested in C. glutamicum. The gene originating from Xanthomonas campestris was shown to have the highest effect, resulting in growth rates of 0.14 h−1, followed by genes from Bacillus subtilis, Mycobacterium smegmatis and Escherichia coli. To further increase xylose utilization different xylulokinase genes were expressed combined with X. campestris xylose isomerase gene. All combinations further increased growth rates of the recombinant strains up to 0.20 h−1 and moreover increased biomass yields. The gene combination of X. campestris xylose isomerase and C. glutamicum xylulokinase was the fastest growing on xylose and compared with the previously described strain solely expressing E. coli xylose isomerase gene delivered a doubled growth rate. Productivity of the amino acids glutamate, lysine and ornithine, as well as the diamine putrescine was increased as well as final titres except for lysine where titres remained unchanged. Also productivity in medium containing rice straw hydrolysate as carbon source was increased. Funding Information No funding information provided.
Collapse
|
17
|
Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes. Appl Biochem Biotechnol 2012; 169:55-65. [PMID: 23138337 DOI: 10.1007/s12010-012-9951-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.
Collapse
|
18
|
Ravasi P, Peiru S, Gramajo H, Menzella HG. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb Cell Fact 2012; 11:147. [PMID: 23134565 PMCID: PMC3539996 DOI: 10.1186/1475-2859-11-147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/03/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Synthetic biology approaches can make a significant contribution to the advance of metabolic engineering by reducing the development time of recombinant organisms. However, most of synthetic biology tools have been developed for Escherichia coli. Here we provide a platform for rapid engineering of C. glutamicum, a microorganism of great industrial interest. This bacteria, used for decades for the fermentative production of amino acids, has recently been developed as a host for the production of several economically important compounds including metabolites and recombinant proteins because of its higher capacity of secretion compared to traditional bacterial hosts like E. coli. Thus, the development of modern molecular platforms may significantly contribute to establish C. glutamicum as a robust and versatile microbial factory. RESULTS A plasmid based platform named pTGR was created where all the genetic components are flanked by unique restriction sites to both facilitate the evaluation of regulatory sequences and the assembly of constructs for the expression of multiple genes. The approach was validated by using reporter genes to test promoters, ribosome binding sites, and for the assembly of dual gene operons and gene clusters containing two transcriptional units. Combinatorial assembly of promoter (tac, cspB and sod) and RBS (lacZ, cspB and sod) elements with different strengths conferred clear differential gene expression of two reporter genes, eGFP and mCherry, thus allowing transcriptional "fine-tuning"of multiple genes. In addition, the platform allowed the rapid assembly of operons and genes clusters for co-expression of heterologous genes, a feature that may assist metabolic pathway engineering. CONCLUSIONS We anticipate that the pTGR platform will contribute to explore the potential of novel parts to regulate gene expression, and to facilitate the assembly of genetic circuits for metabolic engineering of C. glutamicum. The standardization provided by this approach may provide a means to improve the productivity of biosynthetic pathways in microbial factories for the production of novel compounds.
Collapse
Affiliation(s)
- Pablo Ravasi
- Genetic Engineering & Fermentation Technology. Instituto de Biología Celular y Molecular de Rosario-CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, República Argentina
- Geneg SRL, Cuba 4710, Buenos Aires, Argentina
| | - Salvador Peiru
- Genetic Engineering & Fermentation Technology. Instituto de Biología Celular y Molecular de Rosario-CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, República Argentina
| | - Hugo Gramajo
- Genetic Engineering & Fermentation Technology. Instituto de Biología Celular y Molecular de Rosario-CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, República Argentina
| | - Hugo G Menzella
- Genetic Engineering & Fermentation Technology. Instituto de Biología Celular y Molecular de Rosario-CONICET. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, República Argentina
| |
Collapse
|
19
|
Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 2012; 3:e201210004. [PMID: 24688664 PMCID: PMC3962153 DOI: 10.5936/csbj.201210004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023] Open
Abstract
Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources), and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols
Collapse
Affiliation(s)
- Ahmed Zahoor
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, 33615 Bielefeld, Germany
| | - Steffen N Lindner
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Glycerol-3-phosphatase of Corynebacterium glutamicum. J Biotechnol 2012; 159:216-24. [DOI: 10.1016/j.jbiotec.2012.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 02/07/2023]
|
21
|
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 2011; 92:985-96. [DOI: 10.1007/s00253-011-3478-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 01/07/2023]
|
22
|
Schneider J, Niermann K, Wendisch VF. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 2011; 154:191-8. [DOI: 10.1016/j.jbiotec.2010.07.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/16/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
23
|
Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 2011; 90:1641-54. [DOI: 10.1007/s00253-011-3272-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 01/26/2023]
|
24
|
Xu D, Tan Y, Shi F, Wang X. An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid 2010; 64:85-91. [DOI: 10.1016/j.plasmid.2010.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/03/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|
25
|
Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of l-lysine production strains. Appl Microbiol Biotechnol 2010; 86:1313-22. [DOI: 10.1007/s00253-010-2537-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/03/2010] [Accepted: 03/03/2010] [Indexed: 11/27/2022]
|
26
|
Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 2009; 75:3419-29. [PMID: 19346355 PMCID: PMC2687266 DOI: 10.1128/aem.02912-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 03/26/2009] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum ATCC 31831 grew on l-arabinose as the sole carbon source at a specific growth rate that was twice that on d-glucose. The gene cluster responsible for l-arabinose utilization comprised a six-cistron transcriptional unit with a total length of 7.8 kb. Three l-arabinose-catabolizing genes, araA (encoding l-arabinose isomerase), araB (l-ribulokinase), and araD (l-ribulose-5-phosphate 4-epimerase), comprised the araBDA operon, upstream of which three other genes, araR (LacI-type transcriptional regulator), araE (l-arabinose transporter), and galM (putative aldose 1-epimerase), were present in the opposite direction. Inactivation of the araA, araB, or araD gene eliminated growth on l-arabinose, and each of the gene products was functionally homologous to its Escherichia coli counterpart. Moreover, compared to the wild-type strain, an araE disruptant exhibited a >80% decrease in the growth rate at a lower concentration of l-arabinose (3.6 g liter(-1)) but not at a higher concentration of l-arabinose (40 g liter(-1)). The expression of the araBDA operon and the araE gene was l-arabinose inducible and negatively regulated by the transcriptional regulator AraR. Disruption of araR eliminated the repression in the absence of l-arabinose. Expression of the regulon was not repressed by d-glucose, and simultaneous utilization of l-arabinose and d-glucose was observed in aerobically growing wild-type and araR deletion mutant cells. The regulatory mechanism of the l-arabinose regulon is, therefore, distinct from the carbon catabolite repression mechanism in other bacteria.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | | | | | | | | |
Collapse
|
27
|
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 2008; 74:6216-22. [PMID: 18757581 DOI: 10.1128/aem.00963-08] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures.
Collapse
|
28
|
Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 2006; 9:268-74. [PMID: 16617034 DOI: 10.1016/j.mib.2006.03.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 03/24/2006] [Indexed: 11/22/2022]
Abstract
Industrial microorganisms have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. Rational strain development by metabolic engineering is crucial to successful processes, and is based on efficient genetic tools and detailed knowledge of metabolic pathways and their regulation. This review summarizes recent advances in metabolic engineering of the industrial model bacteria Escherichia coli and Corynebacterium glutamicum that led to efficient recombinant biocatalysts for the production of acetate, pyruvate, ethanol, d- and l-lactate, succinate, l-lysine and l-serine.
Collapse
Affiliation(s)
- Volker F Wendisch
- Institute of Molecular Microbiology and Biotechnology, Westfalian Wilhelms University Münster, 48149 Münster, Germany.
| | | | | |
Collapse
|
29
|
Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 2004; 70:2861-6. [PMID: 15128544 PMCID: PMC404391 DOI: 10.1128/aem.70.5.2861-2866.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and beta-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited beta-galactosidase activity in excess of 1000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and beta-galactosidase genes exhibited beta-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability.
Collapse
Affiliation(s)
- Eoin Barrett
- Dairy Products Research Centre, Teagasc, Moorepark, Fermoy, Ireland
| | | | | | | | | |
Collapse
|
30
|
Padilla L, Krämer R, Stephanopoulos G, Agosin E. Overproduction of trehalose: heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum. Appl Environ Microbiol 2004; 70:370-6. [PMID: 14711665 PMCID: PMC321289 DOI: 10.1128/aem.70.1.370-376.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 10/10/2003] [Indexed: 11/20/2022] Open
Abstract
Trehalose is a disaccharide with potential applications in the biotechnology and food industries. We propose a method for industrial production of trehalose, based on improved strains of Corynebacterium glutamicum. This paper describes the heterologous expression of Escherichia coli trehalose-synthesizing enzymes trehalose-6-phosphate synthase (OtsA) and trehalose-6-phosphate phosphatase (OtsB) in C. glutamicum, as well as its impact on the trehalose biosynthetic rate and metabolic-flux distributions, during growth in a defined culture medium. The new recombinant strain showed a five- to sixfold increase in the activity of OtsAB pathway enzymes, compared to a control strain, as well as an almost fourfold increase in the trehalose excretion rate during the exponential growth phase and a twofold increase in the final titer of trehalose. The heterologous expression described resulted in a reduced specific glucose uptake rate and Krebs cycle flux, as well as reduced pentose pathway flux, a consequence of downregulated glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The results proved the suitability of using the heterologous expression of Ots proteins in C. glutamicum to increase the trehalose biosynthetic rate and yield and suggest critical points for further improvement of trehalose overproduction in C. glutamicum.
Collapse
Affiliation(s)
- Leandro Padilla
- Departmento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
31
|
Abstract
Regulation of gene expression in Corynebacterium glutamicum represents an important issue since this Gram-positive bacterium is a notable industrial amino acid producer. Transcription initiation, beginning by binding of RNA polymerase to the promoter DNA sequence, is one of the main points at which bacterial gene expression is regulated. More than 50 transcriptional promoters have so far been experimentally localized in C. glutamicum. Most of them are assumed to be promoters of vegetative genes recognized by the main sigma factor. Although transcription initiation rate defined by many of these promoters may be affected by transcription factors, which activate or repress their function, the promoter regions share common sequence features, which may be generalized in a consensus sequence. In the consensus C. glutamicum promoter, the prominent feature is a conserved extended -10 region tgngnTA(c/t)aaTgg, while the -35 region is much less conserved. Some commonly utilized heterologous promoters were shown to drive strong gene expression in C. glutamicum. Conversely, some C. glutamicum promoters were found to function in Escherichia coli and in other bacteria. These observations suggest that C. glutamicum promoters functionally conform with the common bacterial promoter scheme, although they differ in some sequence structures.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-14220 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
Metabolic engineering is the science that combines systematic analysis of metabolic and other pathways with molecular biological techniques to improve cellular properties by designing and implementing rational genetic modifications. As such, metabolic engineering deals with the measurement of metabolic fluxes and elucidation of their control as determinants of metabolic function and cell physiology. A novel aspect of metabolic engineering is that it departs from the traditional reductionist paradigm of cellular metabolism, taking instead a holistic view. In this sense, metabolic engineering is well suited as a framework for the analysis of genome-wide differential gene expression data, in combination with data on protein content and in vivo metabolic fluxes. The insights of the integrated view of metabolism generated by metabolic engineering will have profound implications in biotechnological applications, as well as in devising rational strategies for target selection for screening candidate drugs or designing gene therapies. In this article we review basic concepts of metabolic engineering and provide examples of applications in the production of primary and secondary metabolites, improving cellular properties, and biomedical engineering.
Collapse
Affiliation(s)
- M Koffas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
34
|
Wyckoff TJ, Raetz CR. The active site of Escherichia coli UDP-N-acetylglucosamine acyltransferase. Chemical modification and site-directed mutagenesis. J Biol Chem 1999; 274:27047-55. [PMID: 10480918 DOI: 10.1074/jbc.274.38.27047] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the reversible transfer of an R-3-hydroxyacyl chain from R-3-hydroxyacyl-acyl carrier protein to the glucosamine 3-OH of UDP-GlcNAc in the first step of lipid A biosynthesis. Lipid A is required for the growth and virulence of most Gram-negative bacteria, making its biosynthetic enzymes intriguing targets for the development of new antibacterial agents. LpxA is a member of a large family of left-handed beta-helical proteins, many of which are acyl- or acetyltransferases. We now demonstrate that histidine-, lysine-, and arginine-specific reagents effectively inhibit LpxA of Escherichia coli, whereas serine- and cysteine-specific reagents do not. Using this information in conjunction with multiple sequence alignments, we constructed site-directed alanine substitution mutations of conserved histidine, lysine, and arginine residues. Many of these mutant LpxA enzymes show severely decreased specific activities under standard assay conditions. The decrease in activity corresponds to decreased k(cat)/K(m,UDP-GlcNAc) values for all the mutants. With the exception of H125A, in which no activity is seen under any assay condition, the decrease in k(cat)/K(m,UDP-GlcNAc) mainly reflects an increased K(m,UDP-GlcNAc). His(125) of E. coli LpxA may therefore function as a catalytic residue, possibly as a general base. LpxA does not catalyze measurable UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc hydrolysis or UDP-GlcNAc/UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc exchange, arguing against a ping-pong mechanism with an acyl-enzyme intermediate.
Collapse
Affiliation(s)
- T J Wyckoff
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
35
|
Ben-Samoun K, Leblon G, Reyes O. Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. FEMS Microbiol Lett 1999; 174:125-30. [PMID: 10234830 DOI: 10.1111/j.1574-6968.1999.tb13558.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In Corynebacterium glutamicum the promoter of the araBAD Escherichia coli gene is positively regulated by both arabinose and the araC gene product, as it is the case in the natural host. If the L-arabinose inducer and an active araC gene are present, significant amounts of araBAD promoter expression take place in the absence of the E. coli CRP protein. These results show that the C. glutamicum RNA polymerase is activated by the E. coli positive regulator of transcription AraC.
Collapse
Affiliation(s)
- K Ben-Samoun
- Institut de Génétique et Microbiologie URA 2225, Université de Paris XI, Orsay, France
| | | | | |
Collapse
|
36
|
Abstract
Metabolic engineering is the directed improvement of cellular properties through the modification of specific biochemical reactions or the introduction of new ones, with the use of recombinant DNA technology. As such, metabolic engineering emphasizes metabolic pathway integration and relies on metabolic fluxes as determinants of cell physiology and measures of metabolic control. The combination of analytical methods to quantify fluxes and their control with molecular biological techniques to implement genetic modifications is the essence of metabolic engineering. Strategies for metabolic flux determination are reviewed in this paper and it is shown how metabolic fluxes can be used in the systematic elucidation of metabolic control in the framework of reaction grouping and top-down metabolic control analysis.
Collapse
Affiliation(s)
- G Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA
| |
Collapse
|
37
|
Wyckoff TJ, Lin S, Cotter RJ, Dotson GD, Raetz CR. Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J Biol Chem 1998; 273:32369-72. [PMID: 9829962 DOI: 10.1074/jbc.273.49.32369] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-GlcNAc acyltransferase (LpxA), the first enzyme of lipid A biosynthesis, catalyzes the transfer of an acyl chain activated on acyl carrier protein (ACP) to UDP-GlcNAc. LpxAs are very selective for the lengths of their acyl donor substrates. Escherichia coli LpxA prefers R-3-hydroxymyristoyl-ACP to R-3-hydroxydecanoyl-ACP by a factor of approximately 1000, whereas Pseudomonas aeruginosa LpxA prefers the opposite. E. coli G173M LpxA and the reciprocal P. aeruginosa M169G LpxA show reversed substrate selectivity in vitro and in vivo, demonstrating the existence of precise hydrocarbon rulers in LpxAs.
Collapse
Affiliation(s)
- T J Wyckoff
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
38
|
Stephanopoulos GN, Aristidou AA, Nielsen J. Examples of Pathway Manipulations: Metabolic Engineering in Practice. Metab Eng 1998. [DOI: 10.1016/b978-012666260-3/50007-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Pátek M, Eikmanns BJ, Pátek J, Sahm H. Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 5):1297-1309. [PMID: 8704969 DOI: 10.1099/13500872-142-5-1297] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Relatively limited information about promoter structures in Corynebacterium glutamicum has been available until now. With the aim of isolating and characterizing such transcription initiation signals, random Sau3A fragments of C. glutamicum chromosomal DNA and of the corynebacterial phage phi GA1 were cloned into the promoter probe vector pEKplCm and selected for promoter activity by chloramphenicol resistance of transformed C. glutamicum cells. The nucleotide sequence of ten chromosomal and three phage fragments was determined and the transcriptional start (TS) sites were localized by primer extension analyses. Additionally, the promoters of five previously isolated C. glutamicum genes were cloned and mapped. All of the isolated promoters were also functional in the heterologous host Escherichia coli. A comparative analysis of the newly characterized promoter sequences together with published promoters from C. glutamicum revealed conserved sequences centred about 35 bp (ttGcca) and 10 bp (TA.aaT) upstream of the TS site. The position of these motifs and the motifs themselves are comparable to the -35 and -10 promoter consensus sequences of other Gram-positive and Gram-negative bacteria, indicating that they represent transcription initiation signals in C. glutamicum. However, the C. glutamicum consensus hexamer of the -35 region is much less conserved than in E. coli, Bacillus, Lactobacillus and Streptococcus.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Bernhard J Eikmanns
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jaroslav Pátek
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Hermann Sahm
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
40
|
Brabetz W, Liebl W, Schleifer KH. Lactose permease of Escherichia coli catalyzes active beta-galactoside transport in a gram-positive bacterium. J Bacteriol 1993; 175:7488-91. [PMID: 8226697 PMCID: PMC206897 DOI: 10.1128/jb.175.22.7488-7491.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The following several lines of evidence demonstrate that lactose permease (LacY) of Escherichia coli is assembled into the cytoplasmic membrane of gram-positive Corynebacterium glutamicum, expressing the lacY gene, as a functional carrier protein. (i) LacY was detected immunologically in the cytoplasmic membrane fraction of the heterologous host. (ii) Recombinant C. glutamicum cells bearing the lacY gene displayed an increased influx of o-nitrophenyl-beta-D-galactopyranoside, which was inhibited by N-ethylmaleimide. (iii) Washed cells were capable of accumulating methyl-beta-D-thiogalactoside about 60-fold. (iv) The uptake of methyl-beta-D-thiogalactoside was energy dependent and could be inhibited by the addition of 10 microM carbonyl cyanide-m-chlorophenylhydrazone. LacY of E. coli was active in the recombinant C. glutamicum cells despite the different membrane lipid compositions of these organisms.
Collapse
Affiliation(s)
- W Brabetz
- Lehrstuhl für Mikrobiologie, Technische Universität München, Germany
| | | | | |
Collapse
|
41
|
Hertel C, Ludwig W, Schleifer KH. Introduction of Silent Mutations in a Proteinase Gene of Lactococcus lactis as a Useful Marker for Monitoring Studies. Syst Appl Microbiol 1992. [DOI: 10.1016/s0723-2020(11)80220-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|